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Abstract— Malawi’s economy heavily depends on agriculture, 
including both commercial and subsistence farming. Smallholder 
and small-medium enterprises leading the production of tomatoes 
in Malawi cannot satisfy local demand due to problems such as 
pests, diseases, unstable markets, and high costs. Many farmers 
lack the expertise to effectively manage these threats. To address 
the problem of tomato leaf disease identification, this research 
aimed to develop an automated system for tomato leaf disease 
detection by utilizing data augmentation techniques, 
MobileNetV3, and Convolutional Neural Network algorithms. We 
trained models on secondary data collected from the public 
PlantVillage dataset and tested the resultant classifiers on primary 
data of local farm images. The experimental results demonstrate 
that both models tested better on the PlantVillage dataset. 
Additionally, with an accuracy of 92.59% and a loss of 0.2805, the 
pre-trained MobileNetV3 model conventionally performs better 
than a CNN model. However, when tested on the primary field 
dataset, the models did not meet expectations for generalization, 
with the pre-trained MobileNetV3 achieving an accuracy of 9.2%, 
and loss of 12.91 and the CNN achieving an accuracy of 10.14%, 
and loss of 8.11. The experiments aided in showing that the models 
trained on the PlantVillage dataset are not as effective when 
applied in real-world scenarios. Further improvements are needed 
to enhance the models’ generalization in real-world scenarios. 

Index Terms— Convolutional Neural Network, Deep learning, 
Image augmentation, MobileNetV3, Tomato leaf disease detection 
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I. INTRODUCTION

omatoes play a vital role in the agricultural sector of 
Malawi, serving as a significant crop for food consumption 

and income generation [1]–[4]. However, small-scale and semi-
commercial tomato growers face various challenges, including 
pests, diseases, marketing difficulties, and high input prices, 
resulting in inadequate supply to meet local demand [1], [4], 
[5]. According to Eviness et al. [1], tomato producers usually 
cultivate during the dry season due to the reduced prevalence of 
diseases and pests. This concentration of tomato production in 
the dry season leads to a surge in supply and creates a spillover 
effect that results in lower prices. To address these challenges 
and improve tomato production, it is crucial to adopt modern 
solutions, particularly in pest and disease management. 

The current state of research in the field highlights the 
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limitations of traditional diagnostic methods, which are often 
costly, time-consuming, and subjective. Visual assessment 
introduces bias and errors, making accurate disease diagnosis 
challenging. A study conducted in major tomato-growing 
districts in Malawi highlighted the lack of formal education 
among local tomato farmers, which limits their ability to 
identify and manage detrimental diseases and select appropriate 
pesticides [1]. Most local farmers currently utilize traditional 
methods that have been gained through experience and oral 
knowledge passed down through generations. This knowledge 
gap necessitates the development of automated approaches that 
can rapidly and accurately detect tomato diseases, providing a 
convenient and accessible solution. 

This paper aligns with the growing interest in developing 
automated approaches for disease detection using deep-learning 
techniques. Different research findings and approaches exist 
within the field regarding the effectiveness of data 
augmentation techniques in improving model performance, the 
superiority of pre-trained models over convolutional neural 
networks (CNN), and the challenges associated with applying 
such models in real-world scenarios. These varying 
perspectives emphasize the need for further investigation and 
evaluation to advance our understanding of automated disease 
detection methods for tomatoes. 

The purpose of this study was to train MobileNetV3 and 
CNN models on a public dataset of tomato leaf diseases and to 
evaluate the resultant models on real field images collected in 
Malawian farms. By utilizing data augmentation techniques, 
MobileNetV3, and CNN algorithms, the study aimed to provide 
an accurate, reliable, and efficient automated method for 
identifying and managing tomato diseases. Ultimately, this 
automated method could be integrated into a mobile platform 
for the benefit of local farmers in Malawi’s agriculture sector.  

II. LITERATURE REVIEW

Diagnosing tomato plant diseases traditionally involves 
visual inspections and manual analyses by plant pathologists, 
who rely on symptoms like leaf discoloration and spots for 
identification [6]. These methods, although grounded in 
expertise, are hindered by their time-consuming nature, high 
costs, and the potential for human error. Diagnostic techniques, 
including microscopic examination and the isolation of 
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pathogens, require specialized skills and are subject to 
variability in interpretation [7]. The limitations of these 
approaches underscore the necessity for automated, reliable 
disease detection systems to aid growers and pathologists. 

A. Deep Learning in Disease Detection
The application of Convolutional Neural Networks (CNNs)

represents a significant advancement in plant leaf disease 
detection, offering a more efficient alternative to traditional 
algorithms [8], [9], [10]. 

CNNs streamline the processing of images through layers 
that automatically extract and learn features, significantly 
reducing the need for manual pre-processing. Despite their 
advantages in handling complex image data, CNNs need 
substantial computational resources and training time, which 
poses challenges to their widespread adoption [11], [12].  

To resolve the problem of requiring a lot of processing time 
and power, pre-trained neural networks are used. These are 
models that have been trained on a large dataset and are 
designed to be efficient and powerful requiring fewer 
parameters and computations for their specific task. This form 
of transfer learning allows CNNs to quickly learn from existing 
models without having to start from scratch. An example of a 
pre-trained architecture is the MobileNetV3. This is a pre-
trained convolutional neural network that was designed for 
mobile applications by Google in 2019 [13].  

Literature suggests that MobileNetV3 architecture is a strong 
choice for applications that require high accuracy, as it balances 
efficient computation with competitive performance through 
various design principles. The main difference between a CNN 
model and a MobileNetV3 model lies in their architectural 
design. A CNN has multiple convolutional layers, pooling 
layers, and fully connected layers without much tweaking for 
optimization. A MobileNetV3 model, on the other hand, has its 
base model as a CNN. However, it has additional optimization 
techniques to decrease the number of parameters and the 
processing cost during training. Furthermore, a CNN model 
might possess more parameters and computational 
requirements compared to MobileNetV3, leading to it 
potentially being slower and requiring more memory to process. 
MobileNetV3, alternatively, is known for its lightweight and 
efficient design, making it suitable for resource-constrained 
environments such as mobile devices, vis-à-vis the name of the 
model. It is faster and more memory-efficient as compared to 
more complex CNN architectures. 

B. Role of Data Augmentation in Improving Detection
Data augmentation is a method for expanding a dataset

artificially by making transformed copies of a dataset from 
existing data [11], [14].  Data augmentation is usually used as a 
regularization technique to reduce the overfitting of a model. 
While several techniques exist for image augmentation, the 
method of geometric transformations is the most commonly 
used. Images are shifted, rotated, resized (among other 
processes) and added to the dataset during this process. Color 
transformations, such as adjusting brightness, contrast, and hue, 
can simulate different lighting conditions and improve the 

model’s ability to handle variations in image quality. 
Since leaf disease symptoms can vary in terms of size, color, 

shape, and severity, it is challenging to develop robust detection 
models that can accurately identify and classify different 
diseases [15]. Data augmentation techniques offer a promising 
approach to enhance the performance of disease detection 
models by diversifying the training dataset and increasing its 
size [16]. 

C. Available Datasets for Tomato Leaf Diseases
The use of comprehensive datasets such as PlantVillage and

PlantDoc plays a critical role in training and validating disease 
detection algorithms [6], [17]. These datasets provide a diverse 
array of images that are instrumental in developing models 
capable of recognizing a broad spectrum of plant diseases. 
However, challenges remain in ensuring these datasets 
accurately reflect the variety of disease symptoms across 
different environments, highlighting the need for ongoing 
efforts to expand and diversify the data available for research 
purposes. 

D. Related Work
This subsection provides insights into various studies that

have contributed significantly to advancements in the field of 
tomato plant disease detection. These studies highlight the 
diversity in methodologies, ranging from the optimization of 
CNN architectures to the exploration of hybrid models and the 
utilization of both public and private datasets to achieve 
improved disease classification accuracy. 

A study by Agarwal, Singh, et al. [18] focused on training 
models using the PlantVillage dataset, with a particular 
emphasis on expanding the training set through data 
augmentation for classes with insufficient images. This 
approach aimed to mitigate bias by ensuring a balanced 
representation of classes. The research compared the 
performance of a custom CNN architecture against pre-trained 
models like VGG16, InceptionV3, and MobileNet, concluding 
that the custom CNN approach, despite its simplicity, was less 
effective for the specific task of tomato leaf disease 
classification compared to the more complex pre-trained 
models. 

Nandhini & Ashokkumar [19] explored the optimization of 
VGG16 and Inception V3 models for tomato leaf disease 
detection, achieving remarkably high accuracies. Their study 
stands out for its methodological rigor in fine-tuning models to 
suit the specificities of plant disease detection, showcasing the 
potential of optimized deep-learning models in agricultural 
applications. 

The work of Liu & Wang [20] delves into the development 
of hybrid models that combine MobileNetV2 and YOLOv3 for 
enhanced performance. Their approach, tailored for early 
detection of grey leaf spot disease, underscores the innovative 
use of hybrid learning to address challenges in disease detection 
under varying environmental conditions. This study is 
particularly notable for its application to images collected in 
natural field settings, providing valuable insights into model 
performance in real-world scenarios. 
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Chen et al. [21] leveraged a private dataset to investigate the 
efficacy of a modified ResNet50 model in identifying tomato 
leaf diseases. Their research contributes to the understanding of 
how image enhancement techniques, such as Binary Wavelet 
Transformations, can be employed to improve model accuracy, 
offering a promising direction for future studies. 

Gonzalez-Huitron et al. [22] employed the PlantVillage 
dataset, enhanced through data augmentation, to conduct a 
comparative analysis of transfer learning models including 
MobileNetV2, MobileNetV3, NasNetMobile, and Xception. 
Their findings, which favored the MobileNetV3 model for its 
superior accuracy and efficiency, highlight the importance of 
selecting the appropriate model architecture for specific 
detection tasks. 

E. Research Gap
Despite these advancements, a consistent research gap is the

limited evaluation of these models in practical, real-field 
conditions, particularly for tomato leaf diseases. Most studies 
rely on laboratory or controlled datasets, which may not fully 
capture the complexity and variability of diseases in natural 
environments. This gap underscores the necessity for further 
research that tests and validates the effectiveness of deep 
learning models on diverse, real-world datasets, bridging the 
gap between theoretical research and practical application in 
agriculture. 

III. METHODOLOGY

This section describes the proposed methodology shown in 
Fig. 1 below. 

Fig. 1. Flowchart showing the proposed methodology for 
tomato leaf disease detection using CNN and MobileNetV3. 

A. Datasets Description
Two sets of data were used for this research. The primary

data collection focused on local tomato farms in Lilongwe, 
Malawi. Images were captured using two standard 
smartphones, a Samsung A12 and a Xiaomi Redmi Note 10 
Lite, which have quad-camera systems with varying 
specifications. The tomato leaf photos were taken from the 
upper surface of the leaves, with the crops’ leaves being 
plucked and placed against a white backdrop in natural light. 
The images were then edited to show only the white 
background. 

In addition to the primary data, the research also utilized the 
PlantVillage dataset [23], an open-source collection of images 
from experimental research stations at Land Grant Universities 

in the United States. The dataset consists of images captured 
using a Sony DSC-Rx100/13 digital camera, with diseased 
leaves placed against a grey or black backdrop. All photos were 
taken in natural light and subsequently edited by removing the 
background and orienting the leaves upright. 

The primary dataset included a total of 217 images of tomato 
leaves, covering eight classes of diseases. However, two 
diseases (mosaic virus and spider mites) were not found, and 
were, therefore, not included in the dataset. The secondary 
PlantVillage dataset, on the other hand, comprised 55,000 leaf 
images from various crops, including tomatoes. For this 
research, a subset of the dataset containing ten classes of tomato 
leaf diseases (including a healthy class) was selected.  

B. Data Pre-processing
Three subsets of data were used: training, validation, and

testing. We did not divide the primary dataset which was used 
to test the models and we used it without alteration. We divided 
the secondary PlantVillage dataset into two subsets, namely, 
training (70%) and validation (30%). The training subset had 
11,208 images, the validation dataset had 4,803 images, and the 
testing dataset had 217 images. The distribution of images 
across the classes in both datasets was unbalanced. The number 
of images found in each class of both datasets have been 
illustrated in Table I and some sample images of the tomato 
leaves have been shown in Fig. 2 and Fig. 3. 

As a prerequisite for pre-processing, we scaled down all the 
image pixels by the factor 255 to be in the range [0,1] using the 
‘rescale’ Keras pre-processing layer. We employed this 
technique to expedite and simplify computational demands 
during training.  

We used data augmentation to improve diversity in the 
training subset by generating new images from the images 
available. To enhance the training set’s diversity, we applied 
the  following minor transformations to the original images: 

• Geometric transformation: We randomly flipped,
rotated, and zoomed the images.

• Noise addition: We introduced random noise to the
images using a Gaussian Noise pre-processing layer
with a standard deviation of 0.1.

• Color alteration: We randomly adjusted the brightness
and contrast of the images.

Additionally, we used Keras pre-processing layers for the 
online augmentation of the dataset. This process of online data 
augmentation occurs when transformations are performed 
randomly on a mini-batch of the data during training [24]. This 
approach is particularly beneficial for large datasets as it avoids 
creating a significantly large dataset and mitigates potential 
overfitting issues in the model. 

Table I: Number of Images Available in the Datasets 

Class 
Primary 
Dataset 

(Testing Data) 

Secondary Dataset 
(Training and Validation 

Data) 
Training 

Data 
Validation 

Data 
Healthy 49 1484 643 

Bacterial Spot 25 690 310 



Vol.115 (3) September 2024 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 77

Early Blight 11 1346 563 
Late Blight 16 672 280 
Leaf Mold 49 1203 568 

Mosaic Virus 0 1180 496 
Septoria Leaf Spot 27 975 429 

Spider Mites 0 2282 926 
Target Spot 19 265 108 

Yellow Leaf Curl 
Virus 

21 1111 480 

Total 217 11208 4803 

Fig. 2. Sample images of tomato leaves from the primary 
dataset. 

Fig. 3. Sample images of healthy and different unhealthy tomato 
leaves from the secondary dataset. 

C. Data Analysis Procedures
1) Convolutional Neural Network (CNN)

A CNN is an artificial neural network that consists of three
main layers: the convolutional layer, the pooling layer, and the 
fully connected layer. Each layer plays a unique role in 
processing images and extracting meaningful information. The 
convolutional layer utilizes learnable filters to create feature 
maps by convolving the image data. The most popular layers 
are max pooling and global pooling, which are used to minimize 
the feature map sizes and extract the most important 
characteristics. They can also be used to make the feature map 
more robust to small deformations or shifts in the input data. 
Finally, the fully connected layer combines the features 
extracted from the earlier layers to generate an output. In 
addition to these layers, CNNs often contain activation layers, 

normalization layers, and other components described under the 
hyperparameters section. 

During this study, we trained a CNN algorithm on the 
secondary PlantVillage dataset (augmented). The architecture 
consists of 4 series of layers and is illustrated in Table II. The 
first series of layers consists of 2 convolutional layers with 32 
filters of size 3x3, a max pooling layer with a pool size of 2x2, 
and a dropout layer with a rate of 0.5. It applies the ReLU 
activation function and expects input images of size 
224x224x3. The second series of layers consists of 2 
convolutional layers with 64 filters of a 3x3 size, a max pooling 
layer with a pool of 2x2 size, and a dropout layer with a rate of 
0.5. The third series of layers consists of 2 convolutional layers 
with 128 filters of size 3x3, a max pooling layer with a pool size 
of 2x2, and a dropout layer with a rate of 0.5. The output of the 
previous layer is flattened into a one-dimensional vector in the 
fourth series of layers, and a dense layer with 10 nodes and 
“softmax” activation is used to predict the probability 
distribution of the input image over the 10 classes. This model’s 
loss function represents categorical cross-entropy and uses the 
“Adam” optimizer with a learning rate of 0.0001. 

Table II: Architectures of the CNN Model 

Layer Output 
Shape              

Number of 
parameters 

conv2d (Conv2D)             (None, 224, 224, 32)        896 
conv2d_1 (Conv2D)  (None, 224, 224, 32)          9248 

max_pooling2d 
(MaxPooling2D) 

(None, 112, 112, 32) 0         

dropout (Dropout) (None, 112, 112, 32) 0        
conv2d_2 (Conv2D)  (None, 112, 112, 64) 18496 
conv2d_3 (Conv2D)  (None, 112, 112, 64) 36928 
max_pooling2d_1 
(MaxPooling2D) 

(None, 56, 56, 64) 0 

dropout_1 (Dropout)  (None, 56, 56, 64) 0 
conv2d_4 (Conv2D)  (None, 56, 56, 128) 73856 
conv2d_5 (Conv2D)  (None, 56, 56, 128) 147584 
max_pooling2d_2 
(MaxPooling2D) 

(None, 28, 28, 128) 0 

dropout_2 (Dropout)  (None, 28, 28, 128) 0 
flatten (Flatten)    (None, 100352)            0 
dense (Dense)         (None, 10)                1003530 

Total params: 1,290,538 
Trainable params: 1,290,538 

Non-trainable params: 0 

2) MobileNetV3
The MobileNetV3 architecture incorporates three elements

designed to optimize performance and efficiency: bottleneck 
layers, inverted residual blocks, and linear bottlenecks. 
Bottleneck Layers reduce channel count while preserving 
activation information. Inverted Residual Blocks combine 
pointwise and depth-wise convolutions with ReLU activations 
to lower computational demands. Linear Bottlenecks eliminate 

Healthy Tomato Leaf Bacterial Spot Early Blight Late Blight 

Leaf Mold Septoria Leaf Spot Target Spot Yellow Leaf Curl Virus  

 

Healthy Tomato Leaf Bacterial Spot Early Blight Late Blight 

Leaf Mold Mosaic Virus Septoria Leaf Spot Spider Mites / Two-Spotted 

Spider Mite 

Target Spot  Yellow Leaf Curl Virus  
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non-linearities in narrow layers, fostering a compact, powerful 
network. 

MobileNetV3 ‘Small’ variant is chosen for its suitability in 
mobile applications, with transfer learning applied by freezing 
the pre-trained weights. A dropout layer (rate of 0.2) and a 
softmax-activated dense layer are appended for classification 
purposes. 

Training occurs over several epochs, with batches 
undergoing forward and backward passes through 
MobileNetV3’s base and trainable layers, employing 
categorical cross-entropy for loss calculation and Adam 
optimizer for weight updates. 

Model performance is validated (accuracy, precision, recall, 
F1-score) with early stopping to mitigate overfitting, followed 
by model saving for future inference tasks. 

The architecture is configured with an input layer, 
MobileNetV3 Small feature extractor, dropout layer (0.2 rate, 
L2 regularization of 0.0001), and a softmax-activated dense 
layer. The “Adam” optimizer and a categorical cross-entropy 
loss function facilitate the training process, with a learning rate 
of 0.005 optimizing the balance between speed and 
convergence. 

The trained model is prepared for deployment in new disease 
detection applications. Incoming images undergo pre-
processing to align with training specifications. Images are 
processed through the model, with softmax outputs dictating the 
probability distribution across classes, determining the 
predicted disease based on the highest probability. 

Table III: Architectures of the MobileNetV3 Model 

Layer Output 
Shape 

Number of 
parameters 

keras_layer (KerasLayer) (None, 1024)            1 026552 
dropout_3 (Dropout) (None, 1024)                     0 

dense_2 (Dense)             (None, 10)               10250                               
Total params: 1,036,802 
Trainable params: 10,250 

Non-trainable params: 1,026,552 

D. Hyper-parameters
Hyper-parameters are crucial variables that govern the

training of a CNN and significantly impact its performance and 
accuracy. During the training of both the CNN model and the 
pre-trained MobileNetV3 model, a variety of hyper-parameters 
were fine-tuned (as presented in Table IV). Neurons, which 
represent functions that take multiple inputs and produce a 
single output, were fine-tuned to enhance the model’s 
capabilities. The number of layers was crucial in influencing the 
complexity of the model. Additionally, the learning rate 
contributed significantly to determining the speed at which the 
model adjusted its weights and biases during training. 
Moreover, the batch size, referring to the number of samples 
processed before updating the model, played a vital role in 
affecting both the training time and the accuracy gains 
achieved.  

We also carefully considered the epochs, representing the 

number of times the entire dataset was fed into the model during 
training. We meticulously controlled the steps per epoch, as 
they determined the number of times the model was trained on 
a given dataset before moving to the next epoch. To ensure an 
accurate evaluation, we employed validation steps to separate 
the training data from the validation data, enabling the 
assessment of the model’s performance on unseen data. The 
“Adam” optimizer, known for its adaptability, was essential in 
modifying neural network parameters such as learning rates and 
weights. Activation functions, including ReLU and Softmax, 
introduced non-linearity and enabled effective multi-class 
classification.  

Furthermore, to prevent overfitting, we strategically 
implemented dropout by randomly omitting neuron 
connections. Additionally, we employed early stopping as a 
technique to terminate training if the validation error exceeded 
a specified threshold; this approach helped us prevent 
overfitting the model. Lastly, the implementation of max 
pooling significantly reduced the computational workload by 
replacing multiple neurons with the maximum value among 
them, resulting in a faster training process and a reduction in 
network size.  

Table IV: Hyper-parameters Used During Training 

Parameter CNN MobileNetV3 
Number of Epochs 24 26 

Training time 172 seconds 118 seconds 
Batch size 64 64 
Optimizer Adam Adam 

Learning Rate 0.0001 0.005 
Dropout 0.5 0.2 

Activation Function Softmax Softmax 

E. Evaluation Metrics
We utilized various evaluation metrics to monitor the

performance of the models during training. One of the key 
metrics used was the confusion matrix, which provided insights 
into the model’s performance for each class in the dataset. We 
calculated true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN) from the confusion 
matrix, allowing for a comprehensive analysis of the model's 
predictions. 

Accuracy, another important metric, measured the proportion 
of correctly labeled images out of the total number of samples. 
However, we acknowledged that the dataset used in this 
research was unbalanced, which could introduce bias in the 
accuracy calculation towards the class that has the most 
samples, which is the yellow leaf curl virus. We used 
categorical cross-entropy loss in conjunction with accuracy to 
assess the model’s performance, aiming to minimize the 
average number of mistakes made during predictions. 

Precision, a metric focusing on positive labels, measured the 
probability of correctly identifying positive cases. Recall, also 
known as sensitivity, gauged the model’s ability to correctly 
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identify actual positive cases. F1-score, on the other hand, 
provided a balanced evaluation of the model’s performance by 
combining precision and recall. False negative rate (FNR) 
measured the rate at which positive values were misclassified 
as negative, highlighting the model’s performance in avoiding 
false negatives.  

IV. RESULTS
This chapter presents the results of all the processes and 

procedures described in the research methodology. It presents 
the results after training both the CNN and the MobileNetV3 
model in terms of the accuracy, loss, precision, recall, F1 score 
and confusion matrix. We interpret that a model is a good 
classifier when its validation accuracy is greater than its testing 
accuracy, when its validation loss is greater than its testing loss, 
or when the difference between its validation loss and training 
loss is approximately 0. 

A. Convolutional Neural Network
During training, the model ran for 24 epochs for 172 seconds

and Fig. 3 and Fig. 4 show the performance of the model during 
training and validation. The training accuracy was 0.8904 and 
the training loss was 0.3322 while the validation accuracy was 
0.8371 and the validation loss was 0.4800. As represented, the 
validation accuracy was lower than the training accuracy, which 
interprets into two conclusions: that this model is not reliable at 
generalization and that it may not be a suitable classifier. 
Accuracy and loss were interpreted with caution because the 
dataset is heavily imbalanced. Nonetheless, the high accuracy 
gives a good indication of the model’s performance. 

Fig. 4. Graphs of accuracy vs loss during training for CNN 

Fig. 5. Graphs of accuracy vs loss during validation for CNN 

During testing using the secondary PlantVillage dataset, this 
model achieved an accuracy of 0.8603 and a loss of 0.4135. 
From a deeper evaluation using metrics like F1 Score, 
Precision, and Recall and the confusion matrix, as in Table V 
and Fig. 5 it becomes apparent that the CNN model trained on 
augmented data exhibits certain strengths and limitations. 
“Yellow Leaf Curl Virus” achieved the highest observed F1 
score at 22.1%. This underlines that the model is most adept at 
detecting this disease among others. However, given that this 
score is still significantly below the optimal, there is undeniably 
room for further optimization. On the other end of the spectrum, 
“Leaf Mold” comes in with the lowest F1 score at 8.53%, 
signaling that the model faces challenges in reliably identifying 
this disease. In essence, most of the classes seem to put the 
model to the test, as evidenced by all the scores falling below 
25%. Such scores might be insufficient for real-world 
applications, necessitating model refinements. 

Table V: Evaluation Metrics When Testing the CNN On 
Secondary PlantVillage Dataset 

Class F1 Score Precision Recall 
Healthy 14.51% 13.88% 15.21% 

Bacterial Spot 17.36% 18.34% 16.49% 
Early Blight 9.77% 11.71% 8.39% 
Late Blight 16.14% 17.10% 15.28% 
Leaf Mold 8.53% 10.58% 7.14% 

Mosaic Virus 9.80% 10.42% 9.26% 
Septoria Leaf Spot 17.12% 16.22% 18.13% 

Spider Mites 16.57% 14.37% 19.56% 
Target Spot 14.86% 13.99% 15.85% 

Yellow Leaf Curl Virus 22.10% 22.51% 21.71% 
Macro Average 15.00% 15.00% 15.00% 

Weighted Average 16.00% 16.00% 16.00% 
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Fig. 6. Confusion matrix of the CNN model when tested on the 
secondary PlantVillage dataset. 

We tested the same CNN model on the primary field data to 
check the model’s generalizability. In this instance, the model’s 
accuracy was 0.1014 and the loss was 8.1065. From a deeper 
evaluation using metrics like F1 Score, Precision, Recall and 
the confusion matrix, as in Table VI and Fig. 6, the model’s 
performance on the primary field dataset is significantly subpar, 
with it failing to recognize most classes effectively. With a 
macro average F1 score of 4.00%, the model demonstrates a 
generally poor performance across all the classes. The weighted 
average is slightly higher, but still only at 5.00%, indicating that 
the model’s overall performance is far from optimal for 
practical applications. Most of the classes like Healthy, 
Bacterial Spot, Early Blight, Mosaic Virus, Spider Mites, 
Target Spot, and Yellow Leaf Curl Virus have F1 Scores, 
Precision, and Recall values all at 0.00%. This suggests that the 
model failed entirely to identify or correctly predict these 
diseases. 

