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Solar Irradiance Forecasting for Informed Solar
Systems Design and Financing Decisions

Ronewa Mabodi and Jahvaid Hammujuddy

Abstract—This research presents the implementation and
evaluation of machine learning models to predict solar irradiance
(W/m?). The objective is to provide valuable insights for making
informed decisions regarding solar system design and financing. A
thorough exploratory data analysis was conducted on the Southern
African Universities Radiometric Network (SAURAN) data
collected at the University of Pretoria's station to gain insights into
the patterns of solar irradiance over the past 10 years. Python's
functions and libraries are utilized extensively for conducting
exploratory data analysis, model implementation, model testing,
forecasting, and data visualization. Random Forest (RF), k-Nearest
Neighbors (KNN), Feedforward Neural Network (FFNN), Support
Vector Regression (SVR), and eXtreme Gradient Boosting models
(XGBoost) are implemented and evaluated. The KNN model was
found to be superior achieving a relative Root Mean Squared Error
(RMSE), relative Mean Absolute Error (MAE), and R-Squared
(R?) of 5.77%, 4.51% and 0.89 respectively on testing data. The
variable importance analysis revealed that temperature (°C)
exerted the greatest influence on predicting solar irradiance,
accounting for 44% of the predictive power. The KNN model is
suitable to inform solar systems design and financing decisions.
Directions for future studies are identified and suggestions for
areas of exploration are provided to contribute to the advancement
of solar irradiance predictions.

Index Terms — k-Nearest Neighbors, Machine learning,
Solar irradiance forecasting, Solar system design.

L INTRODUCTION

§EVERE loadshedding in South Africa disrupts commercial
crations leading some businesses to suspend production.
In response to the challenges posed by loadshedding, the
banking sector is implementing programs to offer financial
support to enable the implementation of solar projects [1]. The
banking sector's keen interest in South Africa is commendable
due to the country's geographic location, providing it with
ample opportunities to harness substantial solar energy.

Stand-alone or off-grid solar systems have a potential to alleviate
power challenges faced by South Africans. Although
implementing these solar systems are costly, it will be
worthwhile over a long period of time since they have minimal
running costs. Designing and scaling solar systems (stand-alone
or off-grid) requires an understanding of solar irradiance in the
targeted location. Accurate solar forecasting, and precise solar
systems, are essential factors in determining optimal financial
models for solar projects.
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The primary factor encountered when forecasting solar
irradiance data is the presence of seasonality with fluctuations
influenced by the Earth's axial tilt and orbit around the Sun [2].
This inherent seasonality in solar irradiance data necessitates the
use of advanced analytical tools such as machine learning
techniques and time series models to effectively capture patterns
of solar irradiance variation over time [3, 4]. To address the
existing challenges in forecasting solar irradiance, this study
aims to adopt the machine learning approach wherein various
machine learning models are implemented, and compared,
based on their ability to grasp seasonal solar irradiance patterns,
and forecasting future values.

A.  Objectives

The objective of this study is to conduct exploratory data analysis
on solar irradiance data obtained from the Southern African
Universities  Radiometric ~ Network  (SAURAN).  The
investigation aims to explore the relationship between solar
irradiance and various weather factors. Additionally, the study
seeks to implement and evaluate the performance of different
machine learning models documented in the existing literature,
focusing specifically on their suitability in predicting seasonal
solar irradiance patterns in South Africa. The selected models
include Random Forest (RF), k-Nearest Neighbors (KNN),
Feedforward Neural Network (FFNN), Support Vector
Regression (SVR), and eXtreme Gradient Boosting (XGBoost).
The study further aims to forecast future monthly solar
irradiance, comprehend how solar irradiance can inform solar
systems design and financing, and identify potential directions
for future research.

B.  Significance of The Study

This research lays the groundwork for optimizing solar system
designs, ensuring their accurate scaling to meet the energy
consumption demands of customers. By providing valuable
insights into solar energy forecasting and performance, the study
contributes to informed investment and financing strategies
within the solar energy sector. This not only reduces the risk of
project delays and financial strain but also promotes long-term
energy cost-savings and financial stability. The findings of this
research have practical implications for enhancing the efficiency
and sustainability of solar energy projects, ultimately supporting
the growth and viability of the solar energy sector.

1L LITERATURE REVIEW
A.  Solar Irradiance Components

Solar irradiance represents the total solar energy received at
the Earth's surface and can be classified into three types:
Global Horizontal Irradiance (GHI), Direct Normal
Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) [4,
5]. GHI combines both direct normal and diffuse horizontal
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irradiance, accounting for the Sun's angle. Direct normal
irradiance reaches the Earth's surface directly from the Sun,
while diffuse irradiance results from scattering and reflection
by atmospheric particles before reaching the surface.

B. Solar Irradiance Studies

There is a growing interest in understanding the solar irradiance
patterns in South Africa [6]. Several studies have been presented
with focus on modelling the behavior of solar irradiance.
SAURAN has taken an initiative to provide researchers in the
country with access to data and fostering a deep understanding
in this field [7].

Several researchers have identified time series models and
machine learning models as adequate modelling techniques to
predict the seasonal nature of solar irradiance. Time series
modelling is found to be a reliable tool in forecasting seasonal
data, while machine learning models have proven to be a good
tool in forecasting any non-linear data [8, 9, 10]. A study by [9]
made a comparison of machine leaning models and time series
models such as Autoregressive Integrated Moving Average
(ARIMA) and Seasonal Autoregressive Integrated Moving
Average (SARIMA) in forecasting solar irradiance data [9]. The
results of the study showed that modelling solar irradiance using
machine learning models is more efficient than time series
models.

Reference [3] conducted a study utilizing seasonal solar
radiation data from three stations in Malaysia to forecast solar
irradiance. The hybrid SARIMA and Artificial Neural Network
(ANN) model were employed for this purpose. The overall
performance between ANN and SARIMA was closely related
across the three regions. Notably, in the dataset from Kluang,
Malaysia, the ANN model outperformed SARIMA in both Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE).

Reference [6] conducted a recent study, marking the first use of
Long Short-Term Memory (LSTM) networks in the South
African context for forecasting seasonal solar irradiance. The
study analyzed the seasonal nature of solar irradiance and
compared the performance of LSTM with Support Vector
Regression (SVR) and Feedforward Neural Network (FFNN)
models. Variable selection employed the Least Absolute
Shrinkage and Selection Operator (LASSO). The results
revealed that the FFNN model produced the most accurate
forecasts, exhibiting superior performance in terms of both MAE
and RMSE.

Reference [12] used Brazil as a case study to predict solar
irradiance using machine learning algorithms. The variables
with high importance were found to be temperature, relative
humidity, season, and cloud cover. The study implemented SVR
and ANN which were evaluated in terms of rMAE, rRMSE and
R2

Reference [13] made prediction of solar irradiance using
XGBoost model. The important variables were found to be
temperature, relative humidity, and cloud cover. The models
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were evaluated in terms of IMAE, rRMSE and R

Reference [14] predicted hourly solar irradiance from satellite
data using LSTM, FFNN and XGBoost model. Performance of
different models were compared on data captured in seven cities
in India covering four different climatic conditions. The results
of the study show that climate conditions of a particular region
could be a factor in deciding the appropriate model. The
variables with high importance were found to be temperature,
relative humidity, pressure, and wind speed. The models were
evaluated in terms of rRMSE.

Reference [15] presented and compared the performance of
different machine learning models for solar irradiance
forecasting. The models used are the SVR, XGBoost,
Categorical Boosting (CatBoost) and Voting-Average (VOA).
Feature selection was based on Pearson coefficient, random
forest, mutual information, and relief. Variables used in the
study are temperature, relative humidity, wind speed,
atmospheric pressure, and period (hour, day, and month). The
models were evaluated in terms of rRMSE and R?.

Relevant literature indicates that in predicting solar irradiance,
essential variables include temperature, relative humidity, wind
speed, pressure, and cloud cover. Variable importance is
assessed through methods such as LASSO, Pearson coefficient,
random forest, mutual information, and relief. Commonly
considered machine learning models are RF, XGBoost,
CatBoost, ANN, LTSM, FFNN, and SVR. Performance
evaluation metrics include MAE, RMSE, and R?, with R? values
in the literature ranging from 0.81 to 0.93. Additionally, IRMSE
values vary from 3.3% to 33.9% in the reviewed literature.

IIIL. METHODOLOGY

The research commences by establishing clear goals and
objectives, followed by an extensive literature review to identify
gaps in the field. Hourly solar irradiance data from the reliable
SAURAN station in Pretoria is used. Data preprocessing,
including cleaning and normalization, is performed to enhance
data quality. Machine learning models are chosen based on
literature review results and recommendations. These models
undergo training and testing phases, with performance
evaluation metrics such as rRMSE, tMAE, and R% Model
optimization is implemented for increased accuracy, and the
results are thoroughly analyzed and interpreted in the context of
solar irradiance forecasting and its impact on solar system design
and financing decisions. Validation against existing literature
ensures the reliability of the research findings, which are then
documented comprehensively, providing a detailed report for
reference and guiding future studies.

A. Data Overview

The SAURAN dataset provides comprehensive solar irradiance
data on both daily and hourly averages, covering a significant
timeframe dating back to September 20, 2013 [7]. This dataset
offers valuable insights into solar irradiance patterns and trends
over a substantial period, enabling in-depth analysis and
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understanding. The figure below depicts the geographical
distribution of the SAURAN stations across South Africa.
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Fig. 1. Location of the dataset used in the study.

The dataset comprises of 20 variables, including 19 continuous
variables and one date variable, totaling 82,847 records. The
target variable is Global Horizontal Irradiance (GHI), with
44,861 records obtained between sunrise and sunset hours used
in this study. Evening data are excluded as there is no direct solar
radiation during this period, considered as noise that could
introduce inaccuracies and inconsistencies into forecasting
models, potentially reducing their reliability [14].

B. Data Splitting

The dataset is divided into a 70% training set and a 30% testing
set, with the latter serving as a benchmark to evaluate model
performance on new, unseen data. This split is conducted to
prevent data leakage, where information from the testing dataset
unintentionally influences the training of the machine learning
model [16]. This precautionary measure ensures that the models
are exposed only to relevant training data, enhancing their
accuracy in generalizing to unseen solar irradiance data. The
train_test split function from the sklearn.model selection
library in Python is used to split the data.

C. Missing Values

Missing values contribute to less than 1% (908 records) of the
dataset. All records with missing values are excluded from the
dataset. Additionally, records with zero irradiance are removed,
as it is expected that during daylight hours, GHI value is greater
than zero [15]. Missing irradiance may signal a reset, or
recalibration during that period. The isnull() function from the
Pandas library was used to identify missing values.

D. Handling Outliers

This study makes use of the IQR method on variables to identify
outliers on the response variable. The lower and upper bounds
of the model are defined to be:
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IOR=03-01 (1
Lower: Q1-1.5%IQR (2)
Upper: Q3+1.5xI0R 3)

No outliers were identified on the 44861 records captured during
daylight hours implying there is no significant deviation on the
response variable. The RF model would not have been impacted
as much by outliers if they were present due to their ensemble
nature [17, 18]. However, models such as KNN that calculates
distances between points to make predictions would have been
impacted by potential biases introduced [18]. The absence of
outliers ensures a fair comparison of models as no bias is
introduced.

E. Conversions and Aggregations

The hourly solar irradiance data was transformed into monthly
averages by applying the resample() function in Pandas,
followed by calculating the mean using the mean() function. The
monthly data allows for easier identification of seasonal patterns
which is more meaningful in the context of this research as
described in the objectives and relevant literature. The final
dataset contains 114 monthly records ranging from January 2014
to July 2023.

F. Normalization

Z-score normalization was employed to standardize features in
the SAURAN dataset. This transformation ensures that features
have a mean of 0 and a standard deviation of 1, preventing
features from dominating the model due to differing ranges.
Equation

7 =2k (4)

where X represents an individual value in the dataset, p is the
mean and ¢ is the standard deviation of the data.

G. Variables Selection

Two approaches were employed to select variables for this
study. Firstly, variables from previous studies [6, 12, 13] which
are also available in the University of Pretoria SAURAN dataset
were considered. Secondly, a correlation plot on the SAURAN
dataset was utilized to visually summarize and analyze the
strength and direction of relationships between the response
variable and independent variables. Correlations are presented
in the table below:

TABLE I
CORRELATION BETWEEN KEY VARIABLES
Variable Correlation Value Range
strength

Temperature (°C) 0.46 0.45 - 37.47
Wind direction standard 0.36 1.16 -77.03
deviation (°)
Wind direction (°) 0,17 0.04 - 360.00
Month 0.07 1-12
Wind speed (m/s) 0.06 0.04 - 360.00
Pressure (mbar) -0.06 805.00 - 878.00
Relative Humidity (%) -0.36 5.09 - 99.70
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H. Exploratory Data Analysis

Exploratory data analysis was done in Python. The Pandas
library was used for data manipulation, NumPy for numerical
computing, Matplotlib for plotting, Seaborn for statistical
visualization, and Statsmodels for statistical modeling and
hypothesis testing.

1. The Response Variable

The Global Horizontal Irradiance (GHI) serves as the dependent
variable for predicting solar irradiance. Monthly trends reveal a
peak irradiance during the summer months, indicating their
suitability for optimal solar energy generation. Conversely,
winter months exhibit reduced solar irradiance. Analyzing these
monthly trends is crucial for optimizing energy designs,
influencing decisions regarding system size and required energy
storage capacity.

Monthly Solar Irradiance

Solar Irradiance (W/m~2)
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Fig. 2. Monthly solar irradiance.
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The figure below shows that solar irradiance exhibits significant
seasonal variations. This property exhibited by the solar
irradiance influences features selection, how training and
validation should be done, and which prediction models to be
considered as discussed in the methodology section.
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Fig. 3. Yearly solar irradiance.

2. Temperature

The following figure shows the relationship between
temperature and solar irradiance. There is a direct and positive
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relationship between temperature and the amount of solar energy
received at the Earth's surface. Temperature values are higher
during the summer season. The air is warmer, less dense and
allows for more efficient solar energy conversion in photovoltaic
panels. The sunlight hours are longer during summer seasons
and the angle of the Sun is more direct, leading to increased solar
radiation and warmer [20].

Relationship Between Tempreature and Solar Irradiance
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Fig. 4. Temperature vs Solar irradiance.

3. Wind Speed

The figure below reveals a significant correlation between
monthly wind speed and solar irradiance, not apparent in the
correlation table, suggesting a potential lead effect. Winter
months (June, July, and August) show the lowest average wind
speed during cooler temperatures. South Africa's transition from
winter to spring brings a shift in pressure systems, resulting in
more dynamic weather conditions, stronger winds, and the
observed relationship in the figure [11].

Relationship Between Wind Speed and Solar Irradiance
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Fig. 5: Monthly Wind Speed vs Solar irradiance.

4.  Wind Direction

The figure below shows the average monthly wind direction.
There is no clear pattern between wind direction and patterns of
solar irradiance. Studies by [19] mention that the two are
interconnected in various ways, and their relationship can be
influenced by other external geographical factors.
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Relationship Between Wind Direction and Solar Irradiance
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Fig. 6. Monthly Wind direction vs Solar irradiance.

5. Wind Direction Standard Deviation

The figure below indicates the correlation between wind
direction standard deviation and the response variable. June
has the lowest deviation, while March, April, and October
show the highest values, suggesting increased atmospheric
turbulence, impacting solar irradiance.

Relationship Between Wind direction standard deviation and Solar Irradiance
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Fig. 7. Monthly Wind direction standard deviation vs Solar irradiance

6.  Relative Humidity

The figure below shows the average relative humidity per
month. Humidity is lower between June and October, associated.
While a subtle correlation between solar irradiance and humidity
is noted, the study suggests that relative humidity may not be a
decisive factor in determining solar irradiance in the studied
location. Despite high relative humidity in December, January,
and February, the figure below indicates that June and October
have similar humidity levels, yet October exhibits significantly
higher solar irradiance, challenging the perceived importance of
relative humidity in solar irradiance determination [12, 13, 21].

Relationship Between Relative Humidity and Solar Irradiance
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Fig. 8. Relative Humidity vs Solar irradiance.
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7. Barometric Pressure

The graphical representation of monthly barometric pressure
below shows an inverse correlation between barometric pressure
and solar irradiance. An increase in barometric pressure tends to
correspond to a reduction in solar irradiance, and conversely, a
decrease in barometric pressure is associated with an increase in
solar irradiance.

Relationship Between Barometric Preasure and Solar Irradiance
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Fig. 9. Relative Humidity vs Solar irradiance.

Iv. MODEL SELECTION

Five machine learning models were examined and are described
below. The models were implemented using Python, leveraging
libraries such as Scikit-learn, TensorFlow, NumPy, Pandas,
Matplotlib, and Seaborn. These libraries are utilized to
implement KNN, RF, XGBoost, FFNN, and SVM algorithms.

A. Random Forest

The Random Forest (RF) model is chosen to model solar
irradiance data due to its capacity to handle non-linearity, rank
feature importance, and utilize ensemble learning [17]. For
continuous solar irradiance, RF forms forests by growing trees
based on a random vector ©, where each tree predictor h(x, ©)
yields numerical values [17]. The model provides feature
importance scores by permuting or shuffling independent
variables, assessing their impact on predictive accuracy. This
process is repeated for each predictor, and rankings are
determined based on the differences between accuracy using
original and the shuffled data [17]. Implemented using

RandomForestRegressor in scikit-learn, the RF model
undergoes hyperparameter tuning, resulting in optimal
parameters  {'max_depth None, 'min samples leaf: 1,

'min_samples_split: 2, 'n_estimators': 50}. These parameters
allow trees to grow without depth limits, prioritize precision per
leaf, and ensure robust decision-making with a minimum of two
samples required for splitting internal nodes. With 50 trees, the
model aims for a balanced complexity and ensemble diversity.

1. Handling Non-linearity

Solar irradiance is influenced by non-linear relationships that
exist between various weather conditions/environmental factors.
Random forest method makes use of its inherent characteristics
and the ensemble of decision trees to capture these non-
linearities [22].
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2. Addressing Limitations

While RF model is less prone to overfitting compared to other
models, it can still overfit the training data if the number of trees
is very high. This study makes a careful parameter tuning to
prevent any potential overfitting.

B.  k-Nearest Neighbors

The k-Nearest Neighbors (KNN) model, a lazy learner
technique, retains the training dataset for predictions and waits
until a test dataset is provided [18]. It predicts numerical targets
based on the average response of a predefined number k of
nearest neighbors. Cross-validation is employed in this study to
determine the optimal k value, considering the trade-off between
noise, stability, overfitting, and computational cost.

The KNN model, implemented in Python using
KNeighborsRegressor from scikit-learn, optimizes the choice of
k through GridSearchCV, resulting in optimal hyperparameters
{neighbors: 5, p: 1, weights: distance}. This setting considers
five nearest neighbors, uses the Manhattan distance metric (L1
norm), and employs a distance weighting scheme that gives
higher importance to closer neighbors, emphasizing local
patterns for precise solar irradiance predictions. The KNN
model's advantage lies in its ability to make minimal assumptions
about the underlying data distribution, making it suitable for
solar irradiance data with a lack of consistent fixed patterns
observed in time series data.

1. Non-linearity and Local Patterns

Solar irradiance involves non-linear and local patterns, where the
current irradiance level is influenced by seasonal weather
conditions and historical data. KNN becomes a good candidate
model to predict solar irradiance as it makes predictions based on
the k-nearest data points in the feature space.

2. Addressing Limitations

The KNN model is sensitive to outliers, impacting nearest
neighbors significantly [18]. Addressing outliers, as discussed in
Section 3, is crucial. While quick to implement, the model's
prediction time increases as it searches through all training set
points to find the nearest ones. For large datasets, KNN can be
slower than other regressions, prompting the use of a monthly
dataset instead of daily or hourly data to mitigate this limitation.

C. eXtreme Gradient Boosting

The XGBoost model, recognized for overcoming the limitations
of single machine learning models, operates as an ensemble
learning method. It combines multiple learners to create a single
model that incorporates results from various models, employing
a gradient boosting technique where trees are sequentially built
to reduce errors. The base learners in XGBoost are weak, and the
resulting model integrates them to form a robust learner that
minimizes both bias and variance.
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The XGBoost model undergoes hyperparameter tuning using
GridSearchCV, resulting in optimal parameters: {learning_rate:
0.2, max_depth: 3, n_estimators: 50}. A learning rate of 0.2
ensures cautious model adjustments, preventing overshooting,
while a depth limit of 3 maintains a balanced complexity to
capture essential patterns without overfitting. With 50
estimators, the model efficiently balances computational
resources and performance, making it valuable for effective
generalization in solar irradiance predictions.

1. Regularization

XGBoost incorporates built-in L1 and L2 regularization to
prevent overfitting by penalizing model complexity. This feature
enhances robust predictions, particularly when dealing with a
limited number of records in the dataset [23].

2. Addressing Limitations

XGBoost may overfit training data, especially with numerous
trees [23]. Cross-validation tunes hyperparameters and evaluates
generalization. XGBoost is sensitive to outliers, impacting
performance. Outliers are handled before model fitting to address
this weakness.

D. Feedforward Neural Network

In this study, the FFNN model is chosen for its effectiveness in
capturing intricate, non-linear patterns in data and its adaptability
to diverse data characteristics, enabling it to approximate any
continuous function for enhanced flexibility [24].

The FFNN model consists of an input layer, hidden layers, and
an output layer, processing data sequentially with neurons in
each layer utilizing activation functions on weighted inputs to
capture patterns in the response variable and its relationships
within the independent variables [24].

During training on solar irradiance data, the FFNN model adjusts
weights through backpropagation, minimizing the difference
between predicted and actual solar irradiance for improved
accuracy. Implemented in Python using TensorFlow's Keras
API, the FFNN model is wrapped in a scikit-learn pipeline using
the make_ pipeline function. It is compiled using the Adam
optimizer with a learning rate of 0.01, undergoing 100 epochs of
training with a batch size of 32. The optimal parameters include
an input layer matching the number of features, two hidden
layers with 512 and 256 neurons and ReL U activation function,
dropout applied in a layer with a 0.4 dropout rate, and an output
layer with a linear activation function for regression.

1. Generalization Capability

The backpropagation in training FFNN models optimizes the
neural network's weights to minimize the error or loss function.
This optimization process enables the FFNN model to capture
seasonal patterns of solar irradiance rather than memorizing
specific instances. The likelihood of the model demonstrating
effective generalization to new, unseen data is increased, whilst
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maintaining predictive consistency in both training and testing
data [24].

2. Addressing Limitations

FFNN model does not possess memory of past inputs which
might make it struggle with capturing the seasonal nature of
solar irradiance as each input is processed independently.
Considering the number of records available and the split
between training and testing data, this model has the potential to
rival other competing models.

E. Support Vector Regression

SVR is a type of support vector machine that is used for
regression tasks. It finds a function that best predicts the
continuous output value for a given input value. This research
uses Radial Basis Function (RBF) over a linear kernel as it
excels in capturing non-linear relationships, a crucial
characteristic for modelling seasonal patterns presents in solar
irradiance [25]. The SVR model is implemented in Python, and
it uses the GridSearchCV for hyperparameter tuning. The
identified optimal hyperparameters includes the regularization
parameter(C) of 100 and an epsilon of 0.001. The 'C' parameter
impacts the trade-off existing between a smooth decision
boundary and accurate fitting to the training data. A higher 'C'
value of 100 implies the model’s preference for accurate fitting,
while the low epsilon 0.001 implies narrow margin, which
enhances precision in predicting solar irradiance values.

1. Handling Non-linearity

SVR focuses on reducing a combined measure of errors during
training and a term that helps control complexity of the model
[25]. The inclusion of the RBF kernel is proficient in capturing
non-linear relationships which is crucial for modelling complex
patterns in solar irradiance data.

2. Addressing Limitations

The SVR model is sensitive to outliers and the choice of kernels
as their performance depends on the characteristics of the data.
This research work addresses outliers in Section 3 and a
comprehensive exploratory data analysis was done to understand
the characteristics of the data and a suitable kernel.

V. RESULTS AND DISCUSSION
A. Model results

The five models implemented are evaluated in terms of R2,
rRMSE and rMAE. Examination will focus on both the model's
sensitivity to data fluctuations (variance) and the error from a
model's simplifying assumptions, causing deviations from true
values (bias). A bias-variance trade-off is made when choosing a
better model with an optimal level of complexity that captures
underlying patterns without being overly influenced by noise.
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1. R-squared (R?)

R? is a statistical measure that depicts the proportion of the
variance for a dependent variable that is explained by an
independent variable or the percentage of variance for a
dependent variable that is explained by independent variables,
and it is given in the equation below [15].

2 SSR
R*=1- o7 (5)
where SSR is the sum of squared residuals and SST is the total
sum of squares. For the three machine learning models, the study
makes use of R? to understand the proportion of the variance in
the response variable that is explained by the combination of
predictor variables. This metric plays an important role in this
study as it assesses how well the model captures the relationships
between the response and predictor variables, considering both
linear and non-linear patterns. The table below shows the
performance of the model in terms of R? in both the training and
testing data:

TABLE II
R?RESULTS

Metric Model

R—gquared RF KNN | XGBoost | SVR | FFNN
(R9)

Training 0.986 0.997 0.997 0.964 0.895
data

Testing data 0.823 0.891 0.885 0.861 0.777

The five models exhibit effective generalization of the training
data well with KNN and XGBoost achieving the highest R?
implying that the model explains the entire variability in the
response variable using predictor variables when looking at the
data provided for training. FFNN model has the lowest R2,
showing its inability to explain variability in the response
variable using predictor variables when compared to other
models. The SVR model demonstrates consistent performance as
it achieves the lowest variance. The KNN maintain consistent
performance when applied to new, unseen testing data as it also
has a leading performance. KNN is considered the best model in
terms of R? followed by XGBoost as they strike a good balance
between bias and variance.

B. Relative RMSE

The rRMSE is a normalized measure of the accuracy of a
predictive model and it is found by dividing the RMSE by the
mean of the observed (actual) value in the dataset and
multiplying by 100 to express it as a percentage [21].

- |1 —0.)2
RMSE = ‘,n t=1(Fe = 0p) (6)
RMSE

Relative RMSE =
Mean(0)

x 100% )

where 7 is the number of observations, F; is the predicted value,
O, is the observed (actual) value, and Mean(0) is the mean of
the observed values. The table below shows the performance of
the model in terms of rRMSE in both the training and testing
data:
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TABLEIII in Section 3 and illustrated in Figure 5, emphasizing the
- RELATIVE RMSE RESULTS relationship between temperature and solar irradiance.

Metric Model

RMSE
TRMS RF KNN | XGBoost | SVR | FFNN TABLE V

FEATURE IMPORTANCE
Training data 2.12% 0.41% 0.95% 3.52% 5.70% Variables Importance
0,
Testing data__| 6.95% | 5.77% | 591% | 6.17% | 8.22% Temperature 42.45%
Wind direction Std Dev 14.34%

A model with the lowest values in terms of bias-variance trade- Barometric Pressure 12.11 %

off is considered the best. KNN perfectly generalized the training Month 10.75%

data without.an rRMSE error and achieves the best performance Wind Speed 10.24%

on the testing data. FFNN achieves the least favorable Relative Humidity 1011%

performance in both the training data, making it the least
favorable model to be used in solar irradiance forecasting.

Although FFNN has the unfavorable performance when
compared to other models, it is the most consistent model as it
has the lowest variance. The KNN model appears to strike a
good balance between bias and variance, as it performs well on
both training and testing data in terms of rRMSE and it is voted
the best model. XGBoost is considered the second-best model
as it also demonstrates strong performance across training and
testing datasets with.

C. Relative MAE

Mean Absolute Error (MAE) is a metric used to evaluate the
accuracy of a model's predictions. It is calculated as the average
of the absolute differences between the predicted and actual
values and the formula is shown below [15].

MAE =237, 0,~F, ®)

where 7 is the number of observations, F; is the predicted value,
and O, is the observed (actual) value. Relative Mean Absolute
Error (rMAE) is a variant of MAE that is often used in the context
of forecasting for easy comparison with previous studies [15]. It
expresses the MAE as a percentage of the average of the actual
values and is shown on the formula below:

MAPE = 2yn 19Fl 100 )
n Fr
TABLE IV
RELATIVE MAE RESULTS
Metric Model
rMAE RF | KNN | XGBoost | SVR | FFNN

Training data | 1.65% | 0.29% 0.75% 231% | 4.44%

Testing data 5.34% | 4.51% 4.74% 4.79% | 6.36%

The study evaluates the performance of machine learning
models, particularly highlighting KNN and the XGBoost model
as top performers in the testing data based on three metrics.
Permutation importance from scikit-learn is employed to assess
the significance of various weather factors in predicting solar
irradiance. This method involves shuffling the values of
individual weather features to observe their impact on the
model's predictive accuracy. The results reveal that temperature
emerges as the most influential variable in determining solar
irradiance, consistent with correlation strength results presented

D. Results Summary

The KNN model exhibited superior performance with an
rRMSE, tMAE, and R? of 5.77%, 4.51% and 0.89 respectively
on testing data. The KNN model’s distinguishing feature in
predicting solar irradiance lies in its adeptness in capturing
localized patterns and adjusting to diverse spatial dependencies
present in the SAURAN dataset. The predictions made are based
on the similarity of data points in the feature space, considering
the k-nearest neighbors to the query point. XGBoost model
emerged as the second-best performing model. FFNN model was
the lowest performing model. The figure below shows the
graphical view of how the KNN performance in predicting solar
irradiance.
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Fig. 10. KNN predictive performance.
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E.  Future Value Forecasting

The KNN model, identified as the most effective for predicting
solar irradiance, is employed in forecasting future values for the
next 13 months by initiating the sequence from the last month in
the dataset. To determine future feature values, this study adopts
an approach that considers both long-term patterns and short-
term variations in solar irradiance. The method involves
examining the midpoint between the averages of previous
months and contrasting it with the deviation observed in the most
recent month. This choice is informed by the need to account for
both long-term trends and short-term fluctuations, as exemplified
by a significant dip in solar irradiance observed in 2020 due to
lockdown conditions. The dip was associated with a reduction in
temperature between 2020 and 2021, influenced by decreased
heat emissions during lockdown measures [26]. The KNN model
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is then fitted with the estimated feature values, and the
forecasting results are presented below.

Solar Irradiance Forecasting
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Fig. 11. Solar irradiance forecasting.

F.  Suitability For Solar System Design and Financial
Decisions

The study demonstrates strong suitability for informing solar
system design and financial decisions, evident in the high R?
value of 0.89, rMAE of 4.51%, and rRMSE of 5.77% on the
testing data. The results, validated against the relevant literature,
showcase competitiveness and reliability. The research potential
to optimize energy production benefits both individual
commercial customers and the national grid, aiding in
loadshedding challenges and capacity planning for Eskom.
Additionally, it supports precise financial planning for solar
projects, offering insights into energy harnessing, facilitating
accurate return on investment estimation, and guiding financial
decisions for banks, businesses, and project developers.

VL CONCLUSION

This study focused on implementing and evaluating machine
learning models for predicting solar irradiance, aiming to inform
solar system design and financing decisions. RF, KNN, FFNN,
SVR, and XGBoost were assessed, with the KNN model
outperforming others, exhibiting a relative RMSE, relative MAE,
and R? of 5.77%, 4.51%, and 0.89, respectively, on testing data.
The evaluation involved a trade-off between bias and variance to
determine the best model among the five. Influential variables
included temperature, wind direction standard deviation, and
barometric pressure, contributing 42.5%, 14.34%, and 12.11%,
respectively. The KNN model emerged as a reliable asset for
solar energy system design and financial assessments in South
Africa. Future research avenues may explore the KNN model's
performance across multiple SAURAN datasets and investigate
the feasibility of a hybrid approach combining machine learning
and time series models for solar irradiance forecasting.

VIL DIRECTION FOR FUTURE STUDIES

Future studies in solar irradiance forecasting based on the
findings of this study and identified gaps in the relevant literature
can take two immediate directions. Firstly, focusing on the
diverse stations within SAURAN across Inland, Coastal, and
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Desert areas, researchers can assess the performance of the five
models explored in this study across datasets from these distinct
regions. This examination aims to provide practical insights into
model adaptability, robustness, and regional dependencies,
aiding in model selection for specific regions and contributing to
ongoing improvements in solar energy forecasting. Secondly,
future studies can strategically compare the performance of
various time series models with different machine learning
models, exploring the potential of hybrid models that integrate
both approaches. Hybrid models can leverage the strengths of
time series modelling in forecasting seasonal patterns and
machine learning models in interpreting complex non-linear data
dynamics.
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