SciELO - Scientific Electronic Library Online

 
vol.118 issue12 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the Southern African Institute of Mining and Metallurgy

On-line version ISSN 2411-9717
Print version ISSN 2225-6253

Abstract

ESTERHUYSE, J.C.  and  MALAN, D.F.. Some rock engineering aspects of multi-reef pillar extraction on the Ventersdorp Contact Reef. J. S. Afr. Inst. Min. Metall. [online]. 2018, vol.118, n.12, pp.128-1296. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/2018/v118n12a7.

Mining in the Carletonville area of the Witwatersrand Basin predates 1934. Owing to the depletion of higher grade ore, the current activities focus increasingly on the extraction of lower grade secondary reefs as well as remnant extraction. Of particular interest is multi-reef remnant extraction. Numerical modelling was conducted to investigate some rock engineering aspects of remnants being understoped on a secondary reef horizon. An analysis of the stress evolution in the middling between two reef horizons indicated that a zone of high major and low minor principal stress develops between the two reefs. This indicates a high risk of violent shear failure. Some pillars were nevertheless successfully understoped in the past and a study was conducted to better understand this phenomenon. An 'extended' energy release rate concept introduced by Napier and Malan (2014) proved to be useful for investigating this problem. It was found that bedding planes and lithology appears to play a role in the stable dissipation of energy in multi-reef remnant geometries. The study indicated that the stope convergence and the various energy components are affected by the presence, position, and properties of a bedding plane. The energy solutions are complex and sometimes counterintuitive. Care should be exercised when modelling specific cases. The modelling was nevertheless valuable as it indicated that energy dissipated on weak layers may reduce the risk of violent failure in a multi-reef mining scenario. Additional work is required to investigate if crushing on the reef plane plays a prominent role when mining these remnants.

Keywords : deep-level mining; remnant extraction; understoping; multi-reef mining; energy dissipation; numerical modelling.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License