SciELO - Scientific Electronic Library Online

 
vol.121 número8Application of a content management system for developing equipment safety training courses in surface miningBenhaus - a landmark decision, one less hoop for contract miners but a clarion call for an overhaul of the South African mining regime índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

    Links relacionados

    • En proceso de indezaciónCitado por Google
    • En proceso de indezaciónSimilares en Google

    Compartir


    Journal of the Southern African Institute of Mining and Metallurgy

    versión On-line ISSN 2411-9717versión impresa ISSN 2225-6253

    Resumen

    ORYNBASSAR, D.  y  MADANI, N.. Mineral resource modelling using an unequal sampling pattern: An improved practice based on factorization techniques. J. S. Afr. Inst. Min. Metall. [online]. 2021, vol.121, n.8, pp.385-396. ISSN 2411-9717.  https://doi.org/10.17159/2411-9717/1332/2021.

    This work addresses the problem of geostatistical simulation of cross-correlated variables by factorization approaches in the case when the sampling pattern is unequal. A solution is presented, based on a Co-Gibbs sampler algorithm, by which the missing values can be imputed. In this algorithm, a heterotopic simple cokriging approach is introduced to take into account the cross-dependency of the undersampled variable with the secondary variable that is more available over the entire region. A real gold deposit is employed to test the algorithm. The imputation results are compared with other Gibbs sampler techniques for which simple cokriging and simple kriging are used. The results show that heterotopic simple cokriging outperforms the other two techniques. The imputed values are then employed for the purpose of resource estimation by using principal component analysis (PCA) as a factorization technique, and the output compared with traditional factorization approaches where the heterotopic part of the data is removed. Comparison of the results of these two techniques shows that the latter leads to substantial losses of important information in the case of an unequal sampling pattern, while the former is capable of reproducing better recovery functions.

    Palabras clave : Co-Gibbs sampler; variogram analysis; data imputation; principal component analysis.

            · texto en Inglés     · Inglés ( pdf )