SciELO - Scientific Electronic Library Online

 
vol.24 issue2Activity-based costing for vehicle routing problemsDetermining tactical operational planning policies for an auto carrier - A case study author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Industrial Engineering

On-line version ISSN 2224-7890
Print version ISSN 1012-277X

Abstract

DEWA, M.  and  CHIDZUU, L.. Managing bottlenecks in manual automobile assembly systems using discrete event simulation. S. Afr. J. Ind. Eng. [online]. 2013, vol.24, n.2, pp.155-166. ISSN 2224-7890.

Batch model lines are quite handy when the demand for each product is moderate. However, they are characterised by high work-in-progress inventories, lost production time when changing over models, and reduced flexibility when it comes to altering production rates as product demand changes. On the other hand, mixed model lines can offer reduced work-in-progress inventory and increased flexibility. The object of this paper is to illustrate that a manual automobile assembling system can be optimised through managing bottlenecks by ensuring high workstation utilisation, reducing queue lengths before stations and reducing station downtime. A case study from the automobile industry is used for data collection. A model is developed through the use of simulation software. The model is then verified and validated before a detailed bottleneck analysis is conducted. An operational strategy is then proposed for optimal bottleneck management. Although the paper focuses on improving automobile assembly systems in batch mode, the methodology can also be applied in single model manual and automated production lines.

        · abstract in Afrikaans     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License