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Abstract—Livestock farms in Kenya face pressure to increase
productivity amid rising global population. Cattle farming dom-
inates, but small to medium-sized farms struggle with cattle
insemination. Currently, visual observation is used for heat
detection, with farmers maintaining farm journals. Modern
methods utilizing sensors to improve estrus prediction are time-
consuming, costly and need constant internet connection. This
research proposes a novel approach—the use of an on-controller
machine learning algorithm— for estrus prediction in cattle.
Motion and temperature data was collected from two zero-grazed
multiparous Holstein Friesian cows in Kiambu County, Kenya
for 11 months. The data was cleaned and stored. Movement
intensity profiles were derived by root-mean-squaring directional
accelerometer values and averaging this over time. Validation
was performed by observing cow behavior for indicators such
as restlessness, mounting, and vulva swelling, with farmer pre-
dictions documented in their records. The collected data was
then used to train a machine learning algorithm, with several
models tested, and a neural network emerged as the best fit.
The TensorFlow library facilitated the implementation of the
algorithm on a microcontroller, allowing for the development
of an animal tag featuring the ML algorithm. Results demon-
strated 83.9% sensitivity, 89.0% specificity and 89.5% accuracy
in detecting estrus, compared to farmer’s visual observation,
which had only 37% sensitivity. These findings underscore the
potential to integrate machine learning into Precision Livestock
Farming for estrus prediction, with prediction occurring directly
on the animal tag offline. This integration holds promise for
farmers, notably heightened insemination success rates, without
necessitating significant financial investment.

Index Terms—Estrus prediction, livestock, machine learning,
neural networks, zero hunger.

I. INTRODUCTION

L IVESTOCK forms a significant part of Kenya’s economy
with food products contributing up to 27% of total

agricultural output [1]. Of the 4.7 million Kenyan households
that rear livestock, 939,916 rear dairy exotic cattle, 167,625
rear beef exotic cattle, and 2,260,439 rear indigenous cattle,
accounting for more than 71% of all livestock [2]. Cattle
produce a wide variety of consumable products such as meat,
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milk, ghee, and other forms of butter, as well as non-food
products such as skins, fiber, fertilizer and fuel. In many
communities, cattle are also used as a means for capital
accumulation, as animals grow in weight and value over time.
With world population growing to more than 10 billion in
the next 3 decades, and a significant amount of this growth
happening in developing countries like Kenya [2], there is
increasing demand for cattle products.

Cattle farmers rely on successful insemination to increase
their herd sizes and improve quality of the breeds. Successful
reproduction requires the insemination of the cow during
a defined window related to a period of sexual receptivity
(known as estrus) [3]. Detecting estrus is extremely important
for any farm as it increases the chances of successful impreg-
nation. This leads to an improvement of herd performance.
This metric (herd performance) is evaluated using a metric
called the calving interval (CI), that is the period between
subsequent calving, measured in months [4]. Cattle farms
in Kenya are typically small to medium scale with herd
sizes of between 1 and 50 animals. Currently, most processes
within the farm are conducted manually, except for milking
and slaughtering of animals, which are increasingly getting
mechanized [5].Farmers still visually observe and inspect their
animals to observe any changes in behavior that may indicate
estrus and thereafter call the inseminators or serve the cow
with bulls. Veterinary officers and livestock extension officers
are widely utilized to further determine whether cattle are on
heat. Tail-painting, chin ball markers, use of teaser animals and
progesterone tests are also used to get an indication of estrus.
Visual observations involve monitoring of the cow by the
farmer or a trained observer to try and recognize signs of heat.
These signs could include mounting other animals, standing
to be mounted, smelling, or following other animals, nervous
or excitable behavior and mucous discharge. Furthermore, in
some farms, cattle records are maintained where insemination
dates, animal cycles and projected calving dates are recorded
and monitored. The failure to inseminate their livestock at the
right time, or the failure to detect diseases within their herd
might lead to significant losses for the farmer. This is because
farmers enjoy minimal profit per animal in livestock farming
[6] and as such, without precision in livestock monitoring, the
little margins that they enjoy are further squeezed.

Several studies have examined the efficiency of prediction
of estrus by manual observation. Here, efficiency (also known
as sensitivity) is defined as the percentage of possible estruses
that were observed over a given period [7]. At-taras et al [8]
examined the extent to which estrus could be detected by visu-
ally observing cows for climbing behavior. Observations from
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this study demonstrated that the method was time consuming
and achieved an efficiency of 54.7%. In a similar study, Liu
and Spahr [9] studied herders detecting estrus by observing for
signs during feeding, milking, breeding, and cleaning times. In
this study, the manual methods showed an average of 57.6%
sensitivity in the prediction of estrus. Miciakova et al [10]
and Kastelic [11] both presented that visual observation led to
recognition of less than 50% of estrus cycles.

The efficiency arising from visual observation is further
affected by the fact that animals are mostly monitored twice
daily in typical farm operation. Sometimes, the animal might
demonstrate signs of heat at night without the presence of
the observer. Research shows that the likelihood of cows
demonstrating heat signs between 6 pm and 6 am (night-time)
is a staggering 68% [12].

Tail painting and chin ball markers are techniques that
involve the use of a pigment applied on the tail of the animal,
or on the bottom of the halter of a teaser animal. An attempt
to mount another animal would leave a resulting mark on the
animal, which can be taken as an indicator of estrus [13].
Teaser animals are male animals that have been vasectomized
to prevent their ability to reproduce. These animals are allowed
to mingle with the herd. By observation, the animals which
they mount can be perceived to be on heat. These methods
possess cannot be utilized where the farmer has a single
animal or employs a zero grazing system where animals do not
interact with each other. In these cases, there is no opportunity
for animals to mount each other, and therefore no indicators
would appear.

Precision livestock farming (PLF) is defined as the use
of information and communication technologies for improved
control of fine-scale animal and physical resource variability
to optimize economic, social, and environmental dairy cattle
farm performance [11]. PLF technologies have developed
significantly as a means of ensuring increased output and
reduction of losses in livestock agriculture. Methods that
utilize technology to varying extents have emerged in recent
years. An example is the HeatWatch™ that comprises of a
small digital radio transmitter glued to the animal’s tail. The
system utilizes a LoraWAN [14] network to transmit data
each time there is a mount to a small radio receiver in the
proximity of the animal. Data is generated on each mount
and can be analyzed to derive meaning. Pedometers have also
been used to determine estrus in animals. The number of steps
taken by a cow in estrus is reported to be about two to four
times its regular activity [15]. The use of these pedometer
systems coupled with storage and processing technology has
allowed the ability to create a benchmark of normal activity
against which variations can be observed. These variations
are analyzed alongside other factors to determine whether
the animal is on estrus. One such example is the Heatime™
system [16] which utilizes a three-dimensional accelerometer
on an animal tag. The tag monitors the animal’s movement
and movement intensity and produces a dimensional activity
index. This index is stored or transmitted and can be further
analyzed.

Collecting this data is critical as the number of independent
readings made by a sensor system can affect the quality of data

collected. Excessive readings lead to a bloated dataset, which
makes data transmission expensive and leads to increased
use of resources such as battery life and transmission costs.
The number of readings obtained per unit time are affected
by the nature of the specific parameter being measured. For
animal motion, multiple readings are required per second to
generate an accurate profile of the motion of an animal [17].
For temperature measurement, a few readings a minute may
suffice [18].

Most sensors give readings in the form of a range of
analog values between a minimum and maximum value.
These readings are converted into understandable values that
make sense through conversion. For a temperature sensor
for example, a look up table can be used to match analog
sensor values to the corresponding temperature values [19].
However, in most PLF systems, the trend of change of the
value being measured is more consequential than the actual
values recorded. Furthermore, the end user is mostly concerned
with the prediction derived from the system and does not
care about the specific temperature of the animal at any time.
Therefore, it may be prudent to avoid doing the laborious
conversion and utilize the raw values obtained from the
sensor. This reduces on processing time and leads to increased
battery capacity. Another example can be seen in Heatime’s
application. Rather than translate accelerometer readings into
understandable metrics, for example, number of head bobs,
the sensor readings are simply measured in their raw form
and a metric called movement intensity is derived. This is
the amount of movement recorded per unit time, irrespective
of its direction or nature [20]. By averaging over extended
periods of time, the effect of abnormal values such as spikes,
errant readings or jerked animal movements on the data can
be minimized.

PLF systems are often low power remote systems due to
their areas of application. Transmission of the data collected
from sensor systems is critical to the success of these systems.
However, due to the limited battery capacity and the need to
reduce on transmission costs, PLF systems are seeing more
and more use of edge computing. Intflow™ for example,
utilizes on-site cameras and an on-site AI capable device.
The cameras record eating and motion habits of the animals
being monitored. Rather than transmit this information to an
internet-based server, the information is transmitted to a local
device. The device then generates prediction based on the input
parameters. This prediction is what is transmitted to the output
and farmer’s devices [21].

The use of Machine Learning (ML) in livestock manage-
ment has grown significantly in recent years. This technology
allows for better inferencing and prediction of animal con-
ditions based on raw data. ML allows for the identification
of patterns (that would otherwise be missed) and association
of these patterns with different conditions. Milan et al [22]
demonstrated the usefulness of ML algorithms in the detection
of animal behavior. This research shows that even in the
same environment, different animals will demonstrate different
characteristics due to biological differences. As such the
learning characteristic of ML applications makes it easy to
analyze each animal individually and derive a prediction.
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Typical animal monitoring systems that exist utilize a cloud-
based infrastructure to generate a prediction. Animal tags can
be used to collect data, and relay this through a gateway or
directly to the internet, where analysis of the data happens.
The output is published on a dashboard visible to the farmer
[23]. For the farmer, this necessitates the purchase of not
only the animal tag, but the communication infrastructure,
an internet connection as well as access to the specialized
dashboards, all of which are costly. Manufacturers will also
often impose high minimum order quantities, sometimes as
high as 100 tags, rendering it inaccessible for small–scale
farmers. Manual approaches currently utilized in the detection
of estrus are time-consuming and labor intensive yet lack
sufficient accuracy