## Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue-R dye by Hypochlorite and Role of Acid there in.

Srinivasu Nadupalli, Venkata D.B.C. Dasireddy, Neil A. Koorbanally and Sreekantha B. Jonnalagadda\*

School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

\*Corresponding author: jonnalagaddas@ukzn.ac.za

## Supplementary information: S. Afr. J. Chem., 2015, 68, 85-92





Figure S2. <sup>13</sup>C NMR spectrum for brilliant blue-R major oxidation product  $P_1$  (4-(4-ethoxyphenylamino)-benzoic acid) with hypochlorite.



Figure S3. GC-MS spectrum for brilliant blue-R major oxidation product (P<sub>1</sub> (4-(4-ethoxyphenylamino)-benzoic acid) with hypochlorite.



Figure S4. <sup>1</sup>H NMRspectrum for brilliant blue-R major oxidation product  $P_2(3$ - ethylaminomethylbenzenesulphonic acid) with hypochlorite.



Figure S5. <sup>13</sup>C NMR spectrum for brilliant blue-R major oxidation product  $P_2(3$ - ethylamino methyl benzenesulphonic acid) with hypochlorite.



Figure S6. GC-MS spectrum for brilliant blue-R major oxidation  $productP_2(3-ethylaminomethylbenzenesulphonic acid)$  with hypochlorite.



Figure S7. <sup>1</sup>H NMR spectrum of brilliant blue-R major oxidation product  $P_4$  (6'-chloro-5'-hydroxy-bicyclohexylidene-2,5,2'-triene-4,4'-dione) with hypochlorite.



Figure S8<sup>13</sup>C NMR spectrum of brilliant blue-R major oxidation product  $P_4$  (6'-chloro-5'-hydroxy-bicyclohexylidene-2,5,2'-triene-4,4'-dione) with hypochlorite.



Figure S9. GC-MS spectrum of brilliant blue-R major oxidation product  $P_4$  (6'-chloro-5'-hydroxy-bicyclohexylidene-2,5,2'-triene-4,4'-dione) with hypochlorite.