SciELO - Scientific Electronic Library Online

 
vol.64An investigation of the interaction between resazurin and Cd2+ and Zn2+ ions in aqueous mediumInteraction of hydroxyproline with bivalent metal ions in chemical and biological systems índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Chemistry

versión On-line ISSN 1996-840X
versión impresa ISSN 0379-4350

Resumen

N'DA, David D.  y  BREYTENBACH, Jaco C.. Synthesis and antiplasmodial activity of EG-artemisinin ethers and artemisinin-quinoline hybrids. S.Afr.j.chem. (Online) [online]. 2011, vol.64, pp.163-172. ISSN 1996-840X.

The aim of this study was to synthesize a series of ethylene glycol (EG) ethers and quinoline hybrids of the antimalarial drug artemisinin and to evaluate their antimalarial activity in vitro against Plasmodium falciparum strains. The ethers were synthesized in a one-step process by coupling ethylene glycol (EG) moieties of various chain lengths to carbon 10 of dihydroartemisinin, while the artemisinin-quinoline hybrids were obtained by condensation of dihydroartemisinin with different amine-functionalized quinoline moieties. For solubility reasons, part of the hybrids were converted to oxalate salts upon reaction of the free bases with oxalic acid. All the synthesized compounds were tested against chloroquine (CQ) susceptible (CQS) D10 and chloroquine resistant (CQR) Dd2 Plasmodiumfalciparum strains. The IC50 values revealed that all the ethers were active against both strains but less potent than artemether irrespective of the strain. However, they were more active than CQ against the resistant strain. Ether 8 featuring three EO units was the most active of all ethers. It showed activity similar to that of CQ against D10 and much more potency than CQ against Dd2 strain (IC50, 0.023 vs. 0.473 nM). The hybrids and their salts were also all active against both strains. Hybrid 19 which possessed an isopropyl linker and its oxalate salt 19A: were the most active against the Dd2 strain. They were more potent than CQ (IC50, 0.009 and 0.011 vs. 0.255 nM, respectively).

Palabras clave : Artemisinin (ART); dihydroartemisinin (DHA); artemether (ARM); chloroquine (CQ); malaria; Plasmodium falciparum; ethylene glycol) (EG); ethylene oxide (EO); hybrid.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons