SciELO - Scientific Electronic Library Online

 
vol.123 número12 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Journal of the Southern African Institute of Mining and Metallurgy

versão On-line ISSN 2411-9717
versão impressa ISSN 2225-6253

Resumo

JEONG, Y.  e  KIM, K.. Use of a biocompatible polymer to enhance tailings transportation and reduce water consumption at a coper-cobalt-zinc plant. J. S. Afr. Inst. Min. Metall. [online]. 2023, vol.123, n.12, pp.579-588. ISSN 2411-9717.  http://dx.doi.org/10.17159/2411-9717/1207/2023.

Excess water can lead to instability and even failure in tailings storage facilities (TSFs). Simply reducing the amount of water in TSFs could be the best way to ensure the safety of nearby communities. In this case study we investigated the effects of reducing the water content in tailings slurry at a copper-cobalt-zinc mine in Mexico. An environmentally friendly polymer was used as a drag reduction agent (DRA) to offset the increase in solids percentage. The potential effects of the increased solids concentration on the tailings transportation system were also assessed. A series of 'what if' studies was conducted to assess whether adding the polymer would allow the solids concentration to be increased without changing the pressure loss in the tailings pipeline. The studies entailed conducting pipe loop tests to investigate these changes under various solids/ polymer concentrations and then constructing a computational fluid dynamics (CFD) simulation model using the test results. The validated model was used to determine the optimal polymer percentages needed to maintain the same pressure loss under baseline (30% solids) conditions, and to assess the potential risks (clogging, increased erosion rates) to the pipelines. The potential water savings were found to be significant, varying from about 1.852 Mm3/a at 35% solids to 3.915 Mm3/a at 45% solids.

Palavras-chave : pipe loop tests; computational fluid dynamics (CFD) simulation; TSF stability; tailings transportation; drag reduction agent.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons