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Solar Irradiance Forecasting for Informed Solar 
Systems Design and Financing Decisions 
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Abstract—This research presents the implementation and 
evaluation of machine learning models to predict solar irradiance 
(W/m²). The objective is to provide valuable insights for making 
informed decisions regarding solar system design and financing. A 
thorough exploratory data analysis was conducted on the Southern 
African Universities Radiometric Network (SAURAN) data 
collected at the University of Pretoria's station to gain insights into 
the patterns of solar irradiance over the past 10 years. Python's 
functions and libraries are utilized extensively for conducting 
exploratory data analysis, model implementation, model testing, 
forecasting, and data visualization. Random Forest (RF), k-Nearest 
Neighbors (KNN), Feedforward Neural Network (FFNN), Support 
Vector Regression (SVR), and eXtreme Gradient Boosting models 
(XGBoost) are implemented and evaluated. The KNN model was 
found to be superior achieving a relative Root Mean Squared Error 
(RMSE), relative Mean Absolute Error (MAE), and R-Squared 
(R2) of 5.77%, 4.51% and 0.89 respectively on testing data. The 
variable importance analysis revealed that temperature (℃) 
exerted the greatest influence on predicting solar irradiance, 
accounting for 44% of the predictive power. The KNN model is 
suitable to inform solar systems design and financing decisions. 
Directions for future studies are identified and suggestions for 
areas of exploration are provided to contribute to the advancement 
of solar irradiance predictions. 

Index Terms — k-Nearest Neighbors, Machine learning, 
Solar irradiance forecasting, Solar system design. 

I. INTRODUCTION

EVERE loadshedding in South Africa disrupts commercial 
operations leading some businesses to suspend production. 
In response to the challenges posed by loadshedding, the 
banking sector is implementing programs to offer financial 
support to enable the implementation of solar projects [1]. The 
banking sector's keen interest in South Africa is commendable 
due to the country's geographic location, providing it with 
ample opportunities to harness substantial solar energy. 

Stand-alone or off-grid solar systems have a potential to alleviate 
power challenges faced by South Africans. Although 
implementing these solar systems are costly, it will be 
worthwhile over a long period of time since they have minimal 
running costs. Designing and scaling solar systems (stand-alone 
or off-grid) requires an understanding of solar irradiance in the 
targeted location. Accurate solar forecasting, and precise solar 
systems, are essential factors in determining optimal financial 
models for solar projects. 

This work was not supported by any institution.  
Ronewa Mabodi is with the University of KwaZulu-Natal, Westville, Durban, 
4000 (email: ronewamabodi@gmail.com).  
Jahvaid Hammujuddy is with the University of KwaZulu-Natal, Westville, 
Durban, 4000 (email: Hammujuddy@ukzn.ac.za).  

The primary factor encountered when forecasting solar 
irradiance data is the presence of seasonality with fluctuations 
influenced by the Earth's axial tilt and orbit around the Sun [2]. 
This inherent seasonality in solar irradiance data necessitates the 
use of advanced analytical tools such as machine learning 
techniques and time series models to effectively capture patterns 
of solar irradiance variation over time [3, 4]. To address the 
existing challenges in forecasting solar irradiance, this study 
aims to adopt the machine learning approach wherein various 
machine learning models are implemented, and compared, 
based on their ability to grasp seasonal solar irradiance patterns, 
and forecasting future values. 

A. Objectives

The objective of this study is to conduct exploratory data analysis 
on solar irradiance data obtained from the Southern African 
Universities Radiometric Network (SAURAN). The 
investigation aims to explore the relationship between solar 
irradiance and various weather factors. Additionally, the study 
seeks to implement and evaluate the performance of different 
machine learning models documented in the existing literature, 
focusing specifically on their suitability in predicting seasonal 
solar irradiance patterns in South Africa. The selected models 
include Random Forest (RF), k-Nearest Neighbors (KNN), 
Feedforward Neural Network (FFNN), Support Vector 
Regression (SVR), and eXtreme Gradient Boosting (XGBoost). 
The study further aims to forecast future monthly solar 
irradiance, comprehend how solar irradiance can inform solar 
systems design and financing, and identify potential directions 
for future research. 

B. Significance of The Study

This research lays the groundwork for optimizing solar system 
designs, ensuring their accurate scaling to meet the energy 
consumption demands of customers. By providing valuable 
insights into solar energy forecasting and performance, the study 
contributes to informed investment and financing strategies 
within the solar energy sector. This not only reduces the risk of 
project delays and financial strain but also promotes long-term 
energy cost-savings and financial stability. The findings of this 
research have practical implications for enhancing the efficiency 
and sustainability of solar energy projects, ultimately supporting 
the growth and viability of the solar energy sector. 

II. LITERATURE REVIEW

A. Solar Irradiance Components

Solar irradiance represents the total solar energy received at 
the Earth's surface and can be classified into three types: 
Global Horizontal Irradiance (GHI), Direct Normal 
Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI) [4, 
5]. GHI combines both direct normal and diffuse horizontal 
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irradiance, accounting for the Sun's angle. Direct normal 
irradiance reaches the Earth's surface directly from the Sun, 
while diffuse irradiance results from scattering and reflection 
by atmospheric particles before reaching the surface. 

B. Solar Irradiance Studies

There is a growing interest in understanding the solar irradiance 
patterns in South Africa [6]. Several studies have been presented 
with focus on modelling the behavior of solar irradiance. 
SAURAN has taken an initiative to provide researchers in the 
country with access to data and fostering a deep understanding 
in this field [7]. 

Several researchers have identified time series models and 
machine learning models as adequate modelling techniques to 
predict the seasonal nature of solar irradiance. Time series 
modelling is found to be a reliable tool in forecasting seasonal 
data, while machine learning models have proven to be a good 
tool in forecasting any non-linear data [8, 9, 10]. A study by [9] 
made a comparison of machine leaning models and time series 
models such as Autoregressive Integrated Moving Average 
(ARIMA) and Seasonal Autoregressive Integrated Moving 
Average (SARIMA) in forecasting solar irradiance data [9]. The 
results of the study showed that modelling solar irradiance using 
machine learning models is more efficient than time series 
models.  

Reference [3] conducted a study utilizing seasonal solar 
radiation data from three stations in Malaysia to forecast solar 
irradiance. The hybrid SARIMA and Artificial Neural Network 
(ANN) model were employed for this purpose. The overall 
performance between ANN and SARIMA was closely related 
across the three regions. Notably, in the dataset from Kluang, 
Malaysia, the ANN model outperformed SARIMA in both Root 
Mean Squared Error (RMSE) and Mean Absolute Error (MAE). 

Reference [6] conducted a recent study, marking the first use of 
Long Short-Term Memory (LSTM) networks in the South 
African context for forecasting seasonal solar irradiance. The 
study analyzed the seasonal nature of solar irradiance and 
compared the performance of LSTM with Support Vector 
Regression (SVR) and Feedforward Neural Network (FFNN) 
models. Variable selection employed the Least Absolute 
Shrinkage and Selection Operator (LASSO). The results 
revealed that the FFNN model produced the most accurate 
forecasts, exhibiting superior performance in terms of both MAE 
and RMSE. 

Reference [12] used Brazil as a case study to predict solar 
irradiance using machine learning algorithms. The variables 
with high importance were found to be temperature, relative 
humidity, season, and cloud cover.  The study implemented SVR 
and ANN which were evaluated in terms of rMAE, rRMSE and 
R2.  

Reference [13] made prediction of solar irradiance using 
XGBoost model. The important variables were found to be 
temperature, relative humidity, and cloud cover. The models 

were evaluated in terms of rMAE, rRMSE and R2. 

Reference [14] predicted hourly solar irradiance from satellite 
data using LSTM, FFNN and XGBoost model. Performance of 
different models were compared on data captured in seven cities 
in India covering four different climatic conditions. The results 
of the study show that climate conditions of a particular region 
could be a factor in deciding the appropriate model. The 
variables with high importance were found to be temperature, 
relative humidity, pressure, and wind speed. The models were 
evaluated in terms of rRMSE. 

Reference [15] presented and compared the performance of 
different machine learning models for solar irradiance 
forecasting. The models used are the SVR, XGBoost, 
Categorical Boosting (CatBoost) and Voting-Average (VOA). 
Feature selection was based on Pearson coefficient, random 
forest, mutual information, and relief. Variables used in the 
study are temperature, relative humidity, wind speed, 
atmospheric pressure, and period (hour, day, and month). The 
models were evaluated in terms of rRMSE and R2. 

Relevant literature indicates that in predicting solar irradiance, 
essential variables include temperature, relative humidity, wind 
speed, pressure, and cloud cover. Variable importance is 
assessed through methods such as LASSO, Pearson coefficient, 
random forest, mutual information, and relief. Commonly 
considered machine learning models are RF, XGBoost, 
CatBoost, ANN, LTSM, FFNN, and SVR. Performance 
evaluation metrics include MAE, RMSE, and R2, with R2 values 
in the literature ranging from 0.81 to 0.93. Additionally, rRMSE 
values vary from 3.3% to 33.9% in the reviewed literature. 

III. METHODOLOGY

The research commences by establishing clear goals and 
objectives, followed by an extensive literature review to identify 
gaps in the field. Hourly solar irradiance data from the reliable 
SAURAN station in Pretoria is used. Data preprocessing, 
including cleaning and normalization, is performed to enhance 
data quality. Machine learning models are chosen based on 
literature review results and recommendations. These models 
undergo training and testing phases, with performance 
evaluation metrics such as rRMSE, rMAE, and R2. Model 
optimization is implemented for increased accuracy, and the 
results are thoroughly analyzed and interpreted in the context of 
solar irradiance forecasting and its impact on solar system design 
and financing decisions. Validation against existing literature 
ensures the reliability of the research findings, which are then 
documented comprehensively, providing a detailed report for 
reference and guiding future studies. 

A. Data Overview

The SAURAN dataset provides comprehensive solar irradiance 
data on both daily and hourly averages, covering a significant 
timeframe dating back to September 20, 2013 [7]. This dataset 
offers valuable insights into solar irradiance patterns and trends 
over a substantial period, enabling in-depth analysis and 
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understanding. The figure below depicts the geographical 
distribution of the SAURAN stations across South Africa.  

Fig. 1. Location of the dataset used in the study. 

The dataset comprises of 20 variables, including 19 continuous 
variables and one date variable, totaling 82,847 records. The 
target variable is Global Horizontal Irradiance (GHI), with 
44,861 records obtained between sunrise and sunset hours used 
in this study. Evening data are excluded as there is no direct solar 
radiation during this period, considered as noise that could 
introduce inaccuracies and inconsistencies into forecasting 
models, potentially reducing their reliability [14]. 

B. Data Splitting

The dataset is divided into a 70% training set and a 30% testing 
set, with the latter serving as a benchmark to evaluate model 
performance on new, unseen data. This split is conducted to 
prevent data leakage, where information from the testing dataset 
unintentionally influences the training of the machine learning 
model [16]. This precautionary measure ensures that the models 
are exposed only to relevant training data, enhancing their 
accuracy in generalizing to unseen solar irradiance data. The 
train_test_split function from the sklearn.model_selection 
library in Python is used to split the data.  

C. Missing Values

Missing values contribute to less than 1% (908 records) of the 
dataset. All records with missing values are excluded from the 
dataset. Additionally, records with zero irradiance are removed, 
as it is expected that during daylight hours, GHI value is greater 
than zero [15]. Missing irradiance may signal a reset, or 
recalibration during that period. The isnull() function from the 
Pandas library was used to identify missing values.  

D. Handling Outliers

This study makes use of the IQR method on variables to identify 
outliers on the response variable. The lower and upper bounds 
of the model are defined to be: 

IQR=Q3-Q1  (1) 
Lower: Q1-1.5×IQR  (2) 
Upper: Q3+1.5×IQR (3) 

No outliers were identified on the 44861 records captured during 
daylight hours implying there is no significant deviation on the 
response variable. The RF model would not have been impacted 
as much by outliers if they were present due to their ensemble 
nature [17, 18]. However, models such as KNN that calculates 
distances between points to make predictions would have been 
impacted by potential biases introduced [18]. The absence of 
outliers ensures a fair comparison of models as no bias is 
introduced. 

E. Conversions and Aggregations

The hourly solar irradiance data was transformed into monthly 
averages by applying the resample() function in Pandas, 
followed by calculating the mean using the mean() function. The 
monthly data allows for easier identification of seasonal patterns 
which is more meaningful in the context of this research as 
described in the objectives and relevant literature. The final 
dataset contains 114 monthly records ranging from January 2014 
to July 2023. 

F. Normalization

Z-score normalization was employed to standardize features in
the SAURAN dataset. This transformation ensures that features
have a mean of 0 and a standard deviation of 1, preventing
features from dominating the model due to differing ranges.
Equation

𝑍𝑍 = 𝑋𝑋−𝜇𝜇
𝜎𝜎  (4) 

where X represents an individual value in the dataset, μ is the 
mean and σ is the standard deviation of the data. 

G. Variables Selection

Two approaches were employed to select variables for this 
study. Firstly, variables from previous studies [6, 12, 13] which 
are also available in the University of Pretoria SAURAN dataset 
were considered. Secondly, a correlation plot on the SAURAN 
dataset was utilized to visually summarize and analyze the 
strength and direction of relationships between the response 
variable and independent variables. Correlations are presented 
in the table below: 

TABLE I 
CORRELATION BETWEEN KEY VARIABLES 

Variable Correlation 
strength 

Value Range 

Temperature (℃) 0.46 0.45 - 37.47 
Wind direction standard 
deviation (°) 

0.36 1.16 -77.03 

Wind direction (°) 0,17 0.04 - 360.00 
Month 0.07 1-12
Wind speed (m/s) 0.06 0.04 - 360.00 
Pressure (mbar) -0.06 805.00 - 878.00 
Relative Humidity (%) -0.36 5.09 - 99.70 
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H. Exploratory Data Analysis 

Exploratory data analysis was done in Python. The Pandas 
library was used for data manipulation, NumPy for numerical 
computing, Matplotlib for plotting, Seaborn for statistical 
visualization, and Statsmodels for statistical modeling and 
hypothesis testing. 

1. The Response Variable 
 

The Global Horizontal Irradiance (GHI) serves as the dependent 
variable for predicting solar irradiance. Monthly trends reveal a 
peak irradiance during the summer months, indicating their 
suitability for optimal solar energy generation. Conversely, 
winter months exhibit reduced solar irradiance. Analyzing these 
monthly trends is crucial for optimizing energy designs, 
influencing decisions regarding system size and required energy 
storage capacity. 
 

 
Fig. 2. Monthly solar irradiance. 

 
The figure below shows that solar irradiance exhibits significant 
seasonal variations. This property exhibited by the solar 
irradiance influences features selection, how training and 
validation should be done, and which prediction models to be 
considered as discussed in the methodology section. 
 

 
 Fig. 3. Yearly solar irradiance. 

 
 
 
 

2. Temperature 
 

The following figure shows the relationship between 
temperature and solar irradiance. There is a direct and positive 

relationship between temperature and the amount of solar energy 
received at the Earth's surface.  Temperature values are higher 
during the summer season. The air is warmer, less dense and 
allows for more efficient solar energy conversion in photovoltaic 
panels. The sunlight hours are longer during summer seasons 
and the angle of the Sun is more direct, leading to increased solar 
radiation and warmer [20].  
 

 
 Fig. 4. Temperature vs Solar irradiance. 

 
3. Wind Speed  

 
The figure below reveals a significant correlation between 
monthly wind speed and solar irradiance, not apparent in the 
correlation table, suggesting a potential lead effect. Winter 
months (June, July, and August) show the lowest average wind 
speed during cooler temperatures. South Africa's transition from 
winter to spring brings a shift in pressure systems, resulting in 
more dynamic weather conditions, stronger winds, and the 
observed relationship in the figure [11]. 
 

 
Fig. 5: Monthly Wind Speed vs Solar irradiance. 

 
4. Wind Direction  

 
The figure below shows the average monthly wind direction. 
There is no clear pattern between wind direction and patterns of 
solar irradiance. Studies by [19] mention that the two are 
interconnected in various ways, and their relationship can be 
influenced by other external geographical factors.  
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Fig. 6. Monthly Wind direction vs Solar irradiance. 

 
5. Wind Direction Standard Deviation   

 
The figure below indicates the correlation between wind 
direction standard deviation and the response variable. June 
has the lowest deviation, while March, April, and October 
show the highest values, suggesting increased atmospheric 
turbulence, impacting solar irradiance. 
 

  
Fig. 7. Monthly Wind direction standard deviation vs Solar irradiance 

 
6.  Relative Humidity  

 
The figure below shows the average relative humidity per 
month. Humidity is lower between June and October, associated. 
While a subtle correlation between solar irradiance and humidity 
is noted, the study suggests that relative humidity may not be a 
decisive factor in determining solar irradiance in the studied 
location. Despite high relative humidity in December, January, 
and February, the figure below indicates that June and October 
have similar humidity levels, yet October exhibits significantly 
higher solar irradiance, challenging the perceived importance of 
relative humidity in solar irradiance determination [12, 13, 21]. 
 

 
Fig. 8. Relative Humidity vs Solar irradiance. 

 

7. Barometric Pressure  
 

The graphical representation of monthly barometric pressure 
below shows an inverse correlation between barometric pressure 
and solar irradiance. An increase in barometric pressure tends to 
correspond to a reduction in solar irradiance, and conversely, a 
decrease in barometric pressure is associated with an increase in 
solar irradiance. 

 
Fig. 9. Relative Humidity vs Solar irradiance. 

 
 

IV. MODEL SELECTION  
 

Five machine learning models were examined and are described 
below. The models were implemented using Python, leveraging 
libraries such as Scikit-learn, TensorFlow, NumPy, Pandas, 
Matplotlib, and Seaborn. These libraries are utilized to 
implement KNN, RF, XGBoost, FFNN, and SVM algorithms. 

A. Random Forest 

 
The Random Forest (RF) model is chosen to model solar 
irradiance data due to its capacity to handle non-linearity, rank 
feature importance, and utilize ensemble learning [17]. For 
continuous solar irradiance, RF forms forests by growing trees 
based on a random vector Ɵ, where each tree predictor h(x, Ɵ) 
yields numerical values [17]. The model provides feature 
importance scores by permuting or shuffling independent 
variables, assessing their impact on predictive accuracy. This 
process is repeated for each predictor, and rankings are 
determined based on the differences between accuracy using 
original and the shuffled data [17]. Implemented using 
RandomForestRegressor in scikit-learn, the RF model 
undergoes hyperparameter tuning, resulting in optimal 
parameters {'max_depth': None, 'min_samples_leaf': 1, 
'min_samples_split': 2, 'n_estimators': 50}. These parameters 
allow trees to grow without depth limits, prioritize precision per 
leaf, and ensure robust decision-making with a minimum of two 
samples required for splitting internal nodes. With 50 trees, the 
model aims for a balanced complexity and ensemble diversity.  
 

1. Handling Non-linearity  
 

Solar irradiance is influenced by non-linear relationships that 
exist between various weather conditions/environmental factors. 
Random forest method makes use of its inherent characteristics 
and the ensemble of decision trees to capture these non-
linearities [22].  
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2. Addressing Limitations  

 
While RF model is less prone to overfitting compared to other 
models, it can still overfit the training data if the number of trees 
is very high. This study makes a careful parameter tuning to 
prevent any potential overfitting.  
 
 

B. k-Nearest Neighbors 

  
The 𝑘𝑘-Nearest Neighbors (KNN) model, a lazy learner 
technique, retains the training dataset for predictions and waits 
until a test dataset is provided [18]. It predicts numerical targets 
based on the average response of a predefined number 𝑘𝑘 of 
nearest neighbors. Cross-validation is employed in this study to 
determine the optimal 𝑘𝑘 value, considering the trade-off between 
noise, stability, overfitting, and computational cost.  
 
The KNN model, implemented in Python using 
KNeighborsRegressor from scikit-learn, optimizes the choice of 
𝑘𝑘 through GridSearchCV, resulting in optimal hyperparameters 
{neighbors: 5, p: 1, weights: distance}. This setting considers 
five nearest neighbors, uses the Manhattan distance metric (L1 
norm), and employs a distance weighting scheme that gives 
higher importance to closer neighbors, emphasizing local 
patterns for precise solar irradiance predictions. The KNN 
model's advantage lies in its ability to make minimal assumptions 
about the underlying data distribution, making it suitable for 
solar irradiance data with a lack of consistent fixed patterns 
observed in time series data.  
 

1. Non-linearity and Local Patterns  
 

Solar irradiance involves non-linear and local patterns, where the 
current irradiance level is influenced by seasonal weather 
conditions and historical data. KNN becomes a good candidate 
model to predict solar irradiance as it makes predictions based on 
the k-nearest data points in the feature space. 

 
2. Addressing Limitations 

 
The KNN model is sensitive to outliers, impacting nearest 
neighbors significantly [18]. Addressing outliers, as discussed in 
Section 3, is crucial. While quick to implement, the model's 
prediction time increases as it searches through all training set 
points to find the nearest ones. For large datasets, KNN can be 
slower than other regressions, prompting the use of a monthly 
dataset instead of daily or hourly data to mitigate this limitation. 

C. eXtreme Gradient Boosting 

The XGBoost model, recognized for overcoming the limitations 
of single machine learning models, operates as an ensemble 
learning method. It combines multiple learners to create a single 
model that incorporates results from various models, employing 
a gradient boosting technique where trees are sequentially built 
to reduce errors. The base learners in XGBoost are weak, and the 
resulting model integrates them to form a robust learner that 
minimizes both bias and variance.  
 

The XGBoost model undergoes hyperparameter tuning using 
GridSearchCV, resulting in optimal parameters: {learning_rate: 
0.2, max_depth: 3, n_estimators: 50}. A learning rate of 0.2 
ensures cautious model adjustments, preventing overshooting, 
while a depth limit of 3 maintains a balanced complexity to 
capture essential patterns without overfitting. With 50 
estimators, the model efficiently balances computational 
resources and performance, making it valuable for effective 
generalization in solar irradiance predictions. 
 
 

1. Regularization 
 

XGBoost incorporates built-in L1 and L2 regularization to 
prevent overfitting by penalizing model complexity. This feature 
enhances robust predictions, particularly when dealing with a 
limited number of records in the dataset [23]. 
 

2. Addressing Limitations 
 

XGBoost may overfit training data, especially with numerous 
trees [23]. Cross-validation tunes hyperparameters and evaluates 
generalization. XGBoost is sensitive to outliers, impacting 
performance. Outliers are handled before model fitting to address 
this weakness. 
 

D. Feedforward Neural Network 

 
In this study, the FFNN model is chosen for its effectiveness in 
capturing intricate, non-linear patterns in data and its adaptability 
to diverse data characteristics, enabling it to approximate any 
continuous function for enhanced flexibility [24].  
 
The FFNN model consists of an input layer, hidden layers, and 
an output layer, processing data sequentially with neurons in 
each layer utilizing activation functions on weighted inputs to 
capture patterns in the response variable and its relationships 
within the independent variables [24].  
 
During training on solar irradiance data, the FFNN model adjusts 
weights through backpropagation, minimizing the difference 
between predicted and actual solar irradiance for improved 
accuracy. Implemented in Python using TensorFlow's Keras 
API, the FFNN model is wrapped in a scikit-learn pipeline using 
the make_pipeline function. It is compiled using the Adam 
optimizer with a learning rate of 0.01, undergoing 100 epochs of 
training with a batch size of 32. The optimal parameters include 
an input layer matching the number of features, two hidden 
layers with 512 and 256 neurons and ReLU activation function, 
dropout applied in a layer with a 0.4 dropout rate, and an output 
layer with a linear activation function for regression. 
 

1. Generalization Capability 
 

The backpropagation in training FFNN models optimizes the 
neural network's weights to minimize the error or loss function. 
This optimization process enables the FFNN model to capture 
seasonal patterns of solar irradiance rather than memorizing 
specific instances. The likelihood of the model demonstrating 
effective generalization to new, unseen data is increased, whilst 
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maintaining predictive consistency in both training and testing 
data [24]. 
 

2. Addressing Limitations 
 

FFNN model does not possess memory of past inputs which 
might make it struggle with capturing the seasonal nature of 
solar irradiance as each input is processed independently. 
Considering the number of records available and the split 
between training and testing data, this model has the potential to 
rival other competing models. 
 

E. Support Vector Regression 

SVR is a type of support vector machine that is used for 
regression tasks. It finds a function that best predicts the 
continuous output value for a given input value. This research 
uses Radial Basis Function (RBF) over a linear kernel as it 
excels in capturing non-linear relationships, a crucial 
characteristic for modelling seasonal patterns presents in solar 
irradiance [25]. The SVR model is implemented in Python, and 
it uses the GridSearchCV for hyperparameter tuning. The 
identified optimal hyperparameters includes the regularization 
parameter(C) of 100 and an epsilon of 0.001. The 'C' parameter 
impacts the trade-off existing between a smooth decision 
boundary and accurate fitting to the training data. A higher 'C' 
value of 100 implies the model’s preference for accurate fitting, 
while the low epsilon 0.001 implies narrow margin, which 
enhances precision in predicting solar irradiance values. 

 
1. Handling Non-linearity  

 
SVR focuses on reducing a combined measure of errors during 
training and a term that helps control complexity of the model 
[25]. The inclusion of the RBF kernel is proficient in capturing 
non-linear relationships which is crucial for modelling complex 
patterns in solar irradiance data.  
 

2. Addressing Limitations  
 

The SVR model is sensitive to outliers and the choice of kernels 
as their performance depends on the characteristics of the data. 
This research work addresses outliers in Section 3 and a 
comprehensive exploratory data analysis was done to understand 
the characteristics of the data and a suitable kernel. 
 
 

V. RESULTS AND DISCUSSION 
 

A. Model results 

 
The five models implemented are evaluated in terms of R2, 
rRMSE and rMAE. Examination will focus on both the model's 
sensitivity to data fluctuations (variance) and the error from a 
model's simplifying assumptions, causing deviations from true 
values (bias). A bias-variance trade-off is made when choosing a 
better model with an optimal level of complexity that captures 
underlying patterns without being overly influenced by noise. 

1. R-squared (R2) 
 

R2 is a statistical measure that depicts the proportion of the 
variance for a dependent variable that is explained by an 
independent variable or the percentage of variance for a 
dependent variable that is explained by independent variables, 
and it is given in the equation below [15]. 
 
𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑆𝑆𝑆𝑆         (5) 
 
where SSR is the sum of squared residuals and SST is the total 
sum of squares. For the three machine learning models, the study 
makes use of R2 to understand the proportion of the variance in 
the response variable that is explained by the combination of 
predictor variables. This metric plays an important role in this 
study as it assesses how well the model captures the relationships 
between the response and predictor variables, considering both 
linear and non-linear patterns. The table below shows the 
performance of the model in terms of R2 in both the training and 
testing data: 
 

TABLE II  
R2 RESULTS 

Metric 
R-squared 
(R2)   

Model 
RF  KNN  XGBoost  SVR FFNN 

Training 
data   

0.986 0.997 0.997 0.964 0.895 

Testing data   0.823 0.891 0.885 0.861 0.777 
 
The five models exhibit effective generalization of the training 
data well with KNN and XGBoost achieving the highest R2 
implying that the model explains the entire variability in the 
response variable using predictor variables when looking at the 
data provided for training. FFNN model has the lowest R2, 
showing its inability to explain variability in the response 
variable using predictor variables when compared to other 
models. The SVR model demonstrates consistent performance as 
it achieves the lowest variance. The KNN maintain consistent 
performance when applied to new, unseen testing data as it also 
has a leading performance. KNN is considered the best model in 
terms of R2 followed by XGBoost as they strike a good balance 
between bias and variance.  
 

B. Relative RMSE 

 
The rRMSE is a normalized measure of the accuracy of a 
predictive model and it is found by dividing the RMSE by the 
mean of the observed (actual) value in the dataset and 
multiplying by 100 to express it as a percentage [21]. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛

∑ (𝐹𝐹𝑡𝑡 − 𝑂𝑂𝑡𝑡)2𝑛𝑛
𝑡𝑡=1       (6) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂) × 100%          (7) 

 
where n is the number of observations, 𝐹𝐹𝑡𝑡  is the predicted value, 
𝑂𝑂𝑡𝑡  is the observed (actual) value, and  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂) is the mean of 
the observed values. The table below shows the performance of 
the model in terms of rRMSE in both the training and testing 
data: 
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TABLE III 
RELATIVE RMSE RESULTS 

Metric 
rRMSE 

Model 

RF KNN XGBoost SVR FFNN 

Training data 2.12% 0.41% 0.95% 3.52% 5.70% 

Testing data 6.95% 5.77% 5.91% 6.17% 8.22% 
 
A model with the lowest values in terms of bias-variance trade-
off is considered the best. KNN perfectly generalized the training 
data without an rRMSE error and achieves the best performance 
on the testing data.  FFNN achieves the least favorable 
performance in both the training data, making it the least 
favorable model to be used in solar irradiance forecasting.  
 
Although FFNN has the unfavorable performance when 
compared to other models, it is the most consistent model as it 
has the lowest variance.  The KNN model appears to strike a 
good balance between bias and variance, as it performs well on 
both training and testing data in terms of rRMSE and it is voted 
the best model.  XGBoost is considered the second-best model 
as it also demonstrates strong performance across training and 
testing datasets with.  

C. Relative MAE 

 
Mean Absolute Error (MAE) is a metric used to evaluate the 
accuracy of a model's predictions. It is calculated as the average 
of the absolute differences between the predicted and actual 
values and the formula is shown below [15]. 
 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∑ 𝑂𝑂𝑡𝑡 − 𝐹𝐹𝑡𝑡

𝑛𝑛
𝑖𝑖=1      (8) 

 
where n is the number of observations, 𝐹𝐹𝑡𝑡  is the predicted value, 
and 𝑂𝑂𝑡𝑡  is the observed (actual) value. Relative Mean Absolute 
Error (rMAE) is a variant of MAE that is often used in the context 
of forecasting for easy comparison with previous studies [15]. It 
expresses the MAE as a percentage of the average of the actual 
values and is shown on the formula below:   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛

∑  |𝑂𝑂𝑡𝑡−𝐹𝐹𝑡𝑡|
𝐹𝐹𝑡𝑡

𝑛𝑛
𝑖𝑖=1  × 100    (9) 

 
 

TABLE IV 
RELATIVE MAE RESULTS 

Metric 
rMAE  

Model 
RF KNN XGBoost SVR FFNN 

Training data   1.65% 0.29% 0.75% 2.31% 4.44% 
Testing data   5.34% 4.51% 4.74% 4.79% 6.36% 
 
The study evaluates the performance of machine learning 
models, particularly highlighting KNN and the XGBoost model 
as top performers in the testing data based on three metrics. 
Permutation importance from scikit-learn is employed to assess 
the significance of various weather factors in predicting solar 
irradiance. This method involves shuffling the values of 
individual weather features to observe their impact on the 
model's predictive accuracy. The results reveal that temperature 
emerges as the most influential variable in determining solar 
irradiance, consistent with correlation strength results presented 

in Section 3 and illustrated in Figure 5, emphasizing the 
relationship between temperature and solar irradiance. 
 

TABLE V 
FEATURE IMPORTANCE 

Variables Importance 
Temperature 42.45% 
Wind direction Std Dev 14.34% 
Barometric Pressure 12.11 % 
Month 10.75% 
Wind Speed 10.24% 
Relative Humidity 10.11% 

 

D. Results Summary   

The KNN model exhibited superior performance with an 
rRMSE, rMAE, and R2 of 5.77%, 4.51% and 0.89 respectively 
on testing data. The KNN model’s distinguishing feature in 
predicting solar irradiance lies in its adeptness in capturing 
localized patterns and adjusting to diverse spatial dependencies 
present in the SAURAN dataset. The predictions made are based 
on the similarity of data points in the feature space, considering 
the k-nearest neighbors to the query point. XGBoost model 
emerged as the second-best performing model. FFNN model was 
the lowest performing model. The figure below shows the 
graphical view of how the KNN performance in predicting solar 
irradiance.  
 

Fig. 10. KNN predictive performance. 
 

E. Future Value Forecasting  

 
The KNN model, identified as the most effective for predicting 
solar irradiance, is employed in forecasting future values for the 
next 13 months by initiating the sequence from the last month in 
the dataset. To determine future feature values, this study adopts 
an approach that considers both long-term patterns and short-
term variations in solar irradiance. The method involves 
examining the midpoint between the averages of previous 
months and contrasting it with the deviation observed in the most 
recent month. This choice is informed by the need to account for 
both long-term trends and short-term fluctuations, as exemplified 
by a significant dip in solar irradiance observed in 2020 due to 
lockdown conditions. The dip was associated with a reduction in 
temperature between 2020 and 2021, influenced by decreased 
heat emissions during lockdown measures [26]. The KNN model 
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is then fitted with the estimated feature values, and the 
forecasting results are presented below. 
 

 
Fig. 11. Solar irradiance forecasting. 

 

F. Suitability For Solar System Design and Financial 
Decisions 

The study demonstrates strong suitability for informing solar 
system design and financial decisions, evident in the high R2 
value of 0.89, rMAE of 4.51%, and rRMSE of 5.77% on the 
testing data. The results, validated against the relevant literature, 
showcase competitiveness and reliability. The research potential 
to optimize energy production benefits both individual 
commercial customers and the national grid, aiding in 
loadshedding challenges and capacity planning for Eskom. 
Additionally, it supports precise financial planning for solar 
projects, offering insights into energy harnessing, facilitating 
accurate return on investment estimation, and guiding financial 
decisions for banks, businesses, and project developers. 
 
 

VI. CONCLUSION 
 
This study focused on implementing and evaluating machine 
learning models for predicting solar irradiance, aiming to inform 
solar system design and financing decisions. RF, KNN, FFNN, 
SVR, and XGBoost were assessed, with the KNN model 
outperforming others, exhibiting a relative RMSE, relative MAE, 
and R2 of 5.77%, 4.51%, and 0.89, respectively, on testing data. 
The evaluation involved a trade-off between bias and variance to 
determine the best model among the five. Influential variables 
included temperature, wind direction standard deviation, and 
barometric pressure, contributing 42.5%, 14.34%, and 12.11%, 
respectively. The KNN model emerged as a reliable asset for 
solar energy system design and financial assessments in South 
Africa. Future research avenues may explore the KNN model's 
performance across multiple SAURAN datasets and investigate 
the feasibility of a hybrid approach combining machine learning 
and time series models for solar irradiance forecasting. 
 

VII. DIRECTION FOR FUTURE STUDIES 
 
Future studies in solar irradiance forecasting based on the 
findings of this study and identified gaps in the relevant literature 
can take two immediate directions. Firstly, focusing on the 
diverse stations within SAURAN across Inland, Coastal, and 

Desert areas, researchers can assess the performance of the five 
models explored in this study across datasets from these distinct 
regions. This examination aims to provide practical insights into 
model adaptability, robustness, and regional dependencies, 
aiding in model selection for specific regions and contributing to 
ongoing improvements in solar energy forecasting. Secondly, 
future studies can strategically compare the performance of 
various time series models with different machine learning 
models, exploring the potential of hybrid models that integrate 
both approaches. Hybrid models can leverage the strengths of 
time series modelling in forecasting seasonal patterns and 
machine learning models in interpreting complex non-linear data 
dynamics. 
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