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Abstract: This paper derives the non-inertial terms, also
referred to as fictitious forces, for aero-ballistic cases us-
ing an Eulerian approach. These cases display unsteady
rates of change in acceleration in all six degrees of freedom.
Six fictitious forces are identified in the momentum equa-
tion. Their origin and nature of these forces are elaborated
upon. As shown in previous work, the continuity and en-
ergy equations remain invariant. The non-inertial boundary
layer equations are derived to determine the effect of ficti-
tious forces in the near-wall region. Through an order of
magnitude analysis it was determined that none of the ficti-
tious forces cancels out. It will therefore have an influence
on the boundary layer properties.

Additional keywords: Coriolis force, Centrifugal force,
Euler force, Magnus force, Reference frames, Galilean invari-
ance, Rotational transform

Nomenclature

Roman
Acceleration vector

Vector

Heat transfer coefficient
Pressure

Time

Velocity vector
Distance in x-direction
Position vector
Distance in y-direction
Distance in z-direction
Galilean operator
Identity matrix
Characteristic Length
Frame designations
Rotational transform operator
Temperature

Rotational frame
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V' Velocity in x-direction

U Characteristic Velocity

X Position vector
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Boundary layer height
Perturbation parameter
Internal energy

Second viscosity

Dynamic viscosity

Kinematic viscosity

Density

Pressure per unit mass
Rotational velocity component
Dissipation Function
Rotational speed around the z-axis
Rotational speed vector
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Sub- and Superscripts
! Orientation preserving frame
Non-inertial frame
* Normalised form

i Inertial frame

r Relative frame

rel  Relative conditions
t Time

At Change in time

1 Introduction

Non-inertial implementation of the Navier-Stokes equations
are mostly found in turbo-machinery applications [1,2]. This
is limited to unsteady, pure rotation that operates at most in
three degrees of freedom. Aero-ballistic and aeronautical ap-
plications make ue of six degrees of freedom and arbitrary
motion. Inconsistencies have been found in the literature with
regards to formulation of non-inertial flow equations for six
degrees of freedom motion [3—5]. The Magnus force is absent
from the momentum equations cited. Furthermore, there is
uncertainty on the formulation of the conservation of energy
equation. This paper extends on the methods used in [6-8]
to obtain the non-inertial Navier-Stokes and boundary layer
equations for arbitrary aero-ballistic motion.

The Lagrangian approach to deriving the inertial conserva-
tion of momentum equation makes use of Newton’s second
law [9]. This equation is rewritten to approximate the solution
to momentum conversation of a fluid volume with the total
derivative of the fluid parcel velocity on the left hand side of
the equation.

ZFi = maj
DV;
Dt

M

In the non-inertial frame, acceleration terms are derived
through a point mass method [9-11] to arrive at:

&’Ry  dQ
d12 +7/\l‘+9/\(ﬂ/\l‘)

dVr

a = +2QAV, 2
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Figure 1

Two Components of the Coriolis force: Outward
Component due to Eotvos effect (left) and De-
flection on the Earth’s Surface in Northern and
Southern Hemisphere (right)

To obtain the correct non-inertial momentum equation, the
time derivative of the non-inertial acceleration, (V) must be
implemented in the total derivative equation as shown below

[9].

YF, = may
DV, 3)
=f,
Dt

The misconception have been observed that the acceleration
terms in equation 2 can be directly applied in Newton’s second
law:

EFr + XFfictitious = mar “4)

Coincidently this approach provides the correct set of non-
inertial equations for rotational cases. It does not when six
degrees of freedom motion is at play.

Equation 2 presents the majority of the fictitious forces as-
sociated with aero-ballistics motion; Coriolis force, Centrifu-
gal force, Euler force and unsteady translation. In external
ballistic models the Magnus force and a secondary force due
to moving of the axis of rotation is included. At commence-
ment of this work it was uncertain if these forces should be
included in non-inertial fluid equations.

The physical meaning of the Coriolis force has been a sub-
ject of many discussions [12—14]. The Coriolis force was first
mathematically formulated in 1835 by Gaspard Coriolis. Ob-
servations of the Coriolis effect on the surface of the earth long
preceded the formulation (figure 1).

Deflections due to the Coriolis effect is three dimensional,
but the term Coriolis force is mostly associated with horizon-
tal deflections with respect to the surface of the earth in the
Northern and Southern Hemispheres. This has specific appli-
cation in Meteorology and Geophysics since weather patterns
and sea currents are directly influenced by the horizontal com-
ponent of the Coriolis force.

While the deflection on the surface of the earth has been the
most general observation of the Coriolis force, the component
vertical to the earth’s surface has only been measured in 1908
by Lorand E6tvos [13]. He observed the effect through gravity
readings collected by research ships which indicated that the
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Figure 2 Reference Frames used to Describe Point P

gravity measurements increased with motion towards the west
and decreased when the ships sailed in an easterly direction.

Although the Coriolis force is mostly explained in terms of,
and therefore associated with, rotation of the earth it is appli-
cable in any rotational system. It is especially important in
ballistics research since earth rotation influence the accuracy
of fire-and-forget weapon systems. The Centrifugal effect al-
ways accompanies the Coriolis effect. This is responsible for
the outward motion of the flow in a rotational system.

The presence of the Magnus force in the non-inertial mo-
mentum equation is not generally seen in literature [9, 11].
Non-inertial formulations do not regularly include all the
aero-ballistic accelerations and is generally applied to rotat-
ing flows. In CFD applications the Magnus force is mostly
investigated using a predictive approach [15-17] instead of
with prescribed motion on the non-inertial frame as suggested
here.

The mathematical origins of the Coriolis, Centrifugal and
Euler forces were determined in [6,7] for rotational cases. It is
aresult of transformation of the material derivative to the non-
inertial frame. Insight is obtained in this paper to the origin
of these non-inertial terms in aero-ballistic frames of motion.
The physical meaning of the terms and if it will effect bound-
ary layer profile is mathematically investigated here. This
is done through derivation of the non-inertial Navier-Stokes
and boundary layer equations by extending the methods used
in [6,7].

2 Transformation between Absolute and

Relative Frames
In this derivation the same three reference frames as used in
[6, 7] will be made use of to transform the inertial Navier-
Stokes equations to the relative form (figure 2). These frames
comprise of:

e Frame O, which is an inertial frame. This frame is sta-

tionary.

¢ Frame O’, which is a non-inertial frame. This frame is

orientation preserving with respect to Frame O. It there-
fore has three degrees of freedom and is free to translate.

* Frame 6, which is a non-inertial, rotating frame. This

frame does not preserve orientation therefore it has six
degrees of freedom. It can translate and rotate as pre-
dicted by the accelerations imposed on point P. This
frame shares an origin with Frame O’.

Consider the point P. The motion of this point can be de-
scribed from each of the three frames. This point is in arbi-
trary motion.

The flow field that surrounds this point can be described
from any of the reference frames. The standard Navier-Stokes
equations hold in the inertial frame, therefore the objective is
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Z

Figure 3 Point Description between Frames

to obtain the correct form of the equations in Frame O. It will
be accomplished by conducting two transformations.

The first transformation will account for arbitrary transla-
tion between the inertial frame and the orientation preserv-
ing frame. Since Frame O’ and Frame O shares an origin,
this transformation accounts for the translation of Frame O as
well. A modified Galilean Transformation will be used to this
effect.

The second transformation will account for arbitrary rota-
tion. A transformation from Frame O to Frame O will be
defined. The relation derived during the first transformation
will be used to describe the flow field in Frame O in terms of
the vectors of Frame O.

2.1

The modified Galilean transformation as used in [6, 7] is ex-
tended here to account for six degrees of freedom motion. As-
sume that the frame origins intersect at time ¢ = 0 and that
frame O is moving at velocity vy With acceleration aye in
three dimensional space. At time t = Az frame O and O’ are
distance Xye from each other. The is depicted in figure 3.

In figure 3 the absolute distance can be described in terms
of the relative and non-inertial distances:

Modified Galilean Transformation

(&)

/!
X = Xpel +X

The relative distance between the two frames is a sum-
mation of the accelerating translation and rotation and is de-
scribed by:

1
Xrel = VrelA? + *arelA[2 6)

2

The relative velocity component consist of the translating
and rotating velocity components so that:

Viel = Vtranslating + Vrotating %)
=V(@)+QAX
In this equation the translation component is a function of
time only as it describes the motion between the origins of
Frames O and O’. The rotation is taking place in Frame O’
and is therefore defined in this frame.
The acceleration is the time derivative of the velocity:

R & D Journal of the South African Institution of Mechanical Engineering 2017, 33, 85-96

ALTIE A
ot ot 3
0, o ®)
a =aft)+ S5 AX + QA a

The first term represents the translational acceleration,
while the second and third terms is a result of the rotational
velocity. Since both the derivative of x and Q is not equal to
zero, these terms will contribute to the total relative accelera-
tion. The accelerating component can therefore be expressed
as:

Arel = Atranslating T+ Arotating ©)
=a(t) +QAX +QAY
Equation 6 is a Taylor series expansion that was truncated
after the second order term since constant acceleration was
assumed. Had the acceleration not been constant, the addi-
tional terms would be accounted for by the inclusion of further
derivative terms:

1 1
Xrel = VrelA? + *arelAt2 + *ﬁrelAt3 +.. (10)

2! 3!

