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Abstract—In this study, the specific absorption rate (SAR)
and exposure index (EI) of access points (APs) and user equip-
ment (UEs) in fourth-generation (4G) and fifth-generation (5G)
wireless technologies are examined with regard to the effects of
exposure to radiofrequency (RF) electromagnetic fields (EMF)
radiation and the implications of their reduction. We characterize
the EI using a classical mathematical method while considering
the power density, the SAR, the electric field strength, and the
tissue’s density and conductivity. As such, a novel exposure-index
open-loop power control algorithm is proposed to evaluate the
realistic RF-EMF radiation exposure on human users from both
the downlink (DL) and uplink (UL) communication devices. To
solve an EI minimization problem using the open-loop power
control algorithm, we formulate it in the form of a mixed-
integer nonlinear programming (MINLP) problem. As the energy
capacity (i.e., power density) in wireless networks determines
the radiation exposure (SAR and EI), it minimizes the EI by
controlling and managing the transmitted and received powers
under the restrictions of Quality of Service (QoS), interference,
and power, while ensuring the users’ QoS requirements are met.
Our proposed scheme is numerically compared to other heuristic
algorithms and exposure limits established by the International
Commission on Non-Ionizing Radiation Protection (ICNIRP) and
other similar organizations. Lastly, we compare the emissions
from 4G and 5G networks to the emissions from UL and
DL transmissions. Our simulation findings indicate that our
proposed technique is a good alternative. Our assessment, in
terms of numerical results and evaluation, also verifies that the
exposures are bearable, fall within the recommended limits, and
are minimized without impairing the users’ QoS.

Index Terms—RF radiation, 5G networks, power control,
MINLP, specific absorption rate, exposure index.
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ECENTLY, there has been a proliferation of user equip-

ment (UE) for communication purposes [1]-[3]. The
gains in high-throughput, low latency, high QoS, massive
connections, and high reliability in 4G and 5G mobile com-
munications [4], [5] have occasioned wireless entry points (or
simply put access points (APs)) and a fixed transceiver/base
stations (BSs) being installed at an increased rate [6]. With
the advent of 5G networks, it is expected that the operating
frequency could extend into the millimeter wave band range
(i.e., 28GHz — 39GHz) to meet the extreme bandwidth
requirements of uses such as online games, high-quality
streaming media, and interactive gaming. However, such high
operating frequencies cause APs or BSs to have smaller
coverage footprints, which results in the densification of access
points.

Consequently, there have been rising health concerns in
several works of literature about the Radio Frequency (RF)-
Electromagnetic Field (EMF) in mobile networks [7]-[10].
Health experts are alarmed by the rise in UEs and radiation ex-
posure to humans. Our work examines how exposure to EMFs
from mobile communications affects people. Understanding
EMFs in the context of mobile communications is crucial to
achieving this.

The emission and transmission of energy through a medium,
matter, or space, is the simplest definition of radiation. The
transfer of energy packets (i.e., photons with electrical and
magnetic properties) at a constant speed is referred to as
‘electromagnetic radiation’ (EM) [11]. EM radiation expo-
sure can be broadly categorized as either [7]: (i) lonizing,
or (ii) Non-ionizing. lonizing radiations cause reactions in
and damage to the chemical structures of biological tissues
(i.e., living cells) owing to the freeing of energized electrons
from a living cell’s atom [7], [12]. Ionizing radiations have
extremely short wavelengths with frequencies ranging between
10'Hz — 10?'Hz. They include x-rays, gamma rays, and the
upper frequencies of ultraviolet (UV) rays, otherwise known
as ‘extreme ultraviolet’” (EUV). Although ionizing radiations
are not visible to the eyes, exposure to them can be cancerous
to living tissues, alter DNA structures, and lead to premature
death. Figure 1 illustrates the frequency ranges, categories, and
wavelengths, respectively, of the EM spectrum.

Non-ionizing radiations do not possess sufficient energy to
liberate an electron from a living cell’s atom, though their
energy is sufficient to produce excitation [7], [13]. Therefore,

Creative Commons License: CC BY
BY

Vol114 (4) December 2023



Vol114 (4) December 2023

they may not result in severely harmful effects on body
tissue. Non-ionizing radiations are characterized by very low
frequencies in the range 0 — 10'*Hz and include radio waves,
microwaves, infrared, visible light, and ultraviolet. The energy
levels of ionizing radiations fall between 4.1 x 10~%eV and
1.2 x 10~3eV, which is below the minimum energy threshold
(i.e., 5eV) of ionizing radiations. There are growing worries
about the dangers mobile communication devices and APs
pose to the public’s health and safety, even though the op-
erating frequencies of mobile communication systems (MCS)
do fall into the categories of radio waves and microwaves,
which do not pose a serious risk. This paper addresses radi-
ation exposure caused by the MCS, focusing on non-ionizing
radiations.

Metrics such as the Exposure Index (EI), Specific Absorp-
tion Rate (SAR), EMF strength, and Power Density (PD) have
been employed in measuring the levels of radiation exposure to
RF-EMF sources [14]-[17]. The SAR measures levels of EMF
radiated energy absorbed by the human body when exposed
to radiation sources such as cell phones, tablets, and other
mobile UEs [9], [18]. To further express the SAR measure in
the living tissue, it is characterized as either the [7], [9]: (i)
whole body averaged SAR, or (ii) organ-specific SAR, which
is local to a part of the body, such as the brain [19]. The closer
the EMF source is to the body, the higher the SAR [18], [19].

Unlike the SAR, which addresses EMF radiation exposure
for near-field sources, PD is the metric employed to determine
radiation exposure to a far-field source. PD is employed when
investigating EMFs operating at high frequencies such that
temperatures rise and heating is lost to the environment [7].
The EI is the global EMF radiation exposure level of a
population of mobile users under a defined network coverage
footprint and over a specific time duration [11], [17], [20]. It
entails the aggregation of radiation exposures of individuals
in a defined area to an EMF source; in our case, the AP or
base stations. Additionally, the EI takes into consideration the
contribution of the radiation exposure caused by UEs.

A magnetic and electric component make up an EMF
produced by an RF source. The amount of current and the
potential difference directly correlate with the EMF’s intensity.

To reiterate, this work does not address network mobility.
Howeyver, it should be noted that mobile network handover
[21] can significantly impact SAR. When a mobile device
switches between networks, there can be a sudden surge in
the amount of RF energy emitted, leading to a higher SAR
value. Furthermore, frequent network switching can result
in a cumulative effect that increases SAR values over time.
Therefore, it is essential to set devices at the lowest power level
possible to minimize SAR. In addition, switching between
different mobile networks (vertical handover) may require
more RF energy to establish and maintain a connection,
leading to higher SAR levels.

B. Contributions

To assess and determine the specific absorption rate and
the exposure index, we calculate the user-to-AP distances
d [m], the APs’ effectual antenna gains G [dBi], the user-to-
serving AP path losses PL dBm, the electric field strengths
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[V/m], spectral power densities [W/m?], effective isotropically
radiated powers measured in [dBm], magnetic field strengths
measured in [A/m], the cross-sectional areas [m?] and transmit
and receive powers with open-loop control measured in dBm,
and notationally and symbolically denoted by E, S, EIRPs, H,
CSA, Ptx, and Przx, respectively.

To analyze the radiation exposure caused by wireless net-
works via simulating the various 4G and 5G network systems,
the data obtained by the generated RF-EMF exposure of
the given area must be defined. This study, in contradiction
to other studies, takes into account computational data to
assess and analyze RF-EMF exposure emanating from portable
devices, that is, uplink (UL), and broadcasting access points,
that is, downlink (DL). The following is a summary of the
paper’s main contributions.

o We consider the SAR and EI in a multi-cell 5G network.
To reduce the network’s overall EI, an optimization prob-
lem known as ‘EIl minimization’ is devised. This system
effectively reduces customers’ radiation exposure while
ensuring the required Quality of Service (QoS) is met and
maximum interference is not exceeded. In minimizing
the EI, network parameters such as transmit power, data
rate threshold, base station height, cell coverage radius,
and human-body characteristics such as conductivity and
mass density are taken into consideration.

o As stated, the EI minimization issue is expressed as
an optimization mixed-integer nonlinear programming
(MINLP) problem. We exploit the idea of the Fractional
Power Open Loop Control (FPOLC) algorithm in opti-
mizing the EI minimization framework. For uplink trans-
mission, the FPOLC regulates the UE’s transmit power.
An El-based Power Control Algorithm is proposed, which
takes into consideration the network and human-body
parameters stated in the previous bullet point.

o A straightforward propagation model is used to derive the
mathematical expressions for the EMF exposure metric,
which takes into account network characteristics includ-
ing the path loss exponent, transmit power, electric field
strength, characteristic impedance, antenna efficiency, and
antenna directivity.

o Through comprehensive simulations, we show the effec-
tiveness of the suggested EI minimization framework.
Different scenarios’ performances are taken into account.
Additionally, we look at the EI exposure for both the
more current 5G gNB and users as well as 4G eNB and
users.

C. Organization

This paper is ordered as follows: Section II gives a detailed
summary of related works. The system model is thoroughly
described in Section III. The global EI minimization problem
is formulated as a resource allocation optimization problem
in Section IV. In Section V, the proposed solutions are
discussed. Section VI presents and discusses the simulation
results. Finally, our conclusion is drawn in Section VII.
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Fig. 1. Illustration of the EM spectrum.

II. RELATED WORKS

Network infrastructure and services in densely populated
urban cities are made sustainably smart (especially the antenna
design) to make the environment more friendly, inhabitable,
and safe [22], [23]. In the literature, several works such as
[24]-[29] have considered 5G networks’ QoS from a resource
allocation perspective, but did not address RF-EMF radiation.
The authors in [30] explore a step-by-step resource allocation
method for optimizing resources in massive MIMO-OFDMA
DL systems. They used the calculated bandwidth of each user
to allocate the power and the number of access point antennas.
The average signal-to-noise ratio and bit rate received by the
user are set as parameters to allocate resources in the proposed
multi-user MIMO energy efficiency water injection algorithm.
Rising health concerns [31], [32] in the literature on RF
exposure due to mobile networks’ operation make it imperative
to consider this factor in the design of mobile networks.

The work in [33] generated a brief overview of RF-EMF ra-
diation EI in 5G networks. The author raised critical questions
that serve as research challenges and bridge the knowledge gap
concerning 5G’s RF-EMF radiation exposure’s effect on body
tissues. Furthermore, the works in [34]-[37], among others,
concentrated on the effects of RF exposure on the human
brain. Specifically, the authors addressed the exposure caused
by UL transmission. They did not address the RF exposure
due to DL transmission, and therefore a global RF exposure
was not captured in the works.

In [38], the authors proposed a simplified method for deter-
mining a population’s RF’s EI in an LTE network situated in
an urban area. The proposed method is premised on surrogate
modeling for daily global population EI estimates, considering
both the UL and DL transmission. The surrogate method,
which helps to reduce computational complexity and time,
employs Polynomial Chaos Expansion (PCE), which relies
on Least Angle Regression Selection (LARS). The proposed
method considered network parameters such as propagation
path loss, network utilization, and throughput. The authors
considered the sensitivity analysis of the network parameters.
However, the authors did not consider the SAR of the 5G
networks. Additionally, they did not address the evaluation of

the EI metric.

The authors of [39] carried out RF radiation exposure level
measurement tests in locations in Dar es Salam, Tanzania,
for mobile networks in 900MHz and 1800MHz (i.e., GSM),
and 2100MHz (i.e., UMTS) frequency bands, based on the
International Commission for Non-Ionizing Radiation Pro-
tection (ICNIRP) guidelines [15]. The parameters measured
in [39] were the power density, and electric and magnetic
fields, respectively, with the aid of a selective radiation meter
(i.e., SRM 3006 tool). The authors did not consider the
radiation measurement due to the UL transmission. Moreover,
the authors in [39] did not address global radiation exposure
metrics, such as the SAR and EI. They also did not consider
the 5G network, which has peculiar network parameters and
configurations such as higher operating frequencies and high
network density.

Unlike [39], the work in [40] considered the measurement
of radiation exposure in 5G networks with frequencies in the
range S00MHz-3600MHz. It took into account both UL and
DL radiations. In [40], the authors carried out RF radiation
measurement tests for both the base station transmissions
(i.e., DL) and UL transmissions (i.e., uplink from a handheld
device) in an area with poor network signal reception. The
authors carried out the test for a few days. As previously stated,
notationally, E [V/m], H [A/m], and SAR are the metrics
measured for DL and UL communication devices. The authors
in [40] did discuss the average measurement time for each day.
They did not consider the global EI and a multicell network
scenario.

The authors in [41] investigated the impact of various
transmit powers of 4G UE on RF radiation exposures in
rural, suburban, urban, and indoor environments, respectively.
Unlike in [40], the authors in [41] considered a multicell
network scenario comprising a total of 41 evolved nodal
base stations (eNodeB) with 235 LTE cells, serving about
7000 UEs. Two of the critical network parameters measured
were the power headroom [42] and UL transport time. To
this end, the authors derived the time-averaged output power
[43] from the measurements from power headroom reports
(i.e., UE’s output power) and the UL transport time (i.e., UE
UL transmission time). However, in [41], the authors only
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addressed RF radiation emanating from the UL transmission
in a 4G network. The authors demonstrated how crucial actual
UE and eNodeB power levels were for a proper assessment of
RF-EMF exposure.

The SAR characteristics of a planar inverted-F antenna
(PIFA) were the subject of a study that was presented in
[44]. In this work, the impact of the positioning and antenna’s
number in the mobile device is explored. Different scenarios
were presented, analyzing the positioning of the user equip-
ment when put next to a standard specific anthropomorphic
mannequin (SAM) head. The authors noted the device’s dete-
rioration and users’ average SAR readings being higher than
the users with antennas positioned at the mobile devices’ upper
part.

An optimization framework for the minimization of the radi-
ation exposure from APs and UEs in indoor environments was
proposed in [45]. The authors suggested a Genetic Algorithm
(GA) optimization technique coupled with site-specific ray-
tracing approximation for the prediction and minimization of
the Safety Index (SI).

The authors in [46] propose an EMF-aware resource
scheduling method that leverages power domain non-
orthogonal multiple access (PD-NOMA) and unsupervised
machine learning (ML). It controls the maximum number
of users allocated to the subcarrier per time by intelligently
grouping the users into different K-means clusters, and further
formulating a convex optimization problem to minimize their
exposure.

In [47], the authors evaluated the exposures from RF-
EMF in a wireless network and examined the instantaneous
association between the transmit and received powers of a
mobile device, with the goal of estimating the exposure from
the radiating waves by extrapolating the measured powers.

In [48], a smart-city test-bed, which relies on an Internet of
Things (IoT) based platform to assess the radiation exposure
metric EI across a geographical area, is proposed. The RF
exposure map for a city is captured by the placement of
several low-complexity dosimeters (i.e., IoTs) for radiation
measurements in different locations. The collection, process-
ing, and spatial representation of the respective measurements
were employed in the creation of exposure maps. The authors
in [48] considered the network scenarios of GSM, UMTS,
and WIFI technologies. However, [48] only considered the
radiation exposure due to DL transmission. This does not fully
reflect the aim and intention of proposing EI, which considers
both UL and DL radiation exposures. Moreover, the authors
did not consider 5G mobile networks in their work.

In [49], [50], and [51], strategies for minimizing the global
exposure from a radiating electromagnetic field were proposed.
In [49], the authors explored strategies such as network
deployment topology, environments (i.e., network traffic con-
dition), mobile user behavioral characteristics (i.e., mobility),
and user profiles (i.e., services subscribed to). The authors in
[50] minimized EMF exposure by taking into consideration
QoS and network capacity and explored the impact of user
distance from the access point and inter-site distance (ISD)
on the RF-EMF exposure. It was surmised that the UL EMF
exposure improves as the distance between the UEs and APs
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decreases. Additionally, the authors in [50] concluded that
5G network APs are in close proximity to the users and that
this lowers the transmit power in the UL and, consequently,
reduces RF-EMF exposure. To minimize users’ SAR exposure
while keeping the required QoS, the authors in [51] proposed
an offline and online UL strategy in the orthogonal frequency-
division multiplexing (OFDM) structures. The offline scheme
is a convex optimization problem, solved using the water-
filling method, predicated on the notion that all users’ long-
term channel state information (CSI) is known. The online EM
emission reduction technique depends on reducing the energy
per bit of each user.

In contrast to previous works, we minimize the global EI
of the mobile network in this paper while ensuring that QoS
is not compromised. This, we achieve via efficient resource
assignment in the network, such as transmit power and re-
source blocks. Moreover, this paper focuses on UL and DL
transmissions to fully capture RF exposure to users.

III. SYSTEM MODEL

The system model and pertinent analytical background are
presented in this section. Figure 2 provides an illustration of
the system model discussed in this study.

Fig. 2. Illustration of the system model.

A. General Model

The proposed case investigates the conventional dense de-
ployment of base stations and high user density unique to an
urban environment. The set of users I/ is uniformly distributed
across the geographical area A, having radius 7. The area A
is densely overlaid by APs typical of an urban scenario. The
set of APs is defined as £. We focus our discussion around
users that are not mobile and also assume a user u € U is
in the presence of a mobile device (i.e., a handheld gadget)
to present a simple and realistic deployment. Consider a user
u € U, under the coverage of an AP [ € L; the distance
between v € U and [ € L is defined as dé, and the radiated
wave’s surface cross-sectional area is denoted by A! .

For a user u € U to communicate with an AP [ € L, the
UL signaling transmit power on a subcarrier ¢ € C is denoted
as PTz Similarly, for the AP [ € £ on a subcarrier ¢ € C,

u,c,l*

mw
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the signaling received power is given as Pff’l. The set of
subcarriers C is such that the aggregate sum of all subcarriers
is approximately equal to the system bandwidth B, in the
frequency domain. The size, bﬁhc, of a ¢ € C depends on
the radio access technology. For a 4G AP, bﬁw = 180KHz
[52] and bfl’c = 360KHz, depending on the 5G numerology
adapted [53].

The carrier frequency of an AP [ € L is denoted by f! (i.e.,
in MHz) and the height of [ € L is represented as ;.

B. Channel Model

According to the fundamental RF principles, the near-field
principle is impacted by electromagnetism (i.e., induction-
based), whereas the far-field principle is predicated on elec-
tromagnetic waves (i.e., radiation-based). Consequently, users
are exposed to EMF radiation when located in the far-field
region! (i.e., for distances beyond 2K?/)).

The radiated wave’s surface cross-sectional area, AL, is
given as:

Al = dm(d,)? (1)

The path loss model in use in this work for the respective users
is dependent on the radio access technology and is given [54]-
[57] as:

36.8logo(d,) + 43.8 + 201log,o(f'), eNB APs

32.45 + 201log,(d.,) + 201ogyo(fL), gNB APs,
2
where d,, f!, and w!, denote the user’s distance u € U from an
AP [ € £ in metres (m); the carrier frequency of the signaling
link in MHz; and the path loss between an AP [ € £ and a
user u € U in decibels (dB).

C. Radiated Power Modelling

Owing to our interest in radiation exposure, we focus our
attention on the isotropic antenna due to its unique properties.
An isotropic antenna is characteristically a lossless antenna
and has a directivity, D, of 1. Consequently, a power-radiating
isotropic antenna emits or transmits throughout all directions
symmetrically. The antenna gain, G, is given by [57]:

GT = 6D(07¢)a (3)

The antenna’s output power to input power ratio, denoted by /3
is expressed as a ratio where 3 denotes the antenna efficiency,
which is the antenna’s output power to input power ratio.
D(0, ¢) is the directivity of the antenna, which is a function
of (i) the antenna altitude, 6, and (ii) the antenna angle ¢ with
respect to the reference plane.

The EIRP [58] expressed in decibels is the resulting gain of
the antenna multiplicated by the transmit power given in (3).
The EIRP is given by [59]:

'K is the antenna’s largest dimension and \ is carrier frequency’s wave-
length

EIRP(dBm) = [Pr(dBm) — Loss(dB)] + Gr(dBi), (4)

where Loss (i.e., body loss) denotes signal attenuation in

dB resulting from cable connection between the antenna and

transmitter. Pp is the transmitter output power in dBm.
Alternatively,

EIRP(W) = PrGr. (5)

From (4) and (5), it can be concluded that the Py is critical
to EIRP evaluation. The ability to control the power is crucial
in cognitive radio management to optimize the needed signal
power while reducing radiation and interference. Therefore,
transmit power in the downlink scenario, which is also the
received power of the UE, is given by [60], [61]:

P R,f,z =

u

Py(e) + « wfl, (6)

where Py(c) is a UE/cell-specific transmit power parameter
contained or associated with a subcarrier ¢ € C. « denotes
the path loss compensation factor, where 0 < a < 1, with
a = 0 as a no-power control mode. Fractional power control
is when a > 0. Lastly, @« = 1 when there is a full path loss
compensation mode.

Similarly, the UL transmit power,
[61]:

PTz

w,c,l?

is given by [60],

PT, = min{PL%,, Po(c)+a wl+10log,o(N,)+3+f(A)},

)
where P1% denotes the maximum transmit power threshold
in the UL mode and is UE-specific. NV,, indicates the number
of resource blocks allocated to a user u € U. Moreover, §
and f(A) represent the modulating code scheme’s (MCS)
offset and closed loop correction function. Owing to how UE’s
are designed to operate below the maximum transmit power
threshold P22 ~and neglecting the variables § and f(A) in

max

(7), an approximation of P;*, is given by [60]:

T2, = Polc) + a wl 4+ 101ogyo(Ny). (8)

Additionally, combining (1) and (5) yields the spectral
power density, S’L in(W/ m?), with the closed-form expression
given by:

gl _ PrGr
Y Ar(dl)?

€))

S! can be expressed in terms of the electric field strengths,
EL, root-mean-square (rms) value and the wave impedance,
7o, as [58]:

(10)

where 79 is of the value 1207(2. To this end, combining (9)
and (10), the electric field strength, Ei can be expressed as:

PrGr 1/2
E! = L 11
o= (wingar) W
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To quantify the radiation absorbed by a tissue, the SAR
metric, (2!, is employed as explained in Section I. The SAR,
Q! , is directly proportional to the electric field strength’s root-
mean-square value and can be expressed as [62]:

Q= ‘El (12)

2
Ou

h (pu )

where p,, and o, are tissue density in Kg/m?® and the tissue’s

electrical conductivity (i.e., in S/m) of the user u € U,

respectively. From (11) and (12), we can simply express 2,

as:
l ‘(7]0 . >1/2 ( u)
Pu .

“ dr(d})?
To conclude this subsection, we explore the EI metric along the
lines of the SAR. Since EI is the ratio between the measured
SAR for the whole body (or for specific body parts, such as
the head) taken in intervals of 30 minutes (or 6 minutes for
specific body parts) and the maximum SAR threshold [47],
the EI 1!, is expressed as [47]:

13)

l
wl o Qu
u T Qmazx”’

(14)

where QL is the measured or evaluated SAR, and ()™%*
denotes the maximum SAR threshold.

D. Power Classes

In wireless communication, ‘power class’ refers to the
highest amount of power a transmitting device can emit, which
is generally regulated by national or international governing
bodies. These classes can differ depending on the region. In 4G
and 5G technologies, standard power classes are used to guar-
antee compatibility between devices made by various manu-
facturers. Power classes are established by the 3rd Generation
Partnership Project (3GPP), a coalition of telecommunications
standards organizations. The 3GPP Technical Specifications
36.101 and 38.101 define the four distinct power classes for
UE in 4G LTE and 5G, respectively [63], [64]. In this work,
the power class 2 is used for UEs in both 4G LTE and 5G
networks, with a maximum output power of 24dBm (250mW),
as shown in Table L.

Consequently, the actual power consumption of a UE in 4G
and 5G networks can differ based on various factors, such
as the network setup, user application, frequency spectrum,
distance between UE and base station, and the number of UEs
connected to the network. Generally, 5G networks function
on higher frequency bands than 4G networks, which results
in shorter transmission distances but higher power demand.
This is due to the necessity of deploying more base stations
and incorporating advanced antenna technologies like massive
MIMOs for better coverage and capacity. Nevertheless, tech-
nological advancements are helping to decrease the power con-
sumption of 5G networks with the utilization of more effective
hardware and software to fulfill the requirements of high-speed
data transmission and extensive device connectivity.
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IV. PROBLEM FORMULATION

In this section, the global radiation exposure problem in
a mobile network is examined. The EMF-RF EI minimiza-
tion problem is formulated as a resource allocation problem,
given in (15). Simply, the objective of the resource allocation
problem is to efficiently minimize the mobile network’s global
EI while meeting QoS requirements such as interference
threshold, power budget, bandwidth, and data rate threshold.

> D v

lelL wueld

15)

max
P, @, (t)

u,c

subject to:

cr: Y N Al bl <B VteT, ViecL

ueld ceC

c2: > >oal ()P <P VieT, VIEL
ueU ceC

C3: > al, () <1; VieT, VIeEL
uel

Ca: ol ()Y I ()< VteT, VieLl

uel
C5: R <RL, Yuel,VIEL VceC,

In (15), a! .(t) denotes the binary resource allocation
decision variable of the subcarrier ¢ € C in AP [ € L allocation
to user u € U at time .

The constraints in C'1 to C5 ensure that solutions obtained
are feasible. Constraint C'1 ensures that the total bandwidth
of an access point is not exceeded. This also ensures that the
number of PRBs available on the AP is not exceeded. More-
over, in C1, bﬁw is the size of the allocated subcarriers and
B represents the system bandwidth. Constraint C2 describes
the limitations associated with the power budget of an AP
l € L. C2 ensures the power budget of an access point is
not exceeded. P,ic is the transmit power of the PRB allocated
and P;"** denotes the maximum power threshold. Constraint
C3 enforces that a user u € U is only associated with an
access point / € £ and a subcarrier is uniquely allocated to
a single user. Constraint C'4 is otherwise referred to as the
‘interference temperature constraint’. It places a threshold on
the interference levels of the network by ensuring that it is not
more than the interference limit set. The tolerable interference
threshold is denoted as I;'**, and I, L is the interference

u,c

experienced by each user and is defined as:
L

u
IL,C = Z Z Pj;,c |h'lu,c| ’

J=1j#lj=1,j#u

(16)

here hiw is the channel gain of a user u allocated subcarrier
c. Constraint C'5 is the data rate constraint for each UE. This
ensures that the QoS is met based on the minimum data
SLA, while achieving the objective function in (15). R™™ is
the minimum required data rate of each user, whereas Ri,c
is the throughput or the allocated data rate for each user
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and its signal-to-interference-plus-noise ratio (SINR), ’yfw, are
defined in (17) and (18) as:

R, =al b, log,(1+,,), (17)
and
Pl |h,

|

~ i (®

No+ > D Pl
j=1,j#l k=1k#u

where Ny is the noise spectral density.

V% . = 10logy,

V. PROPOSED SOLUTION

The proposed algorithm solves the optimization problem
in (15). To obtain the SINRs that provide the necessary data
rates for each user, a workable power solution is needed.
El is minimized by minimizing the transmit power and the
transmit time since EI is a function of transmit power and
transmit time. Depending on the service type, use case, and
network slice to which the users belong, the network offers the
minimum data rate that has been agreed upon for each user.
Due to restriction C5, the needed data rate must be met even
though the goal is to minimize the transmit power and the
transmission time of signals to reduce the user’s overall Els,
as stated in (14). Additionally, the total bandwidth restriction
established across all PRBs for every network user must be
met and the same as in C1. C2 makes sure that the total power
budget is under the power limit. Moreover, the interference
threshold constraints and the subcarrier binary allocation are
satisfied while optimizing the EI, as described in Alg. 1. Using
the power control expressions in (6)-(8) in conjunction with
the path loss compensation factor («), the set constraints are
evaluated at every MINLP solution. The MINLP problem is
solved until all the constraints are satisfied. Hence, the defined
objective function is solved until feasibility and optimality are
achieved.

The benchmark algorithm is a conventional 5G network
power algorithm adapted from [65], where power is equally
allocated across all the PRBs, and the pseudo-code is as
presented in Alg. 2. The approach is also a resource allocation
MINLP optimization problem but with fixed gain to the
time-dependent channels. The objective is to minimize the
total transmit power subject to power constraints and data
rates. The benchmarked algorithm is expected to satisfy all
the requirements while optimally achieving this objective.
Consequently, all users are assigned more than the required
SINR, or data rate, even at worse channel conditions, which
increases network challenges such as interference and the RF-
EMF exposure of end-users in the networks. Unlike the pro-
posed algorithm, the average throughput of the users might be
optimal. However, the network challenges are not (minimized)
optimal.

VI. NUMERICAL RESULTS

This section presents the performance evaluation of the
proposed EI model carried out via intensive simulations in
a MATLAB environment. We considered a mobile network

Algorithm 1 EI open-loop power control algorithm
Input: Zy, Py, o, B, fe, A, hg, 1, D, U, Gp, L, C, d,,
Output: O, E! . Rl . 1} .. ¢},
for u < 1to |U| do
:Initialise the data for Pj7'5*, SAR’s limits, p, and o
Determine dist. of UEs from interfering Access Points

1:
2
3:
4: if% < d < )\ then
5
6
7

Evaluate the path loss w!, of UEs using (2)

else

User v € U is not exposed to the the RF-EMF
radiation

8: end if

9: forl+«+ 1to |L| do

10: Initialise the values of P;"%*

11: Determine interfering APs DL transmit power Pfi .
using (6)

12: while P, . < P Vie L, Yuecl do

13: Pj;,c < FIRPrx

14: end while

15:  end for

16:  Estimate the CSA of RF wave to the UE u using (1)

17: SetILC:O,t:T, and Vc € C

18:  Determine uplink received power ng ¢, for each UE
from interfering APs

19:  while P, . < P"*  Vle L, Yueldo

20: Plic < FIRPrx
21: Il < Ipee
22: Sb . <B
ceC '
23: Ry < Rl .

24:  end while

25:  Using (12), determine the spectral power density thc
26:  Solve for the RMS values

27:  Assume constant values for p and o

28:  Find Q!, using (13)

29:  Solve for the v, using (14)

3. if R < wa then

31: Determine 1",

32: Terminate if the optimal solution is found
33 else

34: Increase PLC or set P, = pmaz

35: end if '

36: end for

Algorithm 2 Conventional 5G network power algorithm [65]
Input: 7y, Py, o, B, fe, A\, hg, v, D, U, Gp, L, C, d,,
Output: O, BL. R 11!
: Initialisation: k = 0, P* = P, , = P/C
: while sub-channel allocation changesl dol ,
u*(c) = max, g b, log, (1+ W),VC eC

1
2
3
4:  solve the optimization problem in (15) ’
5
6
7

k=k+1

- end while

k—1
9

: (u pF) is an optimal power allocation
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environment with 4G and 5G Radio Access Technologies
(RATSs) as umbrella cells with coverage radius ranging from
50m to 500m. Moreover, network users are randomly dis-
tributed across the coverage area and each user’s EI and SAR is
evaluated separately. Specifically, in this work, the respective
APs and UEs radiations contribute to a user’s EI and SAR

value. The simulation parameters are presented in Table I.

TABLE I

SIMULATION PARAMETERS AND VALUES
Parameters 4G. Values 5G. Values
Number of users [10,20,- - - 60] [10,20,- - - 60]
Number of APs 3 3
Channel Model 3GPP 3GPP
Spectrum allocation 20MHz 100MHz
Carrier frequency 2GHz 6GHz
Number of subcarriers per RB 12 12
Size of subcarrier 15KHz 30KHz
RB bandwidth size 12#15=180KHz 360KHz
Number of available RBs 100 250
Tissue’s conductivity (o) 0.95S/m 0.97S/m
Mass density of tissue (py,) 1000Kg/m?> 1000Kg/m?>
Characteristic impedance 7o 1207 = 377Q2 1207 = 377Q2

Max. AP Tx. power
Max. UE Tx. power

20W =~ 43dBm
0.25W =~ 24dBm

0.25W =~ 24dBm
0.25W =~ 24dBm

Power control Open-loop Open-loop
Path loss compensation factor o 0.7 0.7

Slot duration 0.5ms 0.5ms
Scheduling frame 10ms 1ms

Users’ distribution Uniform Uniform
Antenna height 50m 30m
Height of user device 1.5m 1.5m

Cell coverage radius 500m 30m

Data rate R;"*™ 2.5Mbps 2.5Mbps
Pres 1W 1W
Tolerable interference, 1;;"** —116dBm —116dBm
Noise spectral density, N, 107 ¥*W/Hz 10" W /Hz
Shadow fading 8dB 8dB

A. Impact of Sum Tolerable Network Interference

Figure 3 shows the impact of a network’s user per AP on
the overall network tolerable interference for the proposed EI
power-controlled scheme and the conventional 5G network.
In Fig. 3, we consider a scenario in which we vary the
number of users per AP from 10 to 60 for a network with
a coverage radius set at 50m, 75m, and 100m, respectively.
We observe that, as the number of users increases, the net-
work’s tolerable interference increases for both the EI power
controlled scheme and the conventional 5G network scheme.
In addition, we observe that the proposed EI demonstrated
promising outcomes with a notable decrease in the network’s
overall tolerated interference, which is lower when compared
with the interference limit of —116dBm (i.e., 2.5 x 107 15W).
This is because an optimized EI further controls the UL and
DL transmit power, which in turn lowers the interference
levels. Simply put, reducing RF-EMF radiation results in lower
levels of interference in the network.

B. Impact of Power Density

In Fig. 4, we present the impact of the power density on the
network. We consider network scenarios in which the number
of users per AP is varied from 10 to 60 and the coverage
radius of the environment is set at 50m, 75m, and 100m,
similar to the scenario in section VI-A. We see an increase in
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Fig. 3. Effect of the number of users per AP on the tolerable interference
for both the EI power controlled scheme and conventional 5G for respective
coverage radius.

the power density of the network as the number of users per
AP increases. Furthermore, we discovered that the proposed EI
power control scheme outperformed the conventional scheme
across the board. The higher the density of the mobile network
environment, the greater the radiation exposure to network
users. Therefore, since the EI power control scheme is ob-
served to have a power density which is less than the threshold
of 10W/ m? recommended by the United States (US) Federal
Communications Commission (FCC), the network users will
experience less radiation exposure.

1 T T T T T
10 i EI Power Control Algorithm r=50m
EI Power Control Algorithm r=75m
EI Power Control Algorithm r=100m
100 H —*— Conventional 5G N/wk algorithm r=50m

—* = Conventional 5G N/wk algorithm r=75m
Conventional 5G N/wk algorithm r=100m

/*-—

-
-
-
-

Power density (S) [W/m?]
>
S

10 15 20 25 30 35 40 45 50 55 60
Number of users per AP

Fig. 4. Effect of the number of users per AP on the network’s power density
for both the EI power controlled scheme and conventional 5G for respective
coverage radius.

C. Impact of Data Rate Threshold on Users

Setting the data rate threshold is a means of ensuring QoS
for network users. In Fig. 5, we set the data rate threshold
to 2.5Mbps and then examine its impact on the network’s
average EI. Figure 5 shows that both schemes meet the
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QoS threshold requirement. However, the conventional scheme
provides higher data rates to network users. Additionally, a
closer look at Fig. 5 reveals that the proposed scheme meets
the QoS requirement (i.e., data rate threshold) with a minimal
average EI value. This is owing to its main goal of minimizing
EI while also meeting the QoS requirement. Hence, it ensures
the minimum transmit power is used to minimize EI while
also meeting the QoS constraints.

-2
4
0 I E1 Power Control Algorithm

I Conventional 5G N/wk algorithm

100 F €

Average exposure index (EI)

Min Data Rate at R"""
o7 I il |
2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
Data rate (R) [Kbps]

2. 5Mbps

Fig. 5. Effect of data rate threshold as a QoS metric on the network’s average
EI for both the EI power controlled and conventional 5G schemes.

D. The Effect of the Path Loss Compensation Factor

We explore the impact of the path loss compensation factor
on the power density and the average SAR of users of the
network in Fig. 6 and Fig. 7.

Fig. 6 presents the effect of the path loss compensation
factor v on the network’s power density. Herein, « is set at
0.5, 0.7, and 0.9, to examine the performance of the network.
We observe that the power density increases as « for both
schemes. However, the proposed scheme exhibits a lower
power density value for all the set values of .

In Fig. 7, the effect of the sum of users per AP on the
network’s average SAR of users with respect to « is set at the
specific values of 0.5, 0.7, and 0.9, respectively. As the number
of users per AP increases, we observe that the average SAR
of users also increases, though it is still below the threshold
of 0.08W/Kg advised by ICNIRP. We also observe that for
both schemes and for a defined number of users per AP, Fig. 7
shows that the average SAR increases as « increases.

E. Impact of the Number of Users

We examine the effect of increasing the number of users
per AP on the average EI for UL and DL scenarios. Unlike in
Figs. 3 to 7, in Fig. 8, we compare the 4G and 5G networks.
In Fig. 8, we observe that the network’s average EI increases
as the number of users per AP increases for all the scenarios.
In accordance with the literature, we see that the network’s
average EI is greater for DL than for UL scenarios for both
4G and 5G networks. This seeming disparity in average EI for

1 ! \?7
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0.7 1
0.6 1
E 0.5
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01r —*— Conventional 5G N/wk algorithm a=0.7
—*— Conventional 5G N/wk algorithm a=0.9
0 I I I
0 1 2 3 4 5 6 7
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Power density ( %10

Fig. 6. Impact of the path loss compensation factor on the network’s power
density for both the EI power controlled and conventional 5G schemes.
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Fig. 7. Impact of the path loss compensation factor on the network’s average
SAR of users for both the EI power controlled and conventional 5G schemes.

DL and UL scenarios is owing to the higher transmit powers
of the APs in the DL transmission. Additionally, we observe
that for 5G networks, there is no significant difference between
the average EI for UL and DL transmissions for numbers of
users per AP less than 10.

F. Impact of the Exposure Duration

Figure 9 presents the impact of the exposure duration on
the specific absorption rates of networks on the one hand and
also on the network’s EI

In Fig. 9, we observe a direct proportionality in the exposure
duration to the network’s SAR and EI values. It is noted that
as the exposure duration of users on the UE increases, so does
the SAR and EI, and this may be harmful to human health.
A careful inspection of Fig. 9 reveals that the proposed EI
power control scheme exhibits lesser SAR and EI values in
comparison to the conventional 5G scheme.
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Fig. 8. Impact of the number of users per AP on the network’s average EI
rates for both 4G and 5G networks in UL and DL scenarios.
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Fig. 9. Impact of the exposure duration on the network’s SAR and EI values.

G. Impact of Electric Field Minimisation on Users’ Data
Rates

The average data rates of users in the network are signif-
icantly related to the electric fields generated in the entire
network. Both are a function of the transmit power of both
uplink and downlink transmissions. With the need to generate
more data for the users in the network, the electric field in the
network increases. Figure 10 shows the effect of an increased
data rate on the total electric field in the network in a scenario
where we vary the antenna height to 25m, 50m, and 75m,
respectively. In Fig. 10, we observe that the E-fields increase
with the average data rate for both the EI power-controlled
scheme and the conventional 5G network scheme. We see that
the proposed EI showed promising results with a significant
reduction in the network’s E-fields. Worthy of note is the effect
of the antenna’s height on the network’s electric field; the
higher the height, the lower the E-field. Lastly, the propagated
E-fields are below the standard threshold of 27.5V /m advised
by IEEE Std. C95.1 [66] and ICNIRP [15] for the used
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Fig. 10. Illustration of the impact of EI’'s minimization of the users’ data

rates.

H. Impact of Power Control on EI

In Figs. 11-14, the average EI caused by the APs and
UEs was evaluated for the 4G and 5G networks using their
transmit powers and different path loss compensation factors
a = 0.5,0.7,0.8,and 1, respectively. The downlink power
transmit was below the (0.25W) 24dBm for 5G gNBs and
below (20W) 43dBm for 4G eNBs, respectively, while the
uplink signaling power limit of the UEs was set at (0.25W)
24dBm. Fig. 14 illustrates how the path loss compensation
component affects the EI with the full power control com-
pensation of o« = 1 having the highest average EI compared
to fractional power control schemes (where both the cell-
edge and cell-center users are accounted for) in Figs. 11-13.
It is also evident from Figs. 11-14 that the exposures from
the APs (gNBs) are, with the exception of the eNBs, lower
than that of the UEs (despite transmitting with more power).
This is because these APs are at a farther distance from the
users compared to the UEs. Thus, power densities reduce with
distance, as supported by the path loss and inverse square law
theories.

In addition, it is evident from the findings that 5G networks’
exposure doses are lower than those of 4G networks. Among
the causes of this include the 5G network’s usage of a
higher frequency band, which limits the coverage area and,
consequently, the radiation exposure. Also worthy of note is
that the threshold of the EI is derived to be 10° = 1 [62], based
on the standard ERLs. All the 4G and the 5G networks’ EIs
are observed to be less than this, as depicted in Figs. 11-14
for both whole-body and the local RF-EMF exposures.

1. Impact of SINR on radiation exposure

SINR is a metric that quantifies the quality of a wireless
communication link, which indicates the ratio of the desired
signal power to the combined interference and noise power.
The SINR value is affected by network parameters, such as
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Fig. 11. Average EI vs. average transmit power for path loss compensation
factor, o = 0.5.

Avg. El vs. Transmit power @ a=0.7

10° = Exposure THreshold at ET = 10e” T !
I From 4G eNB
I From 5G gNB
10k I From 4G UEs |
[ From 5G UEs
=)
% 102¢ 4
]
k=
8
£ 10°F E
&
[
&
; 104 F E
<
10°F €
106 | | | |
20 25 30 35 40

Average transmit power (P) [dBm]

Fig. 12. Average EI vs. average transmit power for path loss compensation
factor, a = 0.7.

signal strength, interference, fading, and noise in the commu-
nication channel. However, SAR depends on the power emitted
by the wireless, its proximity, and its exposure to the body. In
this work, we further explore the impact of the SINR on the
network’s SAR in Figs. 15, 16, and 17.

In Fig. 15, we present the impact of the SINR on the SAR of
network users via the use of conventional 5G networks and the
EI power control algorithms. In Fig. 15, the SINR threshold
is varied from a 20dB to 35dB range, while setting the power
control factor, «, for both algorithms at 0.5, 0.7, and 0.9,
respectively. We observed that as the SINR threshold increases,
the SAR of users also increases. Additionally, we see that the
SARs values are much lower in the proposed EI power control
algorithm, which indicates controlled and optimized power
when compared with our benchmarked algorithm, the con-
ventional 5G network. Moreover, higher SINR values connote
better signal quality and reduced interference, which translates
to higher data rates and fewer transmission errors or bit error
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Fig. 13. Average EI vs. average transmit power for path loss compensation
factor, o = 0.8.
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Fig. 14. Average EI vs. average transmit power for path loss compensation
factor, a = 1.0.

rates (BER) if using the modulation technique.

Similar to Fig. 15, Fig. 16 shows the impact of the SINR
values on the average EI of the network. In Fig. 16, we vary
the SINR threshold range from 20dB to 35dB. We observe
that the proposed EI algorithm showed promising EI values
which are way lower when compared with the benchmarked
algorithm while ensuring the SINR QoS is satisfied.

J. Impact of SINR on power density and transmit power

Figure 17 identifies the trends and the trade-offs between
power, power density, and SINR in wireless networks. In
Fig. 17, we compare the SINR threshold with the power
density and the transmit power in the network. The result
shows that the power and the power per unit area values are
less in the EI power control algorithm. The power densities of
both algorithms provide insight into how power is distributed
spatially, which is important for understanding the SAR and
El in the network environment. Additionally, we observe that
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Fig. 16. Impact of the SINR values on the average EI of the network using
the conventional 5G network and the EI power control algorithms.

beyond the 23dBm power level, additional increases in power
may not significantly improve the SINR. This is due to factors
such as propagation limitations, interference, or noise.

In Figs. 15-17, we observed that the proposed EI power
control algorithm outperforms the benchmarked scheme owing
to the network interference being minimized in the proposed
EI scheme, as confirmed by the result in Fig. 3. Likewise,
the signals from our proposed scheme are higher, as shown in
data rates of users in Figs. 5 and 10. The EI power control
algorithm has optimized the network parameters using power
control and interference management to improve SINR and
overall network performance while adhering to SAR and EI
safety regulations.

VII. CONCLUSION

In this paper, we have investigated the impact of RF-EMF
exposure resulting from wireless networks. We have developed
a cutting-edge simulation technique that evaluates the uplink
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and downlink electromagnetic-field radiation exposures on
users of both 5G and 4G networks. With the introduction of a
power control model to the networks, the EI was evaluated
using the power density, electric field, magnetic field, and
SAR, as well as the tissue’s conductivity and density. We
further developed a power control algorithm that minimizes
the exposure in the networks. Using MINLP, we minimized the
UL and DL RF-EMF exposures emitted to the users within the
network by considering the data rate, power, and interference
limits as the QoS constraints.

The proposed scheme was simulated using MATLAB, and
the results of our numerical analysis were compared to the
other simulated algorithms based on the standards set by
regulatory bodies such as the FCC, IEEE, and ICNIRP, to
determine the level of compliance and the exposure impact.
The evaluation confirmed that the exposures are far lower than
the recommended limits and that the exposures are minimized
without compromising the users’ QoS. Moreover, via the
simulation, we compared the EI emitted from the 5G networks
and the 4G networks. The results compared the radiation from
the UL and DL transmissions in both the 5G and the 4G
mobile networks. In a multi-domain environment, that is, an
EMF environment with multiple mobile network operators, the
total number of UEs and BS is large. To replicate this with a
single mobile network, we have increased the number of BS
and UEs; hence, we have a dense network. Moreover, in future
work, we shall address a multi-domain environment in-depth.
We also plan to study and compare the RF-EMF exposure
impacts of the C-band frequency range with the millimeter-
wave frequency band.
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