SciELO - Scientific Electronic Library Online

 
vol.25 número4Bioenergy use and food preparation practices of two communities in the Eastern Cape Province of South Africa índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

    Links relacionados

    • Em processo de indexaçãoCitado por Google
    • Em processo de indexaçãoSimilares em Google

    Compartilhar


    Journal of Energy in Southern Africa

    versão On-line ISSN 2413-3051versão impressa ISSN 1021-447X

    Resumo

    XU, Lin; TANG, Yong-Hong; PU, Wei  e  HAN, Yang. Hybrid electromechanical-electromagnetic simulation to SVC controller based on ADPSS platform. J. energy South. Afr. [online]. 2014, vol.25, n.4, pp.112-122. ISSN 2413-3051.

    To test the dynamic performance and damping features of a static var compensator (SVC) controller accurately in large-scale interconnected AC/DC hybrid power systems, it is of vital significance to build the detailed electromagnetic transient model. However, it is unrealistic and time-consuming to build the detailed models of all the devices in the actual large-scale power grid. Utilizing the hybrid simulation function in the advanced digital power system simulator (ADPSS) and by dividing the large-scale power grid into the electromagnetic transient sub-grids and electromechanical sub-grids, the computation speed of real-time simulation is remarkably enhanced by the parallel computational capabilities of digital simulator. The SVC controller and the nearby substation are modelled in the electromagnetic transient sub-grid, and the residue subnetworks are modelled in the electromechanical sub-grid. This paper focuses on the mechanism of the hybrid electromechanical and electromagnetic simulation, the detailed modelling and the ADPSS-based digital closed-loop test methodologies of the SVC controller. Eventually, the validity and effectiveness of the modelling and control methods are confirmed by the experimental results.

    Palavras-chave : advanced digital power system simulator; Hhybrid eectromechanical-Eelectromagnetic simulation; static var compensator; Phillips-Heffron model.

            · texto em Inglês     · Inglês ( pdf )