SciELO - Scientific Electronic Library Online

 
vol.123 número6On the interactions of iron sulphide with alumina and silicaThe development of a time-based probabilistic sinkhole prediction method for coal mining in the Witbank and Highveld coalfields índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the Southern African Institute of Mining and Metallurgy

versión On-line ISSN 2411-9717
versión impresa ISSN 2225-6253

Resumen

MCFADYEN, B.; GRENON, M.; WOODWARD, K.  y  POTVIN, Y.. Predicting open stope performance at an octree resolution using multivariate models. J. S. Afr. Inst. Min. Metall. [online]. 2023, vol.123, n.6, pp.309-320. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/2770/2023.

Open stoping has become a popular mining method in hard rock mines, not only due to the safety of the method as a non-entry approach, but also because of the high extraction rate and low costs. At mine sites, stope performance is evaluated by calculating stope overbreak using the stability chart. However, limitations of the stability chart regarding the precision of the predictions, non-consideration of factors such as the influence of blasting, and the exclusion of underbreak have led to non-optimal designs. The capabilities of today's computers have increased the amount of data being collected and the power of models being built. This article presents a step towards a new stope design approach where stope overbreak and underbreak are measured and georeferenced using octrees at an approximately cubic metre resolution and predicted using multivariate statistical models (partial least square, linear discriminant analysis, and random forest). Results show that overbreak and underbreak location along the design surface and their magnitude are predicted with good precision using a random forest model. These predictions are used to build the expected geometry of the open stope. The resolution of the data and the use of multivariate analysis has enabled the prediction of variation in stope performance along the design surface, going well beyond the simple qualitative per stope face prediction provided by a traditional stability chart approach.

Palabras clave : stope design; stope reconciliation; overbreak; underbreak; multivariate; prediction; random forest.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons