SciELO - Scientific Electronic Library Online

 
vol.33 issue3Parametric mandible reconstruction plate author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Industrial Engineering

On-line version ISSN 2224-7890
Print version ISSN 1012-277X

Abstract

CHIBINYANI, M.I.; DZOGBEWU, T.C.; MARINGA, M.  and  MUIRURI, A.M.. Reduced order topology optimisation of a planar honeycomb defined by a linear elastic Ti6al4V (ELI) material model. S. Afr. J. Ind. Eng. [online]. 2022, vol.33, n.3, pp.299-317. ISSN 2224-7890.  http://dx.doi.org/10.7166/33-3-2808.

Combined numerical modelling and topology optimisation methods are useful in the design and analysis of engineering structures. The two tools are used to predict and optimise the mechanical properties of structures. Numerical modelling and optimisation of three-dimensional honeycomb structures is challenged by the sharp angles in its geometry. This reduces effective iterations in topology optimisation at the vertices and edges. The alternative - generating effective iterations at the vertices and edges in planar honeycombs of Ti6Al4V (ELI) - is presented in this paper. Mesh convergence tests with varying mesh densities were conducted on planar unit hexagonal cells at the start. The results obtained from planar unit hexagonal cells under out-of-plane compression loads before and after topology optimisation were compared. This was followed by shape optimisation and numerical analysis, and the results were compared with the numerical analysis before topology optimisation. The same procedure was followed for a planar honeycomb model. Acceptable predictions were obtained for the planar numerical models. Material reductions of 30% and 8% for the planar unit hexagon cell and for the honeycomb model respectively were obtained in topology optimisation. The maximum stresses in these numerical models after shape optimisation reduced by 58% and 4% respectively.

        · abstract in Afrikaans     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License