SciELO - Scientific Electronic Library Online

 
vol.50 issue2Calibration of a modelling approach for sediment yield in a wattle plantation, KwaZulu-Natal, South AfricaEffect of Moistube and subsurface drip irrigation on cowpea (Vigna unguiculata (I.) Walp) production in South Africa author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

    Related links

    • On index processCited by Google
    • On index processSimilars in Google

    Share


    Water SA

    On-line version ISSN 1816-7950Print version ISSN 0378-4738

    Abstract

    CHIBUEZE, Chekwubechukwu V; NNAJI, Chidozie C; MAMA, Cordelia N  and  NWANKWO, Ekene J. Integrated treatment of stormwater using multistage filtration (MSF) for domestic application (reuse). Water SA [online]. 2024, vol.50, n.2, pp.154-165. ISSN 1816-7950.  https://doi.org/10.17159/wsa/2024.v50.i2.4011.

    Stormwater harvesting is a promising solution for global freshwater depletion, particularly in tropical regions with abundant rainfall. However, it is not widely used due to the lack of suitable treatment technologies for domestic applications. Multi-stage filtration (MSF) is an effective integrated treatment technology that provides a cost-effective alternative for stormwater treatment. This study investigated MSF's capacity for treating stormwater at different stages. The MSF designed and built comprised the down-flow roughing filter (DRF) and slow sand filter (SSF). The results achieved by the MSF for the treated effluents were: pH (7.1-8.1), temperature (27.6-29.4°C), electrical conductivity (EC) (100-190 µS/cm) and total dissolved solids (TDS) (70-130 mg/L). Turbidity removal efficiency of the MSF was in the range of 36-99% (5.825-164.05 NTU) and the overall average removal efficiency of the MSF was 74%, 90% and 86% for total coliforms (TC) (360-11 800 CFU/ 100 mL), faecal coliforms (FC) (0-1 300 CFU/100 mL) and Enterococcus spp. (120- 1 400 CFU/100 mL), respectively. The study identified stormwater reuse potentials based on international guidelines and benchmarks. For the treated effluent, pH, temperature, EC and TDS were all within the permissible limits for toilet, laundry, bathing, recreational and agricultural water reuse, while turbidity suited agricultural (non-food crop) and restricted urban reuse. 46% of the effluent was suitable for recreational purposes as this satisfied the 50 NTU standard. 62.5% of the effluent satisfied the FC standard for toilets and urinals and agricultural reuse (non-food crop) purposes, while 87.5 % of the effluent satisfied urban reuse purposes (restricted access). 66.67% of the effluent satisfied the Enterococcus spp. standard for agricultural reuse (non-food crop). All treated effluents satisfied the TC bathing standard. This study shows that after minimal disinfection, stormwater effluents offer potential reuse in household applications, thereby reducing potable water demand.

    Keywords : stormwater; multistage filtration; roughing filter; treatment; removal efficiency.

            · text in English     · English ( pdf )