SciELO - Scientific Electronic Library Online

 
vol.77Flower of Typha latifolia as a Low-cost Adsorbent for Quantitative Uptake of Multiclass Pesticide Residues from Contaminated WatersUltrasound Promoted Stereoselective Synthesis of 2,3-Dihydrobenzofuran Appended Chalcones at Ambient Temperature índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Chemistry

versión On-line ISSN 1996-840X
versión impresa ISSN 0379-4350

Resumen

ALSAIARI, Raiedhah A.; MUSA, Esraa M.  y  RIZK, Moustafa A.. Effects of calcination temperature of eggshell-derived CaO as a catalyst for biodiesel production from waste cooking oil. S.Afr.j.chem. (Online) [online]. 2023, vol.77, pp.30-35. ISSN 1996-840X.  http://dx.doi.org/10.17159/0379-4350/2023/v77a05.

Biodiesel is considered to be more friendly to the environment than petroleum-based fuels, cheaper and capable for producing greener energy which contributed positively in boosting bio-economy. In this work, waste cooking oil (WCO) is converted into biodiesel utilizing a waste eggshell (CaO) nano-catalyst in an effort to discover environmentally beneficial and economically viable processes for social and economic development. The eggshell-based CaO catalyst developed for the production of ecologically friendly biodiesel at a reduced price is calcined at temperatures between 600 and 1100 °C. The synthesized catalysts were assessed in terms of their physical and chemical qualities via BET, TGA and XRD analysis. This revealed that, besides displaying exceptional transesterification activity, the catalyst synthesised at 950 °C also offered the greatest biodiesel yield. Transesterification, used in biodiesel generation, was used to evaluate the catalytic performance of manufactured catalysts under several reaction circumstances. Under prime reaction conditions i.e., a reaction time of 3 hours, an ethanol-oil molar ratio of 9:1, and a catalyst amount of 4 wt.%, it was ascertained that a catalyst which had calcined at 950 °C demonstrated excellent transesterification activity and delivered a ceiling yield of 88% fatty acid ethyl esters. The production of FAME was confirmed by using gas chromatography-mass spectroscopy (GC-MS). Fuel properties of fatty acid ethyl ester complied with ASTM D 6751 which indicated that it would be an appropriate alternative form of fuel.

Palabras clave : biodiesel; calcination; eggshell; environment-friendly; waste cooking oil.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons