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Abstract—Energy consumption from the residential sector
forms a large portion of the electricity grid demand. The
growing accessibility of residential load profile data presents an
opportunity for improved residential load forecasting and the
implementation of demand-side management (DSM) strategies.
Machine learning is a tool well-suited for predicting stochastic
processes, such as residential power usage due to human behavior.
Long short-term memory (LSTM) recurrent neural networks
are especially suited for predicting time-series data such as
electrical load profiles. This paper investigates the impact of
LSTM hyperparameters to the predictive performance of models,
which include the tradeoffs associated with training data size,
horizon ratios, model fidelity, prediction horizon and computa-
tional intensity. This paper provides a framework to evaluate the
choice of LSTM hyperparameters for understanding trade-offs in
a practical application of load profile predictions for the context
of Grid-interactive Efficient Buildings (GEBs).

Index Terms—Grid-Interactive Buildings, LSTM, Machine
Learning, Load Forecasting, Demand-Side Management.

I. INTRODUCTION

OAD forecasting is an essential component to access

demand flexibility with grid-interactive efficient buildings
(GEB). Fully automated GEBs are envisioned to balance
the load requirements for the building and demand response
signals from the grid [1]. GEBs with on-site generation and
storage could manage interactions with the grid for buying or
selling credits through energy markets. Effective load demand
forecasting of the building would enable automated decision-
making for a GEB controller to manage energy, optimize costs
and ensure user comfort [2]. Fig. 1 demonstrates the high level
interactions between GEBs and the grid.

The development of a high performance machine learn-
ing model traditionally involves an iterative, trial-and-error
process that involves the selection and tuning of numerous
hyperparameter values to train and test several prediction
models. This can be a time-, data- and compute-intensive
procedure. In a practical setting such as a GEB home, the
electrical energy required to complete the model development
could incur additional costs to the end-user. Furthermore, the

All authors with the School of Electrical & Information Engineering at
University of the Witwatersrand, Johannesburg, South Africa. Correspond-
ing author is Kyppy N. Simani (email: kyppy.simani@students.wits.ac.za),
Yuval O. Genga (email: yuval.genga@wits.ac.za), Yu-Chieh J. Yen (email:
yu-chieh.yen@wits.ac.za).

Based on “Using LSTM To Perform Load Modelling For Residential
Demand Side Management”, by K.N Simani, Y.O. Genga, and Y-C.J Yen
which appeared in the Proceedings of Southern African Universities Power
Engineering Conference (SAUPEC) 2023, Johannesburg, 24 to 26 January.
© 2023 SAIEE

On-site generation

-
a— — -— H
-------------- @ :E
-
Utility ‘ ' GEB Controller Residential Loads
H
Key
— Energy
== Grid Communication
.. GEB Controller
Communication Grid GEB Controller ~ Commercial Loads

Fig. 1: Grid-interactive efficient building applications.

tuning of some hyperparameters, such as the load profile data
resolution, would require the purchase of additional hardware.

The aim of this paper is to investigate the relationship and
extent of LSTM hyperparameters for the envisioned applica-
tion of load profile forecasting for GEBs. The evaluation of
hyperparameters provided in this paper is envisioned to pro-
vide a framework towards informed design choices for LSTM
application. The residential load profile uses real, measured
household data [3]. A long short-term memory (LSTM) [4]
machine learning algorithm is used to produce a series of
prediction models in two experiments each varying specific
hyperparameters values including: training data size, window
size and prediction horizon length.

There exists literature exploring LSTM and various other
neural network architectures to optimize load profile prediction
accuracy and model performance [5]. However, there is a
lack of research exploring the application of the relationships
between various hyperparamaters and model fidelity. For each
experiment, LSTM prediction models are trained using various
hyperparameters and fidelity performance is evaluated using
Mean Absolute Error (MAE) and energy predictions.

II. BACKGROUND

The power grid landscape is in a state of transition world-
wide [6]. An increase in power demand coupled with an
expanding energy mix adds variability and stability issues on
the grid, presenting an opportunity for optimization through
energy management. There are several demand-side manage-
ment (DSM) techniques used to manage grid demand by
shifting load or peak curtailment. These include the use of
responsive loads, ripple control, price incentives or Time-of-
Use (TOU) tariffs [7]. In addition, end users have greater
control over supply and local usage, through on-site generation
such as rooftop photovoltaics (PV), electric vehicles (EVs) and

usage of smart technologies to control loads.
O
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A grid-interactive building is envisioned to respond to utility
and user requirements through an autonomous control unit, as
shown in Fig. 1. Its function could include the evaluation of
decisions for the following:

o response to DSM signals,

o trading on energy markets or for TOU tariffs,

e monitoring battery state-of-charge for planned outages,

« evaluating vehicle-to-grid energy exchange,

o selling excess on-site generation such as PV energy, or

« activating flexible loads, such as water heaters, and air
conditioning to draw from the grid in times of excess
supply or in anticipation for an occupant’s requirements.

Its purpose is to ensure that the building function can
continue without impacting user comfort, possibly providing
opportunity to enhance it. Therefore, a predictive model is
required to forecast load usage in a building. Accurate daily
demand forecasts for a building would enable the building
controller to interact intelligently with both the utility and the
building occupants.

A. Grid Interactive Buildings

Anticipating load demand and usage profile patterns is an
important aspect of effective demand side management [8].
These forecasts can offer insights that affect planning for
future electrical infrastructure, investment decisions as well as
reduce the risk of supply shortages [3]. Electrical utilities have
traditionally performed short to long-term demand forecasts on
the distribution/generation level to inform infrastructure plan-
ning and DSM policy [8]. The shift towards grid-interactive
buildings which enable the automation of power measurements
and energy management, consumers can access their own con-
sumption information. This enables consumers to effectively
manage their energy usage and implement DSM strategies
specific to their consumption requirements. Additionally, it has
been shown that equipping consumers with more information
about their power consumption improves the likelihood and
duration of their engagement with their consumption habits
[9].

To achieve load shifting and peak reductions utilities can
encourage consumers to modify their behavior by imple-
menting TOU tariffs. Power monitoring of grid-interactive
buildings enables consumers to take advantage of TOU tariffs.
Furthermore, consumers with renewable energy resources such
as PV-battery storage can take advantage of energy trading in
addition to TOU tariffs.

The ability to predict load demand and energy consumption
can augment the advantages of grid-interactive buildings by
enabling more informed decision making with regards to TOU,
and for prosumers, forecast energy supply and demand for
more effective energy trading [10].

B. Machine Learning for Load Prediction

Machine learning algorithms are an effective tool for ana-
lyzing residential load data as it is able to detect latent patterns
and estimate future outcomes based on large, historical data
sets [4], [11]. LSTM neural networks have been shown to
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Fig. 2: Training and validation data split for 100 days of data

be particularly suited for modeling time-series data as it can
identify and retain pattern features for long data sets [4]. They
have also been shown to outperform the prediction accuracy of
traditional load forecasting techniques such as auto-regressive
integrated moving average (ARIMA) models, as well as other
neural network architectures for predictions on time-series data
[11]. Additionally, LSTMs have been shown to demonstrate
high forecast accuracy for time-series predictions using both
single variate and multivariate input features [12].

Research has been done to explore means of optimizing
LSTM parameter selection to improve model performance
[13]. However, there is a lack of research exploring the
relationships between the depth of a forecast and its impact on
the the training feature requirements to maintain a high model
fidelity.

III. METHODOLOGY

For this investigation an LSTM neural network is used
to develop several load profile prediction models in two
experimental scenarios. For each experiment the relationship
between the model training duration, prediction accuracy and
a specific hyperparameter is examined by training a series
of models with varying values of each hyperparameter. Ex-
periment 1 examines the impact of increasing training data.
Experiment 2 examines the ratio of the look-back window
size to the horizon length, which is the number of time steps
ahead that the model will predict. The raw load profile dataset
is sourced from active power values measured from a real
household over a period of 4 years [15]. From this data four
features are identified to form the LSTM training dataset:
active power, time of day, day of the week and time of year.
This training data is split into five training subsets, {100, 200,
300, 400, 500} where each member of the set is a number
of days of load profile measurements. Each LSTM model is
trained using a rolling forecast scheme of 12-hour long input
windows to predict outputs of a given horizon length [14].

A. Training Data Preparation

A public data set of measurements from a real household
is sourced and used to train the LSTM models. The data set
consists of timestamped measurements for aggregate active
power and sub-metered energy measured between December
2006 and November 2010 [15]. The data is measured at a rate
of one sample per minute for a total of approximately 4 years
of samples. Missing values are substituted by copying values
from the same time in the previous day.

The raw residential load profile data is used to identify
several features for the final training data set. The active
power values are scaled using a min-max normalization to
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TABLE I: Values assigned to each training subset and ratio.

Training i Ratios
Training Validation || Ratio Window Horizon
Subset (days) (days) (hr) (hr)
S1 100 25 0.05 12 0.6
So 200 50 0.10 12 1.2
S3 300 75 0.30 12 4.0
Sy 400 100 0.50 12 6.0
S5 500 125 0.75 12 9.0
1.00 12 12.0

create the first feature [16]. The date and time values for the
timestamps of each load profile measurement are expanded
into two feature sets. The first set expresses each timestamp
as a time-of-day signal by mapping the date-time values to sine
and cosine functions with a period of 24-hours. The second set
expresses each timestamp as a time-of-year signal by mapping
the date-time values to sine and cosine functions with a period
of 365.24 days. The resultant training data is comprised of a
multivariate, time-series dataset composed of four high-level
features: active power, the time of day, day of the week and the
time of year. Each time-based feature is mapped to a unique
pair of values using a sine-cosine transform function.

The selected date ranges for the training and validation
subsets of each experiment are chosen relative to a single
reference data point in the dataset. For each subset the training
and validation data are split using a ratio of 80% training
and 20% validation as demonstrated in Fig. 2 for a training-
validation subset consisting of 100 days. For each experiment
the test data is selected as the 24-hour period immediately
following the chosen reference point of each experiment. This
is to ensure that each of the models trained using different
lengths of days would have a common test set so that their
performances could be fairly compared.

B. LSTM Model Design

A stacked LSTM architecture composed of 3 sequential
neuron layers was chosen for this work. The first layer consists
of 100 neurons, while the second and third layers contain 50
neurons each. The outputs of the final LSTM layer are sent to
a linear-output feed forward layer which maps the intermediate
LSTM layer outputs to a single output value i.e., the power
forecast of the target time interval. The hyperbolic tangent
(tanh) is chosen as the activation function [17].

For the training parameters a batch size of 32 is used.
The number of epochs is kept constant at three. It is found
that additional epochs accrued significant increases to model
training time for relatively little gain in performance. The
ADAM optimizer with a learning rate of 0.0001 is used [18].
Model development and training is performed using a desktop
PC with a 3.70 GHz AMD Ryzen 5 5600X 6-Core processor
with 16GB RAM, and a GeForce RTX 3070Ti graphics card
with 8GB GDDR6X VRAM, using the Keras library with a
Tensorflow back end.

C. Experimental Setup

Two experiments are performed to investigate the impact of
selected hyperparameter variations on LSTM model predic-
tion performance. In Experiment 1 models are trained using

increasing amounts of training data. In Experiment 2 the ratio
of window size to prediction horizon is varied.

1) Experiment 1: The purpose of this experiment is to
investigate the relationship between training data size, com-
putational resource and model fidelity. It is well-established
that more training data improves the performance of machine-
learning models. This experiment aims to observe the extent to
which increasing training data size improves model prediction
against computational intensity.

The training data increments start from 1 day and are
increased by 90-day increments (approximately 3 months)
up to a maximum of 1080 days (3 years), so that complete
seasons (i.e., summer, fall winter, spring) are incremented.
This is to reduce variability due to changes in seasons. After
three epochs the model training is complete. Each model is
evaluated by performing predictions on the 24-hour set of test
data measurements.

2) Experiment 2: The purpose of this experiment is to
investigate the relationship between training data size, horizon
window and model fidelity. Depending on the application and
frequency of exchange signals, a load forecast of 24 hours
is considered ideal. The aim is to determine the extent to
which training data size can improve the model accuracy for
a range of prediction horizons. The prediction horizon length
is determined as a fraction of the window size using:

— = ey
w

where h is the prediction horizon length, w is the window
length and r is the horizon-window ratio. The set of horizon-
window ratios used for this experiment are {0.05, 0.1, 0.3, 0.5,
0.75, 1.0}.

For this experiment a set of five training data sizes is chosen
{100, 200, 300, 400, 500}. For each set of training data, a
model is produced using each combination of window size
and prediction horizon length as presented in Table I. Finally,
each model is evaluated by performing predictions on the 24-
hour set of test data measurements.

D. Evaluation Metrics

The Mean Absolute Error (MAE) is used to evaluate the
forecast accuracy of each LSTM prediction model [19]. MAE
is simple to interpret as the result is in the same unit as the
predicted data. It is also robust against outliers in the dataset.
The MAE is a score that determines the average absolute
error between the observed and model predicted values and
is formulated as:

Z?:1 |yz — $z|

n

2

where, y; is a predicted value, z; is the observed value
and n is the total number of data points. An MAE value of
0 represents a perfect prediction, therefore values closer to 0
indicate higher model fidelity and better model performance.
To quantify the energy prediction performance a residual
energy (RE) value is determined. This is calculated by taking
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Fig. 3: Results for training data against MAE and residual energy (Experiment 1).

the numerical integral of the absolute difference between the
power-time graphs of the observed and predicted values:

N—-1
RE = 3" 2(leln] —dlnl| +leln+ 1] — din+ 1) (Aa),, ()
n=0

where N is the total number of samples, c[n] is the observed
power and d[n] is the predicted power at sample [n], and Az
is the time step size at sample n.

A RE value of 0 indicates an exact energy prediction. RE
values greater than O indicate larger amounts of erroneously
predicted energy and poorer prediction model performance.

IV. RESULTS

The results for each experiment are discussed in the sections
to follow.

A. Experiment 1

A comparison of the MAE against training data size for
Experiment 1 is shown in Fig 3 (a) and (b). The results show
an exponentially decaying relationship between the MAE and
training data size. A regression analysis derives the following
equation:

MAE = 0.050e~%%21% 1.0.020 4)

where ¢ is the training data size expressed in days.

A comparison of the model training time against training
data size is shown in Fig 3 (a). It can be observed that for
smaller training data sizes the training duration is also small.
As the training data size increases the model training duration
also increases at an approximately linear rate.

Regression analysis of this plot confirms a linear relation-
ship between the training duration and training data size. The
equation for the linear model is:

T = 0.096t + 2.804 4)

where 7' is the training duration size expressed in minutes and
t is the training data size expressed in days.

A choice of training data size needs to be a balanced trade-
off between model fidelity (MAE) and computational intensity
(training duration).

A comparison of the predicted load profiles and cumulative
predicted energy error for the 1, 90, 450 and 990-day predic-
tion models are shown in Fig 3 (b). As the training data size
increases there is a reduction in the amount of energy that is
incorrectly predicted.

B. Experiment 2

A sample of the predicted load profiles for the range of
training days for a chosen horizon ratio is presented in Fig. 4.
A comparison of the MAE values for the Experiment 2
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Observed vs Predicted Power:12 Hour Window, 0.1 Horizon Ratio
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Fig. 5: Prediction errors and residual energy (Experiment 2).

model predictions on the test data set is shown in Fig. 5 (a).
As the prediction horizon increases the predictions tend to
become more conservative and consequently underestimate
their values. All models struggled to predict the larger peaks.
This trend worsens as the prediction horizon increases.

For the ratio of 0.1 (relating to a 1.2 hr horizon from
Table I), the models demonstrate relatively high prediction
accuracy. The highest performing model is the 300 day training
data. This suggests that there is an optimal training data size
for horizon window. Training days for more than 300 days,
approximating a year, suggest diminishing returns.

In Fig. 5 (b), a cumulative energy plot using a 0.1 ratio
model is shown. Models of each training data size show
fair agreement for the first six hours, and produce an under-
prediction for energy as time is extended.

V. DISCUSSION AND FUTURE WORK

From Experiment 1, an exponential decay relationship is
observed for model fidelity (MAE) against training data size.
The relationship between computational intensity (training
time) and training data is shown to be linear. After 90 days
(approximating a season), it is shown that there is a marginal
increase in model prediction fidelity, while computational
intensity increases. This results in marginal gains for the cost
of higher computational resources as training data is increased.

For a practical application in a GEB, an energy management
system set up with a 90-day training model is a good starting
point with an MAE of 0.37kW and an energy prediction error
of 28%. More training days provide marginal gains at higher
computational cost. If retraining every day, larger training day
sizes become infeasible.

From Experiment 2, a horizon window ratio of 0.1, relating
to a 1.2 hr horizon, shows good agreement. In addition, the
300 day model demonstrates the best performance, suggesting
that more training days may result in diminishing returns.

For a practical application in a GEB, an energy management
system set up with a 1.2 hr window can produce reasonable
predictions. This is for data sampled per minute. The training
data for this performance only requires 300 days. In this case,
more training data does not result in better performance.

Improvements on horizon length could be investigated with
reductions in sampling resolution. Per minute samples may
limit the horizon due to the number of prediction steps required
to reach an hour (or more). In addition, improvements to
the LSTM design could produce better performance. This
study is not focused on the LSTM design, but rather the
hyperparameter impact on performance.
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VI. CONCLUSION

Effective demand-side management using autonomous on-
site control requires load demand prediction at a suitable
accuracy and horizon. Grid-interactive efficient buildings have
the potential to enable consumers to optimize around DSM
strategies such as TOU tariffs as well as engage in energy
trading. Load forecasting is an integral part of any automated
decision-making. The results of this investigation show that
hyperparameter choices need to be made to balance the trade-
offs of a practical implementation of load forecasting. For
this LSTM design and this dataset, the residence could start
with 90 training days with one-step horizon and increase
performance to 300 training days for 1.2 hrs horizon. This
work presents a framework for analyzing LSTM hyperparam-
eters for prediction performance in preparation for a practical
implementation towards autonomous control.
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