SciELO - Scientific Electronic Library Online

 
vol.26 número3 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

    Links relacionados

    • En proceso de indezaciónCitado por Google
    • En proceso de indezaciónSimilares en Google

    Compartir


    South African Journal of Industrial Engineering

    versión On-line ISSN 2224-7890

    Resumen

    AZIZI, A.; BIN ALI, A.Y.; PING, L.W.  y  MOHAMMADZADEH, M.. Production uncertainties modelling by Bayesian inference using Gibbs sampling. S. Afr. J. Ind. Eng. [online]. 2015, vol.26, n.3, pp.27-40. ISSN 2224-7890.  https://doi.org/10.7166/26-3-572.

    Analysis by modelling production throughput is an efficient way to provide information for production decision-making. Observation and investigation based on a real-life tile production line revealed that the five main uncertain variables are demand rate, breakdown time, scrap rate, setup time, and lead time. The volatile nature of these random variables was observed over a specific period of 104 weeks. The processes were sequential and multi-stage. These five uncertain variables of production were modelled to reflect the performance of overall production by applying Bayesian inference using Gibbs sampling. The application of Bayesian inference for handling production uncertainties showed a robust model with 2.5 per cent mean absolute percentage error. It is recommended to consider the five main uncertain variables that are introduced in this study for production decision-making. The study proposes the use of Bayesian inference for superior accuracy in production decision-making.

            · resumen en Africano     · texto en Inglés     · Inglés ( pdf )