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Abstract: This paper derives the non-inertial terms, also
referred to as fictitious forces, for aero-ballistic cases us-
ing an Eulerian approach. These cases display unsteady
rates of change in acceleration in all six degrees of freedom.
Six fictitious forces are identified in the momentum equa-
tion. Their origin and nature of these forces are elaborated
upon. As shown in previous work, the continuity and en-
ergy equations remain invariant. The non-inertial boundary
layer equations are derived to determine the effect of ficti-
tious forces in the near-wall region. Through an order of
magnitude analysis it was determined that none of the ficti-
tious forces cancels out. It will therefore have an influence
on the boundary layer properties.

Additional keywords: Coriolis force, Centrifugal force,

Euler force, Magnus force, Reference frames, Galilean invari-

ance, Rotational transform

Nomenclature

Roman
a Acceleration vector

b Vector

k Heat transfer coefficient

p Pressure

t Time

u Velocity vector

x Distance in x-direction

x Position vector

y Distance in y-direction

z Distance in z-direction

G Galilean operator

I Identity matrix

L Characteristic Length

O Frame designations

R Rotational transform operator

T Temperature

ˆ Rotational frame

V Velocity in x-direction

U Characteristic Velocity

X Position vector

Greek
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δ Boundary layer height

ε Perturbation parameter

ε Internal energy

λ Second viscosity

μ Dynamic viscosity

ν Kinematic viscosity

ρ Density

ψ Pressure per unit mass

ω Rotational velocity component

Φ Dissipation Function

Ω Rotational speed around the z-axis

ΩΩΩ Rotational speed vector

Sub- and Superscripts
′ Orientation preserving frame

ˆ Non-inertial frame

� Normalised form

i Inertial frame

r Relative frame

rel Relative conditions

t Time

Δt Change in time

1 Introduction
Non-inertial implementation of the Navier-Stokes equations

are mostly found in turbo-machinery applications [1, 2]. This

is limited to unsteady, pure rotation that operates at most in

three degrees of freedom. Aero-ballistic and aeronautical ap-

plications make ue of six degrees of freedom and arbitrary

motion. Inconsistencies have been found in the literature with

regards to formulation of non-inertial flow equations for six

degrees of freedom motion [3–5]. The Magnus force is absent

from the momentum equations cited. Furthermore, there is

uncertainty on the formulation of the conservation of energy

equation. This paper extends on the methods used in [6–8]

to obtain the non-inertial Navier-Stokes and boundary layer

equations for arbitrary aero-ballistic motion.

The Lagrangian approach to deriving the inertial conserva-

tion of momentum equation makes use of Newton’s second

law [9]. This equation is rewritten to approximate the solution

to momentum conversation of a fluid volume with the total

derivative of the fluid parcel velocity on the left hand side of

the equation.

ΣFi = mai

ρ
DVi
Dt

= fi
(1)

In the non-inertial frame, acceleration terms are derived

through a point mass method [9–11] to arrive at:

ai =
d2Rr
dt2

+
dΩΩΩ
dt

∧ r+ΩΩΩ∧ (ΩΩΩ∧ r)+
dVr
dt

+2ΩΩΩ∧Vr (2)
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Figure 1 Two Components of the Coriolis force: Outward

Component due to Eötvös effect (left) and De-

flection on the Earth’s Surface in Northern and

Southern Hemisphere (right)

To obtain the correct non-inertial momentum equation, the

time derivative of the non-inertial acceleration, (Vr) must be

implemented in the total derivative equation as shown below

[9].

ΣFr = mar

ρ
DVr
Dt

= fr
(3)

The misconception have been observed that the acceleration

terms in equation 2 can be directly applied in Newton’s second

law:

ΣFr +ΣFfictitious = mar (4)

Coincidently this approach provides the correct set of non-

inertial equations for rotational cases. It does not when six

degrees of freedom motion is at play.

Equation 2 presents the majority of the fictitious forces as-

sociated with aero-ballistics motion; Coriolis force, Centrifu-

gal force, Euler force and unsteady translation. In external

ballistic models the Magnus force and a secondary force due

to moving of the axis of rotation is included. At commence-

ment of this work it was uncertain if these forces should be

included in non-inertial fluid equations.

The physical meaning of the Coriolis force has been a sub-

ject of many discussions [12–14]. The Coriolis force was first

mathematically formulated in 1835 by Gaspard Coriolis. Ob-

servations of the Coriolis effect on the surface of the earth long

preceded the formulation (figure 1).

Deflections due to the Coriolis effect is three dimensional,

but the term Coriolis force is mostly associated with horizon-

tal deflections with respect to the surface of the earth in the

Northern and Southern Hemispheres. This has specific appli-

cation in Meteorology and Geophysics since weather patterns

and sea currents are directly influenced by the horizontal com-

ponent of the Coriolis force.

While the deflection on the surface of the earth has been the

most general observation of the Coriolis force, the component

vertical to the earth’s surface has only been measured in 1908

by Lorand Eötvös [13]. He observed the effect through gravity

readings collected by research ships which indicated that the

Figure 2 Reference Frames used to Describe Point P

gravity measurements increased with motion towards the west

and decreased when the ships sailed in an easterly direction.

Although the Coriolis force is mostly explained in terms of,

and therefore associated with, rotation of the earth it is appli-

cable in any rotational system. It is especially important in

ballistics research since earth rotation influence the accuracy

of fire-and-forget weapon systems. The Centrifugal effect al-

ways accompanies the Coriolis effect. This is responsible for

the outward motion of the flow in a rotational system.

The presence of the Magnus force in the non-inertial mo-

mentum equation is not generally seen in literature [9, 11].

Non-inertial formulations do not regularly include all the

aero-ballistic accelerations and is generally applied to rotat-

ing flows. In CFD applications the Magnus force is mostly

investigated using a predictive approach [15–17] instead of

with prescribed motion on the non-inertial frame as suggested

here.

The mathematical origins of the Coriolis, Centrifugal and

Euler forces were determined in [6,7] for rotational cases. It is

a result of transformation of the material derivative to the non-

inertial frame. Insight is obtained in this paper to the origin

of these non-inertial terms in aero-ballistic frames of motion.

The physical meaning of the terms and if it will effect bound-

ary layer profile is mathematically investigated here. This

is done through derivation of the non-inertial Navier-Stokes

and boundary layer equations by extending the methods used

in [6, 7].

2 Transformation between Absolute and
Relative Frames

In this derivation the same three reference frames as used in

[6, 7] will be made use of to transform the inertial Navier-

Stokes equations to the relative form (figure 2). These frames

comprise of:

• Frame O, which is an inertial frame. This frame is sta-

tionary.

• Frame O’, which is a non-inertial frame. This frame is

orientation preserving with respect to Frame O. It there-

fore has three degrees of freedom and is free to translate.

• Frame Ô, which is a non-inertial, rotating frame. This

frame does not preserve orientation therefore it has six

degrees of freedom. It can translate and rotate as pre-

dicted by the accelerations imposed on point P. This

frame shares an origin with Frame O’.

Consider the point P. The motion of this point can be de-

scribed from each of the three frames. This point is in arbi-

trary motion.

The flow field that surrounds this point can be described

from any of the reference frames. The standard Navier-Stokes

equations hold in the inertial frame, therefore the objective is
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Figure 3 Point Description between Frames

to obtain the correct form of the equations in Frame Ô. It will

be accomplished by conducting two transformations.

The first transformation will account for arbitrary transla-

tion between the inertial frame and the orientation preserv-

ing frame. Since Frame O’ and Frame Ô shares an origin,

this transformation accounts for the translation of Frame Ô as

well. A modified Galilean Transformation will be used to this

effect.

The second transformation will account for arbitrary rota-

tion. A transformation from Frame O’ to Frame Ô will be

defined. The relation derived during the first transformation

will be used to describe the flow field in Frame Ô in terms of

the vectors of Frame O.

2.1 Modified Galilean Transformation
The modified Galilean transformation as used in [6, 7] is ex-

tended here to account for six degrees of freedom motion. As-

sume that the frame origins intersect at time t = 0 and that

frame Ô is moving at velocity vrel with acceleration arel in

three dimensional space. At time t = Δt frame O and O’ are

distance xrel from each other. The is depicted in figure 3.

In figure 3 the absolute distance can be described in terms

of the relative and non-inertial distances:

x = xrel +x′ (5)

The relative distance between the two frames is a sum-

mation of the accelerating translation and rotation and is de-

scribed by:

xrel = VrelΔt +
1

2
arelΔt2 (6)

The relative velocity component consist of the translating

and rotating velocity components so that:

Vrel = Vtranslating +Vrotating

= V(t)+ΩΩΩ∧x′
(7)

In this equation the translation component is a function of

time only as it describes the motion between the origins of

Frames O and O’. The rotation is taking place in Frame O’

and is therefore defined in this frame.

The acceleration is the time derivative of the velocity:

∂Vrel
∂ t

=
∂
∂ t

[V(t)+ΩΩΩ∧x′]

arel = a(t)+
∂ΩΩΩ
∂ t

∧x′+ΩΩΩ∧ ∂x′

∂ t

(8)

The first term represents the translational acceleration,

while the second and third terms is a result of the rotational

velocity. Since both the derivative of x and ΩΩΩ is not equal to

zero, these terms will contribute to the total relative accelera-

tion. The accelerating component can therefore be expressed

as:

arel = atranslating +arotating

= a(t)+ Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′
(9)

Equation 6 is a Taylor series expansion that was truncated

after the second order term since constant acceleration was

assumed. Had the acceleration not been constant, the addi-

tional terms would be accounted for by the inclusion of further

derivative terms:

xrel = VrelΔt +
1

2!
arelΔt2 +

1

3!
ȧrelΔt3 + ... (10)

In this equation it can already be seen that the effect of

higher order derivatives of xrel becomes smaller and smaller.

In the subsequent paragraphs it will be shown that from the

second order, the terms are negligible.

A description for the relative motion can be obtained by

substituting equations 9 and 7 into equation 6. This will result

in:

xrel = [V(t)+ΩΩΩ∧x′]Δt +
1

2
[a(t)+ Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′]Δt2 (11)

The relation between the order preserving frame and the

inertial frame is defined through a modified Galilean transfor-

mation:

u′(x′, t) = GMt
u(x, t)

= u(x, t)−V(t)+x′ ∧ΩΩΩ− [a(t)+ Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′]Δt
(12)

2.2 Rotational Transform
The rotational transform for this case can be defined as the

projection of the vectors in the orientation preserving frame

on the rotational frames. This is depicted in figure 4.

The vector components in Ô is related to O’ by defining a

rotational transform and substituting equation 12 to relate Ô

to O:

û(x̂, t) = RMt
u′(x′, t)

= RMt
GMt

u(x, t)
(13)

RMt
is therefore the rotational transform that operates on

x′ to obtain the x̂ co-ordinates in the accelerating, rotational

frame.
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Figure 4 Relation between Rotational and Orientation

Preserving Frames

From equations 12 and 13 it can be derived that for the ve-

locity vector the following relation holds:

û(x̂, t) = RM [u(x, t)−V(t)+x′ ∧ΩΩΩ−
[a(t)+ Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′]Δt]

(14)

3 Transformation of the Navier-Stokes
Equations

3.1 Continuity Equation
Consider the continuity equation in the inertial reference

frame [9]:

∂ρ
∂ t

+(∇ ·ρu) = 0 (15)

As scalars are invariant under transformation [18, 19] the

time dependant term in the inertial and accelerating frame is

related by:

∂ ρ̂
∂ t

= RMt
GMt ∂ρ

∂ t

= RMt ∂ρ
∂ t

(16)

The relation of the second term in the continuity equation

becomes:

(∇̂ · ρ̂û) = RMt
GMt

(∇ ·ρu)

= RMt
∇ ·ρ(GMt

u)}
(17)

With the implementation of equation 14 the relation is sim-

plified to:

(∇̂ · ρ̂û) = RMt
∇ ·ρ[u−V(t)+x′ ∧ΩΩΩ

− [a(t)+ Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′]Δt]
(18)

The divergence of a cross product is equal to zero, hence a

number on the terms in the above relation is cancelled out:

∇ · (x′ ∧ΩΩΩ) = 0

∇ · (Ω̇ΩΩ∧x′) = 0

∇ · (ΩΩΩ∧ ẋ′) = 0

(19)

Furthermore, the divergence of the translational compo-

nents are equal to zero. This is due to the translation being

dependant on the time dimension alone - V(t) and a(t) are

constant throughout the spatial domain at any given time step:

∇ ·V(t) = 0

∇ ·a(t) = 0
(20)

The relation is hence simplified to an invariant relation as

all the additional terms cancels out:

∇̂ · ρ̂û = RMt
(∇ ·ρu) (21)

The addition of equations 16 and 21 gives a relation for

continuity in the non-inertial frame:

∂ ρ̂
∂ t

+ ∇̂ · ρ̂û = RMt
(

∂ρ
∂ t

+∇ ·ρu) (22)

By implementing equation 15, the final equation for mass

conservation in the accelerating frame is obtained:

∂ ρ̂
∂ t

+ ∇̂ · ρ̂û = 0 (23)

It was shown in [6, 7] that the continuity equation is invari-

ant under transformation for rotational cases. Here it is math-

ematically shown that this prevails for arbitrary motion cases

as well.

3.2 Conservation of Momentum Equation
The incompressible form of the momentum equation as shown

in [6] and [8], made the assumption that the change in density

is negligible. Therefore, the equation could be simplified by

dividing density into all the terms as there are no temporal

or spatial gradients in density. The diffusion term in particu-

lar could be simplified in a manner that would facilitate easy

transformation where the divergence of the gradient of veloc-

ity yields the same result as taking the Laplacian of the ve-

locity. This is not the case when compressibility has to be

accounted for. The compressible Navier-Stokes equation in

the inertial frame will take the form [9]:

∂
∂ t

ρu
︸ ︷︷ ︸

Unsteady

+∇ · (ρu⊗u)︸ ︷︷ ︸
Advection

=− ∇p︸︷︷︸
Pressure Gradient

+∇ · [μ(∇u+∇uT )+λ (∇ ·u)I]︸ ︷︷ ︸
Compressible Stress Tensor

(24)

The non-inertial form of the separate terms of the equa-

tion, will be derived from this form to obtain the compressible

equations in the acceleration frame.
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3.2.1 Unsteady Momentum Term Transformation

First consider the unsteady term in the non-inertial frame and

apply the product rule for partial derivatives. This operation

will result in two terms that was not considered during the

incompressible case [6]:

∂
∂ t

(ρ̂û) = ρ̂
∂ û
∂ t

+ û
∂ ρ̂
∂ t

(25)

The first transformation will concern the unsteady term

where an expression must be found for:

∂ û
∂ t

(x̂t , t) = lim
Δt→0

û(x̂t+Δt , t +Δt)− û(x̂, t)
Δt (26)

The first task is to find an expression for the term

û(x̂t+Δt , t+Δt). The expression will take a form that is similar

to equation 13:

û(x̂t+Δt , t +Δt) = RMt+Δt
u′(x′t+Δt , t +Δt) (27)

The Taylor series expansion for x′t+Δt is expressed as:

x′t+Δt = x′t +ΔtV′+
1

2
Δt2a′+O(Δt3) (28)

The expression above is as seen from the orientation pre-

serving frame. Since this frame is free to translate, but not to

rotate, only the rotation terms are relevant here. The equation

above is truncate at the second order and with the substitution

of the rotational components of equations 7 and 9 and further

re-arrangement the equation becomes:

x′t+Δt −x′t = x′Δt = Δt(ΩΩΩ∧x′)+
1

2
Δt2(Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′) (29)

The Fourier series expansion is obtained for u′(x′t+Δt , t +
Δt). Substitute equation 29 into the expression to obtain:

u′(x′t+Δt , t +Δt) = u′(x′t , t)+{[Δt(ΩΩΩ∧x′)

+
1

2
Δt2(Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′)] ·∇}u(xt , t)+(Δt

∂
∂ t

)u(xt , t)
(30)

The equation above is substituted into equation 27 to get

the expression:

û(x̂t+Δt , t +Δt) = RMt+Δt{u′(x′t , t)+{[Δt(ΩΩΩ∧x′)

+
1

2
Δt2(Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′)] ·∇}u′(x′t , t)+(Δt

∂
∂ t

)u′(x′t , t)}
(31)

In order to complete the expression in equation 26 further

definitions are required. The assumption was made that the

point P is fixed in the rotating frame, and the rotation is around

the object axis (meaning that O’ and Ô share an origin), then

the relation of motion between two time steps are:

x̂ = RMt+Δt
x′t+Δt = RMt

x′t

x′t = RMΔt
x′t+Δt (32)

Next a Taylor series expansion for x′t+Δt is developed and

the equation above is used to arrive at:

x′t+Δt = x′t +ΔtV′+
1

2
Δt2a′+O[Δt3]

= RMΔt
x′t+Δt +Δt(ΩΩΩ∧x′)

+
1

2
Δt2(Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′)+O[Δt3]

(33)

Re-arrange the expression above and consider it in the limit

yields:

lim
Δt→0

RMΔt x′t+Δt −x′t+Δt

Δt

= lim
Δt→0

[−ΩΩΩ∧x′ − 1

2
Δt(Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′)−O[Δt3]]

(34)

If this expression is considered for any vector b, and taken

into account that xt+Δt → xt as Δt → 0, the following equation

related to rotation is obtained:

lim
Δt→0

RMΔt b−b
Δt

= b∧ΩΩΩ (35)

With all the required expressions in place equation 26 can

now be completed:

∂ û
∂ t

(x̂t , t) = lim
Δt→0

RMt+Δt{[1− 1

RMΔt +Δt(ΩΩΩ∧x′) ·∇
Δt

+ 1
2 Δt2(Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′) ·∇]u′(x′t , t)+(Δt ∂

∂ t )u
′(x′t , t)}

Δt

(36)

Equation 35 is used to simplify the expression above and

with some re-arrangement of terms the following expression

is obtained:

∂ û
∂ t

(x̂t , t) = RMt
[

∂
∂ t

+(ΩΩΩ∧x′) ·∇−ΩΩΩ∧][GMt
u(xt , t)] (37)

This equation above will retain its current form irrespective

of any further changes in acceleration. All other terms that is

inserted to account for variation in acceleration will become

negligible when the expression is considered in the limit.

Substitute equation 37 into equation 25 and with the aid of

equation 13 and further manipulation the above becomes:

∂
∂ t

(ρ̂û) = RMt
GMt

[ρ
∂u
∂ t

+ρ(ΩΩΩ∧x′) ·∇u−ρΩΩΩ∧u+u
∂ρ
∂ t

] (38)

The product rule is then used to combine the terms ρ ∂u
∂ t and

u ∂ρ
∂ t so that the equation simplifies to:
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∂
∂ t

(ρ̂û) = RMt
[

∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧]GMt
u (39)

Equation 14 is substituted in the equation above to remove

the modified Galilean operator from the equation:

∂ρû
∂ t

(x̂t , t) = RMt
[

∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧](u(xt , t))

+RMt
[

∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧](V(t))

+RMt
[

∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧](x′ ∧ΩΩΩ)

+RMt
[

∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧](a(t))Δt

+RMt
[

∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧](Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′)Δt

(40)

The different parts of [ ∂
∂ t (ρ)+ ρ(ΩΩΩ∧ x′) ·∇− ρΩΩΩ∧](x′ ∧

ΩΩΩ), which is the third combination of terms in equation 40,

will now be considered.

The transient term in the equation above can be expanded

on with the use of the product rule for partial differential equa-

tions:

∂
∂ t

(x′ ∧ΩΩΩ) =
∂x′

∂ t
∧ΩΩΩ+(x′ ∧ ∂ΩΩΩ

∂ t
) (41)

In the equation above the first term on the right hand side

represents the unsteady motion of point P in the frame in cases

where the rotation is not purely about the fixed axis. In pure

rotation cases this term will be equal to zero. The second term

represents the unsteady rotation, this is referred to as the Euler

fictitious force.

The terms [(ΩΩΩ∧ x′) ·∇−ΩΩΩ∧](x′ ∧ΩΩΩ) is equal to zero and

cancels out:

[(ΩΩΩ∧x′) ·∇−ΩΩΩ∧](x′ ∧ΩΩΩ) = 0 (42)

The relation [ ∂
∂ t (ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧](x′ ∧ΩΩΩ) will, for

this case, simplify to:

[
∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′) ·∇−ρΩΩΩ∧](x′ ∧ΩΩΩ) = ρ ẋ′ ∧ΩΩΩ+ρx′ ∧ Ω̇ΩΩ (43)

The entire fourth combination of terms in equation 40 falls

away, if not due to the mathematics, it will fall away in the

limit due to the Δt term.

The above leads to the final description of the unsteady

terms in the momentum equation for arbitrary acceleration:

∂ρû
∂ t

(x̂t , t) = RMt
[

∂
∂ t

(ρ)

+ρ(ΩΩΩ∧x′) ·∇−
Coriolis︷ ︸︸ ︷

ρΩΩΩ∧](u(xt , t)−V(t))

+RMt
( ρ ẋ′ ∧ΩΩΩ︸ ︷︷ ︸
In frame motion

+ρx′ ∧ Ω̇ΩΩ︸ ︷︷ ︸
Euler

)

(44)

In any arbitrary acceleration case, this is the form the un-

steady component of the equation will always take. Additional

higher order terms that appear in the relative equations will

become negligible in the limit due to the Δt.
Take note in this equation of the appearance of a part of the

Coriolis effect and the Euler effect.

3.2.2 Advection Term Transformation

The relation between the frames for the advection term in the

compressible Navier-Stokes momentum equation is:

∇̂ · (ρ̂û⊗ û) = RMt
GMt

[∇ · (ρu⊗u)] (45)

By using equation 12 and the identity below the equation

can be simplified.

(∇ ·a)⊗ (x′ ∧ΩΩΩ) = a∧ΩΩΩ (46)

This will lead to the following expression for relating the

diffusion term in the non-inertial frame to the terms in the

inertial frame:

∇̂ · (ρ̂û⊗ û) = RMt
[∇ ·ρu⊗u+

Coriolis︷ ︸︸ ︷
ρu∧ΩΩΩ+∇ ·ρ(x′ ∧ΩΩΩ)⊗u

+(ρx′ ∧ΩΩΩ)∧ΩΩΩ︸ ︷︷ ︸
Centrifugal

+ρV(t)∧ΩΩΩ︸ ︷︷ ︸
Magnus

] (47)

The original of the second part of the Coriolis and the Cen-

trifugal terms can be seen here. Furthermore, an additional

term that represents the change in diffusion due to the interac-

tion between the translating and rotating part of the flow can

be seen here.

3.2.3 Pressure Gradient Term Transformation

The pressure gradient term in the momentum equation is

transformed. This part of the equation remain invariant since

it is a scalar.

∇̂ p̂ = RMt
GMt

∇p

∇̂ p̂ = RMt
∇p

(48)

3.2.4 Diffusion Term Transformation

In the transformation of the diffusion term the difference be-

tween the compressible and incompressible cases must be

noted. The divergence of the velocity vector is not negligi-

ble, therefore the completed diffusion term must be accounted

for. The expression for relating the diffusion term between the

frames hence becomes:

∇̂ · [μ̂(∇̂û+ ∇̂ûT )+ λ̂ (∇̂ · û)Î]
= RMt

GMt
∇ · [μ(∇u+∇uT )+λ (∇ ·u)I]

(49)
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With the implementation of equation 14, the right hand side

of the equations becomes:

If it is considered that,

∇(x′ ∧ΩΩΩ)+∇(x′ ∧ΩΩΩ)T = 0

∇ · (x′ ∧ΩΩΩ) = 0
(50)

It can be shown that the diffusion component of the mo-

mentum equation is invariant for constant rotation conditions:

∇̂ · [μ̂(∇̂û+ ∇̂ûT )+ λ̂ (∇̂ · û)Î
= RΩt∇ · [μ(∇u+∇uT )+λ (∇ ·u)I]

(51)

3.2.5 Final Transformation of the Non-Inertial Momen-
tum Equation

The final transformation of the momentum equation relies on

the summation of the transient and advection terms, as well as

further manipulation of the resulting groups of terms.

∂ ρ̂û
∂ t

+ ∇̂ · (ρ̂û⊗ û) = RMt
[

Group 1︷ ︸︸ ︷
∂
∂ t

(ρu)+∇ ·ρu⊗u− ∂
∂ t

(ρV(t))

+

Group 2︷ ︸︸ ︷
ρ ẋ′ ∧ΩΩΩ+ρx′ ∧ Ω̇ΩΩ+(ρx′ ∧ΩΩΩ)∧ΩΩΩ+2ρu∧ΩΩΩ

+

Group 3︷ ︸︸ ︷
∇ ·ρ(x′ ∧ΩΩΩ)⊗u+ρ(ΩΩΩ∧x′) ·∇u−ρ(ΩΩΩ∧x′) ·∇V(t)

+

Group 3︷ ︸︸ ︷
ρV(t)∧ΩΩΩ+ρΩΩΩ∧V(t))]

(52)

Group 1 is replace by the equation below, where equation

24 was used the rotational transform multiplied through the

equation. Subsequently the non-inertial form of the terms

were obtained:

RMt
[

∂
∂ t

(ρu)+∇ ·ρu⊗u]

= RMt
[−∇p+∇ · [μ(∇u+∇uT )+λ (∇ ·u)I]]

=−∇̂p̂+ ∇̂ · [μ̂(∇̂û+ ∇̂ûT )+ λ̂ (∇̂ · û)Î]

(53)

The group 2 terms represents the majority of the fictitious

forces. These were manipulated as shown below to determine

the non-inertial form:

RMt
[ρ ẋ′ ∧ΩΩΩ+ρx′ ∧ Ω̇ΩΩ+(ρx′ ∧ΩΩΩ)∧ΩΩΩ+2ρu∧ΩΩΩ]

= ρ ˆ̇x∧ΩΩΩ+ρ x̂∧ Ω̇ΩΩ−ρ x̂∧ΩΩΩ∧ΩΩΩ+2ρû∧ΩΩΩ+2ρV(t)∧ΩΩΩ
(54)

The remainder of the terms, group 3 conveniently cancels

each other out.

∇ ·ρ(x′ ∧ )⊗u+ρ(ΩΩΩ∧x′) ·∇u−ρ(ΩΩΩ∧x′) ·∇V(t)

+ρV(t)∧ΩΩΩ+ρΩΩΩ∧V(t))] = 0
(55)

Summation of the transformed parts of the momentum

equation lead to the final form of the compressible, non-

inertial momentum equation for full arbitrary motion:

∂ ρ̂û
∂ t

+ ∇̂ · (ρ̂û⊗ û) =−∇̂p̂+ ∇̂ · [μ̂(∇̂û+ ∇̂ûT )+ λ̂ (∇̂ · û)Î]

− ∂
∂ t

(ρV(t))
︸ ︷︷ ︸
Translation

+ρ ˆ̇x∧ΩΩΩ+ρ x̂∧ Ω̇ΩΩ︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧ΩΩΩ︸ ︷︷ ︸
Coriolis

−ρ x̂∧ΩΩΩ∧ΩΩΩ︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧ΩΩΩ︸ ︷︷ ︸
Magnus

(56)

3.3 Energy Equation
Consider the energy equation in the inertial frame [9]:

∂ρε
∂ t

+(∇ ·ρεu) =−p(∇ ·u)+∇ · (k∇T )+Φ (57)

The various terms can be transformed to the non-inertial

frame separately and then combined to obtain the energy

equation in the non-inertial frame.

The time dependant term can be related between the frames

as shown below since scalars are invariant under transforma-

tion:

∂ ρ̂ε̂
∂ t

= RM ∂ρε
∂ t

(58)

The relation for the convective term between the inertial

and non-inertial frame is shown below. This equation can be

expanded upon with the used of equation 14:

(∇̂ · ρ̂ ε̂û) = RMGM(∇ ·ρεu)

= RM [∇ ·ρε(u−V(t)+x′ ∧ΩΩΩ

− [a(t)+ Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′]Δt)]

(59)

The second and third terms on the right hand side of the

equation above was shown in equation 20 to be equal to zero.

The convective term therefore becomes Galilean invariant un-

der transformation:

(∇̂ · ρ̂ ε̂û) = RM(∇ ·ρεu) (60)

The term that represents the rate of work done by the nor-

mal force can be related in the inertial and non-inertial frames

as shown below. This term can be expanded upon using equa-

tion 14.

− p̂(∇̂ · û) = RMGM [−p(∇ ·u)]
= RM [−p∇ · (u−V(t)+x′ ∧ΩΩΩ

− [a(t)+ Ω̇ΩΩ∧x′+ΩΩΩ∧ ẋ′]Δt)]

(61)

Showing that the second and third terms is again equal to

zero, the same as above and indicated in equation 20, this

transformation is also invariant.
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−p̂(∇̂ · û) = RMt
[−p∇ ·u] (62)

The diffusive term in the non-inertial frame can be ex-

pressed in the inertial frame with the following relation:

∇̂ · (k̂∇̂T̂ ) = RMt
GMt

[∇ · (k∇T )] (63)

Since k and T are scalars the relation is invariant under

transformation:

∇̂ · (k̂∇̂T̂ ) = RMt
[∇ · (k∇T )] (64)

The full relation between the non-inertial and inertial

frames for the energy equation can be obtained by summation

of the components obtained above. This leads to the equation:

∂ ρ̂ε̂
∂ t

+(∇̂ · ρ̂ ε̂û)+ p̂(∇̂ · û)− ∇̂ · (k̂∇̂T̂ )+ Φ̂

= RMt
[
∂ρε
∂ t

+(∇ ·ρεu)+ p(∇ ·u)−∇ · (k∇T )]+Φ
(65)

The right hand side of the equation is equal to zero, this can

be seen from re-arrangement of the terms in equation 57. The

non-inertial energy equation is invariant under transformation

in this specific case for constant acceleration in rotation [3],

but it can be seen that this equation will remain in this form

even if the acceleration is not constant. Equation 23 is further

used to arrive at:

∂ ρ̂ε̂
∂ t

+(∇̂ · ρ̂ ε̂û) =− p̂(∇̂ · û)∇̂ · (k̂∇̂T̂ )+ Φ̂ (66)

4 Boundary Layer Equations for Arbi-
trary Accelerating Flow

The Blasius solution to the flat plate flow is a classic solution

to the boundary layer on a flat plate. Monaghan’s solution [20]

extended the solution to obtain an approximation for the flat

plate boundary layer in compressible conditions. Extensive

work was done by [1, 21, 22] to determine the boundary layer

equations on rotating blades, but it appears that limited work

has been done on boundary layer in arbitrary acceleration. In

this section the boundary layer equations for the flat plate in

arbitrary acceleration is derived (figure 5) in the same manner

as indicated in [6].

4.1 Flat Plate in Cartesian Components
The continuity equation was derived in vector form in the pre-

vious section as shown in equation 23.

∂ ρ̂
∂ t

+ ∇̂ · ρ̂û = 0 (67)

The component form of the equation is required for deter-

mining the boundary layer equation:

Figure 5 Flat plate in arbitrary acceleration conditions

∂ ρ̂
∂ t

+
∂ û
∂ x̂

+
∂ v̂
∂ ŷ

+
∂ ŵ
∂ ẑ

= 0 (68)

The momentum equation was derived in vector form in

equation 56.

∂ ρ̂û
∂ t

+ ∇̂ · (ρ̂û⊗ û) =−∇̂p̂

+ ∇̂ · [μ̂(∇̂û+ ∇̂ûT )+ λ̂ (∇̂ · û)Î]

− ∂
∂ t

(ρV(t))+ρ ˆ̇x∧ΩΩΩ+ρ x̂∧ Ω̇ΩΩ+2ρû∧ΩΩΩ

−ρ x̂∧ΩΩΩ∧ΩΩΩ+2ρV(t)∧ΩΩΩ

(69)

In component form the equation becomes as shown be-

low for x-momentum, y-momentum and z-momentum respec-

tively:

∂ ρ̂ û
∂ t

+ û
∂ ρ̂ û
∂ x̂

+ v̂
∂ ρ̂ û
∂ ŷ

+ ŵ
∂ ρ̂ û
∂ ẑ

=−∂ p̂
∂ x̂

+
∂
∂ x̂

[
2μ

∂ û
∂ x̂

+λ
(∂ û

∂ x̂
+

∂ v̂
∂ ŷ

+
∂ ŵ
∂ ẑ

)]

+
∂
∂ ŷ

[
μ
(∂ û

∂ ŷ
+

∂ v̂
∂ x̂

)]

+
∂
∂ ẑ

[
μ
(∂ û

∂ ẑ
+

∂ ŵ
∂ x̂

)]

+2ρ̂ v̂ωz −2ρ̂ŵωy

+ ρ̂ x̂(ωz
2 +ωy

2)− ρ̂ ŷωxωy − ρ̂ ẑωxωz

+ ρ̂ ŷω̇z − ρ̂ ẑω̇y + ρ̂ ˆ̇yωz − ρ̂ ˆ̇zωy

+2ρ̂Vyωz −2ρ̂Vzωy − ∂ ρ̂Vx

∂ t

(70)
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Figure 6 Boundary Layer Parameters

∂ ρ̂ v̂
∂ t

+ û
∂ ρ̂ v̂
∂ x̂

+ v̂
∂ ρ̂ v̂
∂ ŷ

+ ŵ
∂ ρ̂ v̂
∂ ẑ

=−∂ p̂
∂ ŷ

+
∂
∂ x̂

[
μ
(∂ û

∂ ŷ
+

∂ v̂
∂ x̂

)]

+
∂
∂ ŷ

[
2μ

∂ v̂
∂ ŷ

+λ
(∂ û

∂ x̂
+

∂ v̂
∂ ŷ

+
∂ ŵ
∂ ẑ

)]

+
∂
∂ ẑ

[
μ
(∂ v̂

∂ ẑ
+

∂ ŵ
∂ ŷ

)]

+2ρ̂ŵωx −2ρ̂ ûωz

+ ρ̂ ŷ(ωz
2 +ωx

2)− ρ̂ x̂ωxωy − ρ̂ ẑωyωz

+ ρ̂ ẑω̇x − ρ̂ x̂ω̇z + ρ̂ ˆ̇zωx − ρ̂ ˆ̇xωz

+2ρ̂Vzωx −2ρ̂Vxωz − ∂ ρ̂Vy

∂ t

(71)

∂ ρ̂ŵ
∂ t

+ û
∂ ρ̂ŵ
∂ x̂

+ v̂
∂ ρ̂ŵ
∂ ŷ

+ ŵ
∂ ρ̂ŵ
∂ ẑ

=−∂ p̂
∂ ẑ

+
∂
∂ x̂

[
μ
(∂ û

∂ ẑ
+

∂ ŵ
∂ x̂

)]

+
∂
∂ ŷ

[
μ
(∂ v̂

∂ ẑ
+

∂ ŵ
∂ ŷ

)]

+
∂
∂ ẑ

[
2μ

∂ ŵ
∂ ẑ

+λ
(∂ û

∂ x̂
+

∂ v̂
∂ ŷ

+
∂ ŵ
∂ ẑ

)]

+2ρ̂ ûωy −2ρ̂ v̂ωx

+ ρ̂ ẑ(ωy
2 +ωx

2)− ρ̂ x̂ωxωz − ρ̂ ŷωyωz

+ ρ̂ x̂ω̇y − ρ̂ ŷω̇x + ρ̂ ˆ̇xωy − ρ̂ ˆ̇yωx

+2ρ̂Vxωy −2ρ̂Vyωx − ∂ ρ̂Vz

∂ t

(72)

4.2 Non-dimensional and Perturbation Param-
eters

Partial differential equations are analysed by obtaining the

non-dimensional form through scaling of the characteristic

properties [9]. This allows for analysis of the relative mag-

nitudes of the separate terms in the component form of the

equation. The characteristic properties of a laminar bound-

ary layer are shown in figure 6. It comprises of a reference

length (L), reference velocity (free stream velocity U), bound-

ary layer thickness (δ ) and other free stream properties such

as viscosity and pressure.

Scaling (see figure 7) is aimed at obtaining the relative sizes

of the terms in order to identify smaller terms that can be ne-

glected from the equation [23, 24]. Elimination of the smaller

Figure 7 Boundary Layer Scaling Parameters

Figure 8 Perturbation Parameter ε on a Flat Surface

terms result in a simplified equation. These equations con-

tain the terms that have a significant effect in the near-wall

region and are responsible for the behaviour of the flow in the

boundary layer. The physical responses of the boundary layer

to accelerating conditions are explained using the simplified

equations.

The analysis is based on the assumption that the boundary

layer thickness, δ , is much smaller in comparison with the

body over which the flow is analysed [25],

δ
L
<< 1 (73)

A perturbation parameter, ε is introduced. This represents

a very small disturbance in the flow at the surface that asymp-

totically approaches zero as indicated in figure 8.

The perturbation originates from the surface of the plate

continues to propagate along it. Therefore the disturbance ap-

proaches ε in both the x̂- and ẑ- directions in figure 8. In the

ŷ-direction the disturbance approaches ε close to the wall, but

it dissipates further way from the wall since the interaction of

the fluid with the solid surface sustains the disturbance. At the

flow boundary the disturbance is smaller than ε and of order

ε2. The boundary layer height is smaller than the disturbance

at the wall and asymptotically approaches ε2. It is defined

that [25, 26]:

ε << 1

ε2 < ε

δ → ε2

L → ∞

(74)

In order to keep the solution as general as possible, it will

only be assumed that velocity and time has positive values:
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ε ≤U ≤ ∞
ε ≤ t ≤ ∞

(75)

The non-dimensional parameters that is selected for the

spatial variables is as follow:

x� =
x̂
L

y� =
ŷ
δ

z� =
ẑ
L

(76)

L is the reference distance, the assumption is made that the

plate is semi-infinite in the x- and z-directions. δ is the bound-

ary layer height in the y-direction as a distance of L.

The velocity components are non-dimensionalised as fol-

low, where U is the characteristic velocity:

u� =
û
U

v� =
v̂
U

L
δ

w� =
ŵ
U

t� = t
U
L

(77)

The specific pressure and kinematic viscosity can be nor-

malised as follow:

p� =
p

ρU2

μ� =
μ

μ∞

ρ� =
ρ

ρ∞

(78)

The angular velocity can be non-dimensionalised by multi-

plying it by t. The units of angular velocity is rad/s, but since

radians are already a non-dimensional quantity it can be nor-

malised in this manner.

ωi
� = ωit (79)

4.3 Development of Boundary Layer Equa-
tions

Applying the normalization parameters to equation 68 results

in the non-dimensional form of the equation:

∂ρ�ρ∞

∂ t� L
U

+
∂ (u�U)

∂ (x�L)
+

∂ (v� Uδ
L )

∂ (y�δ )
+

∂ (w�U)

∂ (z�L)
= 0 (80)

The equation above is multiplied by:

L
U

(81)

leading to the final non-dimensional form of the equation:

∂ p�

∂ t�
+

∂u�

∂x�
+

∂v�

∂y�
+

∂w�

∂ z�
= 0

(82)

No terms can be neglected from this equation and boundary

layer continuity equation thus remains the same as the equa-

tion for the bulk flow:

∂ ρ̂
∂ t

+
∂ û
∂ x̂

+
∂ v̂
∂ ŷ

+
∂ ŵ
∂ ẑ

= 0 (83)

In a similar way, the boundary layer equations for the con-

servation of momentum equation can be determined.

Normalising equation 72 and simplifying as shown above,

leads to the boundary layer equations for arbitrary acceleration

on a flat plate:

∂ ρ̂ û
∂ t

+ û
∂ ρ̂ û
∂ x̂

+ v̂
∂ ρ̂ û
∂ ŷ

+ ŵ
∂ ρ̂ û
∂ ẑ

=−∂ p̂
∂ x̂

+
∂
∂ ŷ

(
μ̂

∂ û
∂ ŷ

)

+2ρ̂ v̂ω3 −2ρ̂ŵω2 + ρ̂ x̂(ω3
2 +ω2

2)

− ρ̂ ŷω1ω2 − ρ̂ ẑω1ω3 + ŷ ˆ̇ωz − ẑ ˆ̇ωy + ẏωz − żωy

+2Vyωz −2Vzωy +
∂Vx

∂ t

0 =−∂ p̂
∂ ŷ

+2ρ̂ŵω1 −2ρ̂ ûω3 + ρ̂ ŷ(ω3
2 +ω1

2)− ρ̂ x̂ω1ω2

− ρ̂ ẑω2ω3 + ẑ ˆ̇ωx − x̂ ˆ̇ωz ++żωx − ẋωz

+2Vzωx −2Vxωz +
∂Vy

∂ t

∂ ρ̂ŵ
∂ t

+ û
∂ ρ̂ŵ
∂ x̂

+ v̂
∂ ρ̂ŵ
∂ ŷ

+ ŵ
∂ ρ̂ŵ
∂ ẑ

=−∂ p̂
∂ ẑ

+
∂
∂ ŷ

(
μ̂

∂ ŵ
∂ ŷ

)

+2ρ̂ ûω2 −2ρ̂ v̂ω1 + ρ̂ ẑ(ω2
2 +ω1

2)

− ρ̂ x̂ω1ω3 − ρ̂ ŷω2ω3 + x̂ ˆ̇ωy − ŷ ˆ̇ωx + ẋωy − ẏωx

+2Vxωy −2Vyωx +
∂Vz

∂ t

(84)

The above equations has in similar form as it would have

had in the case of no acceleration, where the majority of the

viscous terms becomes negligible. The difference is however

in the presence of all the inertial terms since none of it be-

comes negligible. Acceleration of an object will affect the

boundary layer due to the presence of the inertial forces.

