SciELO - Scientific Electronic Library Online

 
vol.109 número7 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

    Links relacionados

    • En proceso de indezaciónCitado por Google
    • En proceso de indezaciónSimilares en Google

    Compartir


    Journal of the Southern African Institute of Mining and Metallurgy

    versión On-line ISSN 2411-9717versión impresa ISSN 2225-6253

    Resumen

    ESTRADA-RUIZ, R.H.  y  PEREZ-GARIBAY, R.. Neural networks to estimate bubble diameter and bubble size distribution of flotation froth surfaces. J. S. Afr. Inst. Min. Metall. [online]. 2009, vol.109, n.7, pp.441-446. ISSN 2411-9717.

    This work analyses a new approach to estimates bubble size distribution of froth surfaces using artificial neural networks (ANN). Also, the robustness of ANN to interpret images with illumination perturbations, produced by light problems or dirt attached to the window of the video camera is evaluated. The experimental work was carried out in a laboratory flotation column, instrumented with an image acquisition system. The images were processed making use of a perceptron model with a hidden layer, sigmoidal transfer function and unitary bias, and the ANN trained with a back propagation algorithm. The results of validation show that ANN are reliable for learning and producing generalized predictions of the froth mean bubble diameter and bubble size distribution, when the model is trained using a database that contains information on the illumination intensity.

    Palabras clave : image analysis; neural networks; bubble diameter; bubble size distribution.

            · texto en Inglés     · Inglés ( pdf )