SciELO - Scientific Electronic Library Online

 
vol.65Synthesis, characterization and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of some Schiff bases derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4 triazineCoordination of the bidentate ligands 2,2'-dipyridylamine, 1-phenyl-1,3-butadione and N'-(propan-2-ylidene)benzohydrazide to rhenium(III) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Chemistry

On-line version ISSN 1996-840X
Print version ISSN 0379-4350

Abstract

FERG, Ernst E.; GOUWS, Shawn  and  PONGOMA, Basanda. Electrochemical oxidation of phenol using a flow-through micro-porous lead dioxide/lead cell. S.Afr.j.chem. (Online) [online]. 2012, vol.65, pp.165-173. ISSN 1996-840X.

The electrochemical oxidation of phenol to benzoquinone followed by the reduction to hydroquinone and catechol was demonstrated by constructing a three-dimensional porous micro-flow cell from lead dioxide and lead. The electrodes were made by using the principles of curing and formation of lead oxide material that are common in the construction of the electrodes used in lead-acid batteries. This resulted in highly porous electrodes that can allow the reactant solution to flow through them in series, without the risk of having the products being oxidized again at the anode that usually occurs in a simple undivided cell. In this study, a 50 mM solution of phenol in a 60 % acetonitrile and water mixture was used that contained 2 % sulphuric acid. The reactant solution would flow through the anode porous material oxidizing the phenol to benzoquinone. The benzoquinone in solution would then flow through the cathode porous material and reduce to catechol and hydroquinone. The study showed that almost all of the phenol could be converted in one continuous flow process in using a relatively low cost electrochemical micro-flow cell that can be easily scaled up to accommodate larger volumes and concentrations by using electrode manufacturing principles used in the lead-acid battery industry.

Keywords : Phenol; hydroquinone; catechol; lead dioxide; micro-flow cell.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License