5 Closure
There are a number of misconceptions that have been ob-

served in literature with regards to flow equations in non-

inertial reference frames. An example where discrepancies

in the literature is seen is in the conservation of energy equa-

tion. Some sources add fictitious energy terms to these equa-

tions [4, 5]. It was shown through derivation that both the

continuity and conservation of energy equations remains in-

variant under transformation - no additional terms are added

to these equations:
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∂ ρ̂
∂ t

+ ∇̂ · ρ̂û = 0 (85)

∂ ρ̂ ê
∂ t

+(∇̂ · ρ̂ êû) =−p̂(∇̂ · û)+ ∇̂ · (k̂∇̂T̂ )+ ϕ̂ (86)

The equation for full arbitrary acceleration below indicates

that there are six fictitious terms in the non-inertial momen-

tum equation. These are the only terms that are present during

arbitrary acceleration; the higher order terms become negligi-

ble or cancel out with other terms during the derivation. The

equation for full arbitrary motion (six degrees of freedom) can

be used to explore the appropriate form of the non-inertial mo-

mentum equation for steady translation and unsteady rotation.

∂ ρ̂û
∂ t

+ ∇̂ · (ρ̂û⊗ û) =−∇̂p̂

+ ∇̂ · [μ̂(∇̂û+ ∇̂ûT )+ λ̂ (∇̂ · û)Î]

− ∂
∂ t

(ρV(t))
︸ ︷︷ ︸

Translation

+ρ ˆ̇x∧ΩΩΩ+ρ x̂∧ Ω̇ΩΩ︸ ︷︷ ︸
Euler︸ ︷︷ ︸

Unsteady motion

+2ρû∧ΩΩΩ︸ ︷︷ ︸
Coriolis

−ρ x̂∧ΩΩΩ∧ΩΩΩ︸ ︷︷ ︸
Centrifugal

+2ρV(t)∧ΩΩΩ︸ ︷︷ ︸
Magnus

(87)

The mathematical origin of the fictitious terms are observed

during the derivations. The unsteady translation term, two

terms due to unsteady rotational motion and the first parts of

the Coriolis and Magnus terms originates in the transforma-

tion of the unsteady component of the momentum equation

(equation 44).

∂ρû
∂ t

(x̂t , t) = RMt
[

∂
∂ t

(ρ)+ρ(ΩΩΩ∧x′t) ·∇
−ρΩΩΩ∧](u(xt , t)−V(t))︸ ︷︷ ︸

Coriolis & Magnus

+RMt
( ρ ẋ′t ∧ΩΩΩ︸ ︷︷ ︸

Moving Axis

+ρx′t ∧ Ω̇ΩΩ︸ ︷︷ ︸
Euler

)

(88)

The remainder inertial terms, second part of the Coriolis,

centrifugal and the term representing the interaction between

the rotation and translation, all has their original in the trans-

formation of the advection term (equation 47).

∇̂ · (ρ̂û⊗ û) = RMt
[∇ ·ρu⊗u+ρu∧ΩΩΩ︸ ︷︷ ︸

Coriolis

+∇ ·ρ(x′ ∧ΩΩΩ)⊗u
+(ρx′ ∧ΩΩΩ)∧ΩΩΩ︸ ︷︷ ︸

Centrifugal

+ρV(t)∧ΩΩΩ︸ ︷︷ ︸
Magnus

]

(89)

Observation of the effect of both Coriolis and Magnus ef-

fects can be explained using a mathematical approach which

is seated in an understanding of the cross product operation.

In figure 9 it is shown that a particle travelling in north on the

earth’s surface deflects to the right in the northern hemisphere

and to the left in the southern hemisphere.

The difference in deflection is a function of the surface cur-

vature of the earth where a velocity vector in the south has a

different orientation than in the north. The result is that the

cross product of the velocity and the rotation has a resultant

force that is dependent on the hemisphere it operates in.

Figure 9 Deflections of a Particle Travelling in the North-

ern and Southern Hemispheres (left) and the

Corresponding Directions of the Velocity Vec-

tor (right)

Figure 10 Deflection due to the Magnus Effect in the In-

ertial Frame (left) and the Non-Inertial Frame

(right)

The Coriolis force is therefore described as a non-inertial

force that operates on an object that is in motion relative to a

reference frame. The effect of the Coriolis force is to cause

deflection of the object in three dimensions in with a magni-

tude and direction that is determined by the cross product of

the object’s non-inertial velocity and the rotation of the frame,

2ρû∧ΩΩΩ.

The Magnus force has a similar formula to the Coriolis

force, but it has a different physical meaning. It is a func-

tion of the object’s translation and represents the interaction

between the rotating and translating motion of the object. It

is therefore a non-inertial force that operates on a rotating ob-

ject that is in motion relative to a inertial reference frame. The

effect of the Magnus force is to cause deflection of the object

(figure 10) in three dimensions with a magnitude and direction

that is determined by the cross product of the object’s transla-

tional velocity and the rotation of the object, 2ρV(t)∧ΩΩΩ.

The presence of the Magnus force in the non-inertial mo-

mentum equation is not generally seen in literature [9, 11]

since non-inertial formulations does not regularly include all

the aero-ballistic accelerations and is generally applied to ro-

tating flows. In CFD applications the Magnus force is mostly

investigated using a predictive approach [15–17] instead of

with prescribed motion as suggested here.
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