Table VI: Evaluation Metrics When Testing the CNN On 
Primary  Dataset 

Class F1 Score Precision Recall 
Healthy 0.00% 0.00% 0.00% 

Bacterial Spot 0.00% 0.00% 0.00% 
Early Blight 0.00% 0.00% 0.00% 
Late Blight 8.70% 6.67% 12.50% 
Leaf Mold 6.25% 13.33% 4.08% 

Mosaic Virus 0.00% 0.00% 0.00% 
Septoria Leaf Spot 21.43% 12.43% 77.78% 

Spider Mites 0.00% 0.00% 0.00% 
Target Spot 0.00% 0.00% 0.00% 

Yellow Leaf Curl Virus 0.00% 0.00% 0.00% 
Macro Average 4.00% 4.00% 10.00% 

Weighted Average 5.00% 5.00% 12.00% 

Fig. 7. Confusion matrix of the CNN model when tested on the 
primary dataset. 

The highest F1 score is for “Septoria Leaf Spot” at 21.43%. 
Interestingly, while its precision is relatively low at 12.43%, its 
recall is notably high at 77.78%. This indicates that while the 
model often misclassifies other diseases as Septoria Leaf Spot 
(low precision), it very rarely misses an actual case of Septoria 
Leaf Spot (high recall). There are only two other classes, apart 
from Septoria Leaf Spot, where the model had non-zero scores. 
For “Late Blight,” the model’s recall (12.50%) is higher than its 
precision (6.67%), suggesting that it may often misclassify 
other conditions as Late Blight. For “Leaf Mold,” the model’s 
precision of 13.33% is higher than its recall of 4.08%, implying 
that when the model predicts Leaf Mold, it is more likely to be 
correct, but it often misses actual cases. The fact that seven out 
of ten classes have zero scores in all metrics indicates potential 
issues. The model may be struggling with the dataset, which 
might have imbalances, or the features of these diseases in the 
primary field dataset might be vastly different from the 
secondary PlantVillage dataset on which the model was trained. 

B. MobileNetV3 Model
During training, the model ran for 16 epochs for 118 seconds

and Fig. 7 and Fig. 8 show the performance of the model during 
training. The training accuracy was 0.9082 and the training loss 
was 0.3605, while the validation accuracy was 0.9158 and the 
validation loss was 0.3488. Since the differences between these 
metrics are minimal, it suggests proficient model 
generalization, indicating its capability as a classifier. Accuracy 
and loss were interpreted with caution because the dataset is 
heavily imbalanced. Nonetheless, the high accuracy gives a 
good indication of the model’s performance.  
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Fig. 8. Graphs of accuracy vs loss during training for 
MobileNetV3 model 

Fig. 9. Graphs of accuracy vs loss during validation for 
MobileNetV3 model 

During testing using the secondary PlantVillage dataset, this 
model achieved an accuracy of 0.9259 and a loss of 0.2805. A 
deeper evaluation using metrics like F1 Score, Precision, and 
Recall and the confusion matrix (as shown in Table VII and Fig. 
9) reveals that “Yellow Leaf Curl Virus” achieved the highest
recorded F1 score at 22.25%, suggesting the model’s strongest
performance in detecting this disease. However, the fact that all
scores are below 25% implies room for substantial
improvement. A balanced F1 score, precision, and recall is
crucial for ensuring that the model not only identifies positive
cases but also reduces false identifications. The differences in
these metrics for different classes may hint at dataset
imbalances or inherent challenges in distinguishing certain
diseases due to feature similarities.

Table VII: Evaluation Metrics When Testing the MobileNetV3 
on Secondary PlantVillage Dataset 

Class F1 Score Precision Recall 
Healthy 16.07% 16.31% 15.83% 

Bacterial Spot 17.81% 18.21% 17.42% 
Early Blight 10.96% 11.68% 10.32% 
Late Blight 18.05% 17.99% 18.12% 
Leaf Mold 11.72% 12.03% 11.43% 

Mosaic Virus 10.58% 11.00% 10.19% 
Septoria Leaf Spot 16.80% 16.87% 16.73% 

Spider Mites 17.64% 16.98% 18.35% 

Target Spot 14.30% 13.19% 15.62% 
Yellow Leaf Curl Virus 22.25% 22.47% 22.03% 

Macro Average 16.00% 16.00% 16.00% 
Weighted Average 17.00% 17.00% 17.00% 

Fig. 10. Confusion matrix of the MobileNetV3 model when 
tested on the secondary PlantVillage dataset 

We also evaluated the same CNN model on primary field 
data to assess its generalization capability. Here, the model’s 
performance drastically dropped, resulting in an accuracy of 
only 0.1014 and a significant loss of 8.1065.  A deeper 
evaluation using metrics like F1 Score, Precision, and Recall 
and the confusion matrix, as in Table VIII and Fig. 10, shows 
substantially lower F1 scores, precision, and recall figures, 
especially in classes such as “Healthy,” “Bacterial Spot,” and 
“Early Blight,” underscore the model’s struggles when 
predicting these classes on primary field data. The weighted 
average of 4.00% in the F1 score further reiterates the model’s 
poor performance across classes considering their distribution. 

Table VIII: Evaluation Metrics When Testing the MobileNetV3 
on Primary Dataset 

Class F1 Score Precision Recall 
Healthy 0.00% 0.00% 0.00% 

Bacterial Spot 4.88% 6.25% 4.00% 
Early Blight 20.00% 22.22% 18.18% 
Late Blight 0.00% 0.00% 0.00% 
Leaf Mold 0.00% 0.00% 0.00% 

Mosaic Virus 0.00% 0.00% 0.00% 
Septoria Leaf Spot 16.67% 9.93% 51.85% 

Spider Mites 0.00% 0.00% 0.00% 
Target Spot 0.00% 0.00% 0.00% 

Yellow Leaf Curl Virus 8.16% 7.14% 9.52% 
Macro Average 6.00% 6.00% 10.00% 

Weighted Average 4.00% 4.00% 9.00% 
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Fig. 11. Confusion matrix of the MobileNetV3 model when 
tested on the primary dataset 

V. DISCUSSION
This chapter discusses the results of the research in relation 

to the objectives. The chapter also considers the performance of 
models trained and the comparison of model performance on 
secondary and primary datasets. Additionally, the chapter 
examines the influence of dataset imbalance, model 
generalization, and overfitting problems. Finally, the chapter 
discusses the general limitations of the study. 

Table IX: A Summary of Performance Metrics (Accuracy and 
Loss) of the CNN and MobileNetV3 Models During Training, 
Validation, and Testing 

Metrics CNN MobileNetV3 
Accuracy 

(%) 
Loss Accuracy 

(%) 
Loss 

Training 
Performance 

89.04 0.3322 90.82 0.3605 

Validation 
Performance 

83.71 0.4800 91.58 0.3488 

Testing on 
Secondary 

Dataset 

86.03 0.4135 92.59 0.2805 

Testing on 
Primary Field 

Dataset 

10.14 8.1065 9.22 12.9114 

A. General Discussion
As shown in Table IX, the MobileNetV3 model exhibits a

higher validation accuracy than the CNN model as 
MobileNetV3’s validation accuracy is greater than its training 
accuracy. This implies that the model performs well at 
generalization. Additionally, the validation loss and training 
loss of the MobileNetV3 model converged to similar values 
suggesting the model is sufficiently generalizable. Furthermore, 
among all the models trained, this model notably achieves the 

highest testing accuracy and lowest testing loss. Neither model 
executed satisfactory performance when tested on the primary 
field data. They both have an accuracy of less than 0.2 and a 
testing or generalization greater than 1, indicating overfitting to 
the training data. The proposed models performed poorly at 
detecting tomato leaf diseases on fresh tomato leaves from the 
field. This finding is consistent with the research conducted by 
Liu & Wang [20], who encountered challenges when applying 
disease detection models to real-world field conditions due to 
variations in lighting, environmental factors, and leaf 
orientations. 

The MobileNetV3 model achieved the highest recall value of 
17%. This still confirms the assertion that the MobileNetV3 
model is better at detecting tomato leaf diseases. A tomato leaf 
disease detection model (system) with a low recall implies that 
the affected leaves could be misclassified as healthy. This can 
lead to the spread of the disease and, ultimately, result in low 
crop yield. This observation aligns with the low percentages of 
precision and F1 score. The importance of achieving higher 
recall values to minimize misclassifications and improve 
disease detection accuracy should be emphasized. 

In this study, the MobileNetV3 models have the lowest 
training times as well as the lowest number of epochs. These 
findings indicate that the MobileNetV3 architecture is 
computationally efficient and can achieve satisfactory results 
with reduced training times and iterations. This observation is 
aligns with the research conducted by Qian et al. [25], Vong & 
Chanchotisatien [26], and Wibowo et al. [27] who highlighted 
the efficiency and effectiveness of the MobileNetV3 model in 
various computer vision tasks. 

The observed model performance of the models suggests 
potential overfitting due to limited variability. When the 
training data lacks sufficient diversity, models may prioritize 
memorizing specific instances rather than learning robust 
features that generalize well. While the training dataset here is 
large, other studies have shown that large datasets can struggle 
with diversity and this can hinder the models’ ability to achieve 
high performance on unseen data [28]. Secondly, the 
complexity of the models themselves may have contributed to 
overfitting. Complex models with many parameters have a 
higher capacity to memorize training data, making them more 
prone to overfitting and leading to high variance. To mitigate 
the overfitting problem, regularization techniques such as 
dropout and weight decay can be employed during the training 
process. These techniques help reduce model complexity and 
prevent over-reliance on specific features or patterns in the 
training data. Additionally, increasing the size and diversity of 
the training dataset can also help alleviate overfitting by 
providing more representative samples that capture the 
variations present in real-world scenarios. Most papers 
emphasize the importance of addressing overfitting through 
proper regularization techniques and dataset augmentation 
strategies to improve the generalization performance of the 
models. This study employed all these techniques, but the 
results still turned out to be less than satisfactory. 

The relatively low performance of both the CNN and 
MobileNetV3 models could be attributed to their limitations in 
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capturing the intricate patterns and subtle visual cues associated 
with tomato leaf diseases. Plant diseases often exhibit diverse 
symptoms, such as discoloration, spots, and deformations, 
which can be challenging to differentiate from healthy plant 
tissue. Additionally, the variability in lighting conditions, leaf 
orientation, and background clutter in real-world field images 
further compounds the difficulty of accurate disease detection. 
Moreover, the dataset used for training and evaluation might 
not have been extensive enough to capture the full range of 
disease variations and environmental factors. This limited 
dataset diversity can restrict the models’ ability to generalize 
and recognize different disease patterns. 

Another possible reason for the results could be the dataset’s 
imbalance. The imbalance affects the performance of the 
classifiers, as the accuracy of a classifier only considers how 
well the classifier is doing in the majority class leading to 
potentially misleading results. This observation is similar to the 
findings by Agarwal, Gupta, et al. [29], and Steininger et al. 
[30] who highlighted the challenges posed by imbalanced
datasets in multiclassification tasks.

In conclusion, the MobileNetV3 model exhibited better 
performance than the CNN model, but the results were still not 
satisfactory for practical implementation. The models 
performed poorly when tested on the primary field data, 
highlighting the challenges of real-world deployment. Dataset 
imbalance also affected the model performance, and overfitting 
problems were observed in some cases. These findings 
emphasize the need for further research and improvement in 
data augmentation techniques and model design to develop 
accurate and efficient tomato leaf disease detection systems.  

B. Limitations and Challenges
The data augmentation methods used in this research were

mostly geometric and color transformations and these have 
their own limitations. Other data augmentation methods have 
been proven to be more effective at synthesizing new images 
for classification tasks. For example, feature space 
augmentation [16], [31]. This research originally proposed to 
use feature space augmentation methods like Generative 
Adversarial Networks (GANs) to generate new images with 
different leaf severities, scales, and shapes. GANs can produce 
fresh images of high quality that accurately reflect the 
characteristics of the original data [32], [33]. Datasets obtained 
from using GANs are usually more diverse, and the models 
trained on such data have really good performance.  

One of the biggest gaps in literature when it comes to the 
classification of leaf diseases is that the datasets used usually 
have images that are only captured at one physiological state of 
the leaf. The images found in the PlantVillage dataset are only 
of mature leaves and there are no old or young leaves available, 
which means the dataset that is used is limited. Unfortunately, 
training of GANs is computationally expensive and unstable. It 
takes a lot of time and resources to fine-tune hyper-parameters 
and balance the dynamics between the discriminator and 
generator of a GAN. Given the constraints of computational 
resources common in academic research, simpler data 
augmentation methods were employed to obtain the data used 

in this study. From the results, it is noted that this did not 
improve the performance of the models significantly.  

A further challenge in this research arose during the testing 
of the trained models with primary field data. The PlantVillage 
dataset was captured under controlled conditions and the 
primary field dataset that was used to test the models had 
different capture conditions. The fresh images were collected 
by different devices as well as individuals. They were also 
captured in different light conditions and at different angles. 
Despite the use of data augmentation to simulate such real-
world conditions, the trained models exhibited poor 
generalization and struggled to accurately predict disease on the 
fresh images. This challenge persists in several studies [34]. 
However, this research contributes towards overcoming this 
hurdle by providing a valuable dataset that can enhance future 
research in this field. 

VI. CONCLUSION AND FUTURE DIRECTIONS

A. Conclusion
The pre-trained model, MobileNetV3, performed better than

the CNN model at detecting tomato leaf diseases in primary 
field data. The MobileNetV3 model was faster at training and 
had better accuracy and a better recall than the CNN model. 
Despite the MobileNetV3 performing better than the CNN 
model, its metrics did not give confidence to the generalization 
ability of the model in the task for tomato leaf disease 
classification. Additionally, with an accuracy of 92.59% and a 
loss of 0.2805, the pre-trained MobileNetV3 model that was 
trained on augmented data conventionally performed better 
than the CNN model. In detecting tomato leaf diseases in 
primary field data, it achieved an accuracy of 9.2% and a loss 
of 12. 91 whereas the CNN achieved an accuracy of 10.14% 
and a loss of 8.11. Regardless of whether the performance of 
both models did not meet the expectations of the research (that 
they would be good at generalization), the experiments aided in 
showing that the models that are trained on the PlantVillage 
dataset are not as effective when they are used in real-world 
scenarios.   

A recurring limitation in research on the use of CNNs and pre-
trained models and their applications in tomato leaf disease 
detection is a lack of use or testing of the model in other 
datasets. In most research, the models are trained and tested on 
the public PlantVillage dataset. The models always seem to 
perform well but their application is not well explored because 
of lack of data. This research, therefore, tested such models 
(basic CNN and pre-trained MobileNetV3 models) on fresh 
images of tomato leaves collected in Malawian fields. The 
images were few and a human consultant was engaged in 
diagnosing the leaves collected. Testing the proposed models 
on this data proved the suspicion that the models, although 
performing quite well during training, are not good predictors 
when used in real-world scenarios. There is no argument that 
advanced technological advances are needed to help improve 
productivity in Malawi’s agricultural sector, but more still 
needs to be explored in order to have a system that can be used 
in Malawian farms.  



Vol.115 (3) September 2024SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS84

B. Future Directions
Malawi aims to enhance agricultural production and

innovation as part of its post-COVID-19 socio-economic 
recovery and to achieve its vision of self-reliance and prosperity 
as a nation [35], [36]. Recognizing that an innovative and 
productive agricultural sector is key to industrial growth, the 
government views technological integration into agricultural 
practices as a crucial strategy. This focus is particularly relevant 
given the scarcity of expert human diagnostics in Malawi which 
necessitates the development of computational tools for disease 
diagnosis in crops [23].  

This study lays the groundwork for creating a mobile-based 
diagnostic system for identifying tomato leaf diseases through 
image analysis. Although the initial outcomes were not fully 
satisfactory, they provide a foundation for future research 
aimed at refining these diagnostic tools for practical use. 
Research priorities could be: 
• Investigating advanced data augmentation techniques to

address the current lack of dataset diversity, improving
model performance despite higher computational
demands.

• Exploring how different camera resolutions affect
diagnostic accuracy and the optimization of image capture
for reliable disease identification.

• Creating systems that recommend treatment options based
on diagnosed diseases using natural language processing.

• Extending the diagnostic system to additional crops,
which could significantly aid Malawi’s farmers, aligning
with national goals for agricultural efficiency and
sustainability.
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