In this equation it can already be seen that the effect of
higher order derivatives of Xy becomes smaller and smaller.
In the subsequent paragraphs it will be shown that from the
second order, the terms are negligible.

A description for the relative motion can be obtained by
substituting equations 9 and 7 into equation 6. This will result
in:

et = V(1) +QAX]AT+ Jalr) + @AY + QAXAP (11

The relation between the order preserving frame and the
inertial frame is defined through a modified Galilean transfor-
mation:

v (x,1) = Mu(x,1)
=u(x,t) = V() +X AQ —[a(t) + QAX + QAX A

2.2 Rotational Transform

The rotational transform for this case can be defined as the
projection of the vectors in the orientation preserving frame
on the rotational frames. This is depicted in figure 4.

The vector components in O is related to O’ by defining a
rotational transform and substituting equation 12 to relate O
to O:

a(%,1) =R (¥ 1)

13)
= RM'GMtu(X,t)

t . .
RM s therefore the rotational transform that operates on
x' to obtain the % co-ordinates in the accelerating, rotational
frame.
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Figure 4

From equations 12 and 13 it can be derived that for the ve-
locity vector the following relation holds:

a(%,1) = RM[u(x,) = V(1) + X A Q—

. (14)
[a(t) + QAX +QAX AL

3 Transformation of the Navier-Stokes
Equations
3.1 Continuity Equation

Consider the continuity equation in the inertial reference
frame [9]:

@+(vau)=0 (15)

ot

As scalars are invariant under transformation [18, 19] the
time dependant term in the inertial and accelerating frame is
related by:

9P _ vt M 9P
ot ; ot (16)
— gM' 2P
ot

The relation of the second term in the continuity equation
becomes:

(V-pa) = RM'GM (V- pu)

. t an
=MV p(GMu)}

With the implementation of equation 14 the relation is sim-
plified to:

(V-pi) =RM'V . plu— V(1) + X AQ

18
—[a(t) +QAX + QXA (19
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The divergence of a cross product is equal to zero, hence a
number on the terms in the above relation is cancelled out:

v 0
V- (Qrx)=0 (19)
v 0

Furthermore, the divergence of the translational compo-
nents are equal to zero. This is due to the translation being
dependant on the time dimension alone - V(¢) and a(z) are
constant throughout the spatial domain at any given time step:

V-V(t)=0
0

V-a(r) 20

The relation is hence simplified to an invariant relation as
all the additional terms cancels out:

V. pa=RM(V.pu) (2]

The addition of equations 16 and 21 gives a relation for
continuity in the non-inertial frame:

)
e}

+©.pﬁ:RM‘(a—p+v.pu)

22
T (22)

NS
i

By implementing equation 15, the final equation for mass
conservation in the accelerating frame is obtained:

NS
o'y

+V.pia=0 (23)

N8}
Ay

It was shown in [6, 7] that the continuity equation is invari-
ant under transformation for rotational cases. Here it is math-
ematically shown that this prevails for arbitrary motion cases
as well.

3.2 Conservation of Momentum Equation

The incompressible form of the momentum equation as shown
in [6] and [8], made the assumption that the change in density
is negligible. Therefore, the equation could be simplified by
dividing density into all the terms as there are no temporal
or spatial gradients in density. The diffusion term in particu-
lar could be simplified in a manner that would facilitate easy
transformation where the divergence of the gradient of veloc-
ity yields the same result as taking the Laplacian of the ve-
locity. This is not the case when compressibility has to be
accounted for. The compressible Navier-Stokes equation in
the inertial frame will take the form [9]:

0
Spu +V-(pusu) = -
t N —

N——
Unsteady

Vp
~—

Advection Pressure Gradient

(24)
+V-[u(Va+val) + A (V-u)1

Compressible Stress Tensor

The non-inertial form of the separate terms of the equa-
tion, will be derived from this form to obtain the compressible
equations in the acceleration frame.
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3.2.1 Unsteady Momentum Term Transformation

First consider the unsteady term in the non-inertial frame and
apply the product rule for partial derivatives. This operation
will result in two terms that was not considered during the
incompressible case [6]:

(25)

The first transformation will concern the unsteady term
where an expression must be found for:

(26)

The first task is to find an expression for the term
0(X, s, +Ar). The expression will take a form that is similar
to equation 13:

(ke nrst + A1) = R0/ (X g 1+ AY) @7)
The Taylor series expansion for X/, ; is expressed as:
1
Xpon =X+ AV + EAtza’ +0(A%) (28)

The expression above is as seen from the orientation pre-
serving frame. Since this frame is free to translate, but not to
rotate, only the rotation terms are relevant here. The equation
above is truncate at the second order and with the substitution
of the rotational components of equations 7 and 9 and further
re-arrangement the equation becomes:

1 .
Xoa =X =xXa = A(QAX) + EAtZ(Q AX +QAX) (29)

The Fourier series expansion is obtained for w'(x/; 1 a;,7 +
At). Substitute equation 29 into the expression to obtain:

W (X a0+ A1) = 0 (X, 1)+ {[A1(QAX)
(30)

+ %AtZ(Q/\X' +QAX)]-Viu(x,, 1)+ (At%)

u(x;,?)
The equation above is substituted into equation 27 to get
the expression:

(&t + A1) = RM Y (0 (X.1) + {[A(QAX)
31)

+ %Atz(ﬂ AX + QAKX - VI (X;,1) + (Az%)u’(x',,t)}

In order to complete the expression in equation 26 further
definitions are required. The assumption was made that the
point P is fixed in the rotating frame, and the rotation is around
the object axis (meaning that O’ and O share an origin), then
the relation of motion between two time steps are:
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n 1+A1 t
£ =R" X/H_Al =RM X

X/[ = RMN X,[+Af (32)

Next a Taylor series expansion for x', | »; is developed and
the equation above is used to arrive at:

1
Xpn =X+ MV + 5Azza’ +0[AF)]
:RMAIX'H_AI +AH(QAX) (33)

+ %Azz(ﬂ AX +QAX) 4 O[A)]

Re-arrange the expression above and consider it in the limit
yields:

MA 1 /
lim R™ X'yin —X g
At—0 At

= lim [-QAX — 1At(Q/\x’JrQ/\y‘(’) — O[AF]
At—0 2

(34)

If this expression is considered for any vector b, and taken
into account that X, o, — X; as Ar — 0, the following equation
related to rotation is obtained:

. RMYb-bp
hm _—
At—0 At

=bAQ (35)

With all the required expressions in place equation 26 can
now be completed:

&ﬁ(A ) RMHN{[IfﬁqLAI(Q/\x’)-V
or et = G At (36)
AP (QAX + QAKX - VI (X, 1) + (Ar S ) (X7, 1)}

At

Equation 35 is used to simplify the expression above and
with some re-arrangement of terms the following expression
is obtained:

Ji
ot

(&,1) :RM’[% +(QAX) -V —QA|[GM u(x;,1)]

(37)
This equation above will retain its current form irrespective
of any further changes in acceleration. All other terms that is
inserted to account for variation in acceleration will become
negligible when the expression is considered in the limit.
Substitute equation 37 into equation 25 and with the aid of
equation 13 and further manipulation the above becomes:

J ~ M M Ju ’ 8p
pli) =R G" [p +p(QANX .V"_p‘l ut+u— 38
8t( ) [ ot ( 8 ) A ot ] 38)

The product rule is then used to combine the terms p % and

u%—f so that the equation simplifies to:
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2 (o) = R [2-(p) + p(@AX) -V~ p@AIGM u

at G9

Equation 14 is substituted in the equation above to remove
the modified Galilean operator from the equation:

api
ot

FRY 12 (p) 4 p(RAX) -V~ p@AI(V(r)

(80.0) =R [ 2 (p) + p(@AX) - — p@A](u(x;.1)

M 2 nN.v_ /
+R [at(p)+p(9/\x) V—pQA|(xX' AQ) 40)

PR 12 (p) 4 p(@AY) -V~ p@A|(a(1)a1

+RMI[%(P)+p(QAx’)~V—pQA}(Q/\x’+QAx’)Ar

The different parts of [%(p) +p(QAX) -V —pQA](X' A
Q), which is the third combination of terms in equation 40,
will now be considered.

The transient term in the equation above can be expanded
on with the use of the product rule for partial differential equa-
tions:

9., .0

4D

In the equation above the first term on the right hand side
represents the unsteady motion of point P in the frame in cases
where the rotation is not purely about the fixed axis. In pure
rotation cases this term will be equal to zero. The second term
represents the unsteady rotation, this is referred to as the Euler
fictitious force.

The terms [(QAX') -V — QAJ(x' AQ) is equal to zero and
cancels out:

[(QAX)-V-QA(X AQ)=0 (42)

The relation [% (p)+p(QAX)-V—pQA](xX' AQ) will, for
this case, simplify to:

[%(p)-ﬁ-p(ﬂ/\x’)-V—pﬂ/\](x'/\ﬂ) =pX AQ+pxX' AQ  (43)

The entire fourth combination of terms in equation 40 falls
away, if not due to the mathematics, it will fall away in the
limit due to the At term.

The above leads to the final description of the unsteady
terms in the momentum equation for arbitrary acceleration:

(9pﬁ N oM J
W(Xtat)_R [E(P)

Coriolis
/
+P(QAX) -V —pQA](u(x,1) V(1))
+RM( pXAQ  +pX AQ)
——

N——
Euler

(44)

In frame motion
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In any arbitrary acceleration case, this is the form the un-
steady component of the equation will always take. Additional
higher order terms that appear in the relative equations will
become negligible in the limit due to the Ar.

Take note in this equation of the appearance of a part of the
Coriolis effect and the Euler effect.

3.2.2 Advection Term Transformation

The relation between the frames for the advection term in the
compressible Navier-Stokes momentum equation is:

V- (paed)=RMGM V. (pu@u)] (45)

By using equation 12 and the identity below the equation
can be simplified.

(V-a) @ X AQ)=aAQ (46)

This will lead to the following expression for relating the
diffusion term in the non-inertial frame to the terms in the
inertial frame:

Coriolis

. ,—/\“
V- (piaod) =R" [V-pu@u+purQ+V - p(xX AQ)@u

+(PpX NQ)AQ+pV (1) A Q] (47)
——— N——

Centrifugal Magnus

The original of the second part of the Coriolis and the Cen-
trifugal terms can be seen here. Furthermore, an additional
term that represents the change in diffusion due to the interac-
tion between the translating and rotating part of the flow can
be seen here.

3.2.3 Pressure Gradient Term Transformation

The pressure gradient term in the momentum equation is
transformed. This part of the equation remain invariant since
it is a scalar.

Vp=R"GMvVp

. . (48)
Vp=RMvVp

3.2.4 Diffusion Term Transformation

In the transformation of the diffusion term the difference be-
tween the compressible and incompressible cases must be
noted. The divergence of the velocity vector is not negligi-
ble, therefore the completed diffusion term must be accounted
for. The expression for relating the diffusion term between the
frames hence becomes:

V- [a(Va+val) + 2(V- )]

M M T “9)
=R"G" V- [u(Vu+Vu' )+ A(V-u)l
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With the implementation of equation 14, the right hand side
of the equations becomes:
If it is considered that,

V(x ! T _
(x'AQ)+V(x //\Q) 0 50)
V- (x'AQ)=0

It can be shown that the diffusion component of the mo-
mentum equation is invariant for constant rotation conditions:

V- a(Va+val)+ 1 (vV-a)i

51
=RYV.-[u(Va+Vul )+ 1(V-u)[] eb

3.2.5 Final Transformation of the Non-Inertial Momen-
tum Equation

The final transformation of the momentum equation relies on
the summation of the transient and advection terms, as well as
further manipulation of the resulting groups of terms.

Group 1
apa -~ . 0 d
PU L $ . (paca) = R™ [ (pu) + V- puou— 2 (pV(r))
t ot ot
Group 2

+pX AQ+pX' AQ+ (pX AQ)AQ+2punQ
Group 3

(52)

+V-p(xX AQ)@u+p(QAX) - Vu—p(QAX)-VV(¢)
Group 3

+pV() AQ+pQAV(1))]

Group 1 is replace by the equation below, where equation
24 was used the rotational transform multiplied through the
equation. Subsequently the non-inertial form of the terms
were obtained:

P
R [ (pu)+V-pucl

=R [—-Vp+ V- [u(Vu+Vu!) +A(V-u)]]
= Vp+V-[a(Va+Vval )+ 1(V-a)f]

(53)

The group 2 terms represents the majority of the fictitious
forces. These were manipulated as shown below to determine
the non-inertial form:

RM [pX' AQ+px' AQ+ (pX' AQ)AQ+2pur Q)]

n . (54)
=pXANQ+pIXAQ—pRAQAQ+2pGANQ+20V(1) ANQ

The remainder of the terms, group 3 conveniently cancels
each other out.

Vop(xX' Am)@u+p(QAX)-Vu—p(QAX)-VV(r)

+pV(t)ANQ+pQAV(1))] =0 63
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Summation of the transformed parts of the momentum
equation lead to the final form of the compressible, non-
inertial momentum equation for full arbitrary motion:

apa - - - N . A s
PRV (puet) = —Vp+ V- [a(Va+ V) + A(V-0)f]
) N .
- E(pV(z))+pkAQ+pf<AQ+2pﬁAQ
T . Euler Coriolis (56)
ranslation
Unsteady motion
—PRAQAQ+20V(t) NQ
—_——— ——
Centrifugal Magnus
3.3 Energy Equation
Consider the energy equation in the inertial frame [9]:
dpe
7+(V~p8u):—p(V~u)+V~(kVT)+<I> (57)

The various terms can be transformed to the non-inertial
frame separately and then combined to obtain the energy
equation in the non-inertial frame.

The time dependant term can be related between the frames
as shown below since scalars are invariant under transforma-
tion:
dpé 2w OPE
T R > (58)

The relation for the convective term between the inertial
and non-inertial frame is shown below. This equation can be
expanded upon with the used of equation 14:

(V-péi) = RMGM (V- pen)
=RMV.pe(u—V(1)+x A Q
—Ja() + QAX + QAK]A)]

(59

The second and third terms on the right hand side of the
equation above was shown in equation 20 to be equal to zero.
The convective term therefore becomes Galilean invariant un-
der transformation:

(V-péi) =R"(V-pen) (60)

The term that represents the rate of work done by the nor-
mal force can be related in the inertial and non-inertial frames
as shown below. This term can be expanded upon using equa-
tion 14.

—p(V-8) = RYGM[—p(V -u)]
=RM[—pV-(u—V()+xX AQ
—[a(t) + QAX +QAXA)]

(61)

Showing that the second and third terms is again equal to
zero, the same as above and indicated in equation 20, this
transformation is also invariant.

91

http://www.saimeche.org.za (open access) © SAIMechE All rights reserved.



Non-Inertial Forces in Aero-Ballistic Flow and Boundary Layer Equations

—p(V-i) =R" [~ pV -u] (62)

The diffusive term in the non-inertial frame can be ex-
pressed in the inertial frame with the following relation:

V- (kVT)=RM GM' V. (kVT)] (63)

Since k and T are scalars the relation is invariant under
transformation:

V. (kVT)=RM V. (kVT)) (64)

The full relation between the non-inertial and inertial
frames for the energy equation can be obtained by summation
of the components obtained above. This leads to the equation:

. . . . .
+(V-peu)+p(V-u) =V (kVT)|+ P

The right hand side of the equation is equal to zero, this can
be seen from re-arrangement of the terms in equation 57. The
non-inertial energy equation is invariant under transformation
in this specific case for constant acceleration in rotation [3],
but it can be seen that this equation will remain in this form
even if the acceleration is not constant. Equation 23 is further
used to arrive at:

9PE L (V- pet) = —p(V-0)V- (RT)+ b

3 (66)

4 Boundary Layer Equations for Arbi-

trary Accelerating Flow
The Blasius solution to the flat plate flow is a classic solution
to the boundary layer on a flat plate. Monaghan’s solution [20]
extended the solution to obtain an approximation for the flat
plate boundary layer in compressible conditions. Extensive
work was done by [1,21,22] to determine the boundary layer
equations on rotating blades, but it appears that limited work
has been done on boundary layer in arbitrary acceleration. In
this section the boundary layer equations for the flat plate in
arbitrary acceleration is derived (figure 5) in the same manner
as indicated in [6].

4.1 Flat Plate in Cartesian Components

The continuity equation was derived in vector form in the pre-
vious section as shown in equation 23.

3
b)

V. pi= 67)

d

~

The component form of the equation is required for deter-
mining the boundary layer equation:
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Figure 5 Flat plate in arbitrary acceleration conditions

ap +8u+8\7+8w
dr 9% 9y 92

0 (68)

The momentum equation was derived in vector form in
equation 56.

+ V- [@(Va+val) + A(V-a)f] )

*%(Pv(f))+l)§/\ﬂ+pf(/\ﬂ+2pﬁ/\ﬂ

—PXANQAQ+2pV(1) ANQ

In component form the equation becomes as shown be-
low for x-momentum, y-momentum and z-momentum respec-
tively:

apa  _opa  dpa  opa  dp
or Tior TVoy W ar T ek
0 on i dv ow
*%[Z“EM(aA*ay 5]
o i I
+ 351055+ 39)]
d i oW (70)
*oz {“(87,+ 8)2)]
+2pP0, — 2P,
+pi(0.” + 0y%) — piowy — pro.o;
+ P9, — p2ay + pyw, — pioy
+2pVy 0, —2pV, 0, — IV
ot
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4.2 Non-dimensional and Perturbation Param-
eters

Partial differential equations are analysed by obtaining the
non-dimensional form through scaling of the characteristic
properties [9]. This allows for analysis of the relative mag-
nitudes of the separate terms in the component form of the
equation. The characteristic properties of a laminar bound-
ary layer are shown in figure 6. It comprises of a reference
length (L), reference velocity (free stream velocity U), bound-
ary layer thickness (0) and other free stream properties such
as viscosity and pressure.

Scaling (see figure 7) is aimed at obtaining the relative sizes
of the terms in order to identify smaller terms that can be ne-
glected from the equation [23,24]. Elimination of the smaller
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Figure 8 Perturbation Parameter € on a Flat Surface

terms result in a simplified equation. These equations con-
tain the terms that have a significant effect in the near-wall
region and are responsible for the behaviour of the flow in the
boundary layer. The physical responses of the boundary layer
to accelerating conditions are explained using the simplified
equations.

The analysis is based on the assumption that the boundary
layer thickness, &, is much smaller in comparison with the
body over which the flow is analysed [25],

5<<l
L

A perturbation parameter, € is introduced. This represents
a very small disturbance in the flow at the surface that asymp-
totically approaches zero as indicated in figure 8.

The perturbation originates from the surface of the plate
continues to propagate along it. Therefore the disturbance ap-
proaches € in both the - and Z- directions in figure 8. In the
y-direction the disturbance approaches € close to the wall, but
it dissipates further way from the wall since the interaction of
the fluid with the solid surface sustains the disturbance. At the
flow boundary the disturbance is smaller than € and of order
£2. The boundary layer height is smaller than the disturbance
at the wall and asymptotically approaches £2. It is defined
that [25,26]:

(73)

e<<1

et <e¢

5 ) (74)
.y

L — oo

In order to keep the solution as general as possible, it will
only be assumed that velocity and time has positive values:
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[ee]

e<U
e<t

ININA

(75)

[ee]

The non-dimensional parameters that is selected for the
spatial variables is as follow:

x*:f
L
y*z% (76)
«_ 2
T

L is the reference distance, the assumption is made that the
plate is semi-infinite in the x- and z-directions. § is the bound-
ary layer height in the y-direction as a distance of L.

The velocity components are non-dimensionalised as fol-
low, where U is the characteristic velocity:

<
%
Il

SIS

7

S
I

*

I
NSO v ~G

The specific pressure and kinematic viscosity can be nor-
malised as follow:

(78)

*
?‘b.%:‘tg‘m
[ )

The angular velocity can be non-dimensionalised by multi-
plying it by ¢. The units of angular velocity is rad/s, but since
radians are already a non-dimensional quantity it can be nor-
malised in this manner.

o = wit (79)

4.3 Development of Boundary Layer Equa-
tions

Applying the normalization parameters to equation 68 results
in the non-dimensional form of the equation:

p* P AwU)  I(YS) (WU
=0 80
oL T aeD) T o) | o) &0
The equation above is multiplied by:
L
U 8D
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leading to the final non-dimensional form of the equation:

u* N av*
dx* = dy*

ow*

dzx

ap*
or*

(82)

No terms can be neglected from this equation and boundary
layer continuity equation thus remains the same as the equa-
tion for the bulk flow:

p a9

9 on 98 o _
ot d%  dy oz

=0 (83)

In a similar way, the boundary layer equations for the con-
servation of momentum equation can be determined.

Normalising equation 72 and simplifying as shown above,
leads to the boundary layer equations for arbitrary acceleration
on a flat plate:

opin  opa dpa _opa  dp 9 /.9
o TMox TV TV oz *Eﬁa*y( ?y)
+2p0w3 — 2pe, + Pi(ws” + wy?)
— pP@1 @) — PL0y 03 + I, — £y + Yo, — 20,
+2Vya)z—2VZwy+%
ot
dp
0="%
+ 2P0y — 2piws + pI(ws” + o)) — proy 54
— PE 3 + £ — RO, + +20, — X0
P)
+2Vwa—2VXwZ+&
ot
opw _opw  apw  dpw  dp /. o
or Thox TV oy oz __72+79(“ay)

+2phw, —2pPo; + p2(wr” + o2)
— PRy @3 — PFr 03+ £Dy — F; + X0, — Yo,
IV,

+2an)y — 2Vycox + W

The above equations has in similar form as it would have
had in the case of no acceleration, where the majority of the
viscous terms becomes negligible. The difference is however
in the presence of all the inertial terms since none of it be-
comes negligible. Acceleration of an object will affect the
boundary layer due to the presence of the inertial forces.

5 Closure

There are a number of misconceptions that have been ob-
served in literature with regards to flow equations in non-
inertial reference frames. An example where discrepancies
in the literature is seen is in the conservation of energy equa-
tion. Some sources add fictitious energy terms to these equa-
tions [4,5]. It was shown through derivation that both the
continuity and conservation of energy equations remains in-
variant under transformation - no additional terms are added
to these equations:
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if;w.pﬁ:o (85)
2P & . a A AN S (RO 1 A
— T (Vpéd) = —p(V-8)+ V- (kVT) + ¢ (86)

The equation for full arbitrary acceleration below indicates
that there are six fictitious terms in the non-inertial momen-
tum equation. These are the only terms that are present during
arbitrary acceleration; the higher order terms become negligi-
ble or cancel out with other terms during the derivation. The
equation for full arbitrary motion (six degrees of freedom) can
be used to explore the appropriate form of the non-inertial mo-
mentum equation for steady translation and unsteady rotation.

e Lo o
+V- (Va4 Val) + A (V- )]
d N .
—E(pv(t))+p>k/\ﬂ+p)‘</\ﬂ &7)
AN N——

. Euler
Translation

Unsteady motion

+2p0NQ—pXAQAQ+20V (1) ANQ
——

Coriolis Centrifugal Magnus

The mathematical origin of the fictitious terms are observed
during the derivations. The unsteady translation term, two
terms due to unsteady rotational motion and the first parts of
the Coriolis and Magnus terms originates in the transforma-
tion of the unsteady component of the momentum equation
(equation 44).

dpi

5 &0) zRMt[z(pHp(QAXi)-V

ot
—pQA|(u(x;,1) — V(1))
Coriolis & Magnus
+RM (pXAQ +px A Q)
—— =

(88)

Moving Axis Euler

The remainder inertial terms, second part of the Coriolis,
centrifugal and the term representing the interaction between
the rotation and translation, all has their original in the trans-

formation of the advection term (equation 47).

A

V- (pia@d)=RM [V pu@u+punrQ
——
Coriolis
+V.p(xX AQ)®u
+(pX AQ)AQ+pV () AQ]
——— N———

(89)

Centrifugal Magnus

Observation of the effect of both Coriolis and Magnus ef-
fects can be explained using a mathematical approach which
is seated in an understanding of the cross product operation.
In figure 9 it is shown that a particle travelling in north on the
earth’s surface deflects to the right in the northern hemisphere
and to the left in the southern hemisphere.

The difference in deflection is a function of the surface cur-
vature of the earth where a velocity vector in the south has a
different orientation than in the north. The result is that the
cross product of the velocity and the rotation has a resultant
force that is dependent on the hemisphere it operates in.
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The Coriolis force is therefore described as a non-inertial
force that operates on an object that is in motion relative to a
reference frame. The effect of the Coriolis force is to cause
deflection of the object in three dimensions in with a magni-
tude and direction that is determined by the cross product of
the object’s non-inertial velocity and the rotation of the frame,
200N Q.

The Magnus force has a similar formula to the Coriolis
force, but it has a different physical meaning. It is a func-
tion of the object’s translation and represents the interaction
between the rotating and translating motion of the object. It
is therefore a non-inertial force that operates on a rotating ob-
ject that is in motion relative to a inertial reference frame. The
effect of the Magnus force is to cause deflection of the object
(figure 10) in three dimensions with a magnitude and direction
that is determined by the cross product of the object’s transla-
tional velocity and the rotation of the object, 2pV(7) A Q.

The presence of the Magnus force in the non-inertial mo-
mentum equation is not generally seen in literature [9, 11]
since non-inertial formulations does not regularly include all
the aero-ballistic accelerations and is generally applied to ro-
tating flows. In CFD applications the Magnus force is mostly
investigated using a predictive approach [15-17] instead of
with prescribed motion as suggested here.
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