SciELO - Scientific Electronic Library Online

 
vol.65Iodination of alcohols over Keggin-type heteropoly compounds: A simple, selective and expedient method for the synthesis of alkyl lodidesElectrocatalytic activity of electropolymerized cobalt tetraaminophthalocyanine film modified electrode towards 6-mercaptopurine and 2-mercaptobenzimidazole author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    South African Journal of Chemistry

    On-line version ISSN 1996-840XPrint version ISSN 0379-4350

    S.Afr.j.chem. (Online) vol.65  Durban  2012

     

    RESEARCH ARTICLE

     

    Hydrothermal synthesis of CdWO4 nanorods and their photoluminescence properties

     

     

    Bin GaoI, II; Huiqing FanI, *; Xiaojun ZhangII

    IState Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
    IISchool of Science, Xi'an Polytechnic University, Xi'an 710048, China

     

     


    ABSTRACT

    CdWO4 nanorods with wolframite structure were synthesized in the presence of the surfactant SDBS by a hydrothermal method, and characterized by a variety of techniques. The obtained products are CdWO4 nanorods with length of 0.8-2.5 µm and width of 50-250 nm. The surfactant SDBS plays a key role in the formation of the CdWO4 nanorods. The pH value impacts on crystallinity of the products. The PL properties of the CdWO4 nanorods prepared under different conditions were studied. The intensity of the PL emissions of the samples increases with crystallinity and aspect ratio of the CdWO4 nanorods.

    Keywords: CdWO4 nanorods, photoluminescence, hydrothermal method


     

     

    Full text available only in PDF format.

     

    Acknowledgements

    This work was supported by the National Nature Science Foundation (51172187), the SPDRF (20116102130002) and 111 Program (B08040) of MOE, Xi'an Science and Technology Foundation (CX1261-2) of China.

     

    References

    1 S.J. Chen, J.H. Zhou, X.T. Chen, J. Li, L.H. Li, J.M. Hong, Z. Xue and X.Z. You, Chem. Phys. Lett, 2003, 375, 185-190.         [ Links ]

    2 S. Kwan, F. Kim, J. Akana and P.D. Yang, Chem. Commun., 2001, 5, 447-448.         [ Links ]

    3 B. Liu, S.H. Yu, L.J. Li, F. Zhang, Q. Zhang, M. Yoshimura and P.K. Shen, J. Phys. Chem. B, 2004, 108, 2788-2792.         [ Links ]

    4 X.L. Hu and Y.J. Zhu, Langmuir, 2004, 20, 1521-1523.         [ Links ]

    5 H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li and Y.T. Qian, Chem. Mater., 2000, 12, 2819-2821.         [ Links ]

    6 V.G. Bondar, S.F. Burachas, K.A. Katrunov, V.P. Martinov, V.D. Ryzhikov, V.I. Manko, H.H. Gutbrod and G. Tamulaitis, Nucl. Instr. Meth. Phys. Res. A, 1998, 411, 376-382.         [ Links ]

    7 L. Grigorjeva, R. Deych, D. Millers and S. Chernov, Radi. Measure., 1998, 29, 267-271.         [ Links ]

    8 A.P. Chichagov, VV. Iliukhin and N.V. Belov, Sov. Phys. Dokl., 1966,11, 11-13.         [ Links ]

    9 C.D. Greskovich, D. Cusano, D. Hoffman and R.J. Riedner, Am. Ceram. Soc. Bull., 1992, 71, 1120-1126.         [ Links ]

    10 S.C. Sangeetas and Sangeeta, J. Cryst. Growth, 1999, 200, 191-198.         [ Links ]

    11 Y.G. Wang, J.F. Ma, J.T. Tao, X.Y. Zhu, J. Zhou, Z.Q. Zhao, L.J. Xie and H. Tian, Mater. Sci. Eng. B, 2006, 130, 277-281.         [ Links ]

    12 R. Dafinova, K. Papazova and A. Bojinova, J. Lumin., 1997, 75, 51-55.         [ Links ]

    13 K. Tanaka and D. Sonobe, Appl. Surf. Sci, 1999, 140, 138-143.         [ Links ]

    14 Z.D. Lou, J.H. Hao and M. Cocivera, J. Lumin., 2002, 99, 349-354.         [ Links ]

    15 K. Lennstrom, S.J. Limmer and G.Z. Cao, Thin Solid Films, 2003, 434, 55-61.         [ Links ]

    16 Y.G. Wang, J.F. Ma, J.T. Tao, X.Y. Zhu, J. Zhou, Z.Q. Zhao, L.J. Xie and H. Tian. J. Am. Ceram. Soc., 2006, 89, 2980-2982.         [ Links ]

    17 VA. Pustovarov, A.L. Krymov and B. Shulgin, Rev. Sci. Instrum., 1992, 63, 3521-3523.         [ Links ]

    18 M.M. Chirilaa, K.T. Stevens, H.J. Murphy and N. C. Gilesa, J. Phys. Chem. Solids, 2000, 61, 675-679.         [ Links ]

    19 H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li and Y.T. Qian, Chem. Mater., 2000, 12, 2819-2821.         [ Links ]

    20 J.H. Yang, D.D. Wang, L.L. Yang, Y.J. Zhang, G.Z. Xing, J.H. Lang, H.G. Fan, M. Gao and Y.X. Wang, J. Alloys Compd., 2008, 450, 508-511.         [ Links ]

    21 J.H. Yang, J.H. Lang, L.L. Yang, Y.J. Zhang, D.D. Wang, H.G. Fan, H.L. Liu, Y.X. Wang and M. Gao, J. Alloys Compd., 2008, 450, 521-524.         [ Links ]

    22 D.D. Wang, J.H. Yang, L.L. Yang, Y.J. Zhang, J.H. Lang and M. Gao, Cryst. Res. Technol., 2008, 43, 1041-1045.         [ Links ]

    23 Y.C. Kong, D.P. Yu, B. Zhang, W. Fang and S.Q. Feng, Appl. Phys. Lett., 2001, 78, 407-409.         [ Links ]

    24 R. Chen, G.Z. Xing, J. Gao, Z. Zhang, T. Wu and H.D. Sun, Appl. Phys. Lett., 2009, 95, 061908-061910.         [ Links ]

    25 Y.A. Hizhnyi, S.G. Nedilko and T.N. Nikolaenko, Nucl. Instrum. Methods Phys. Res. A, 2005, 537, 36-39.         [ Links ]

    26 K. Polak, M. Nikl, K. Nitsch, M. Kobayashi, M. Ishii, Y. Usuki and O. Jarolimek, J. Lumin., 1997, 781, 72-74.         [ Links ]

     

     

    Received 5 May 2012
    Revised 28 May 2012
    Accepted 4 June 2012

     

     

    * To whom correspondence should be addressed. E-mail: hqfan3@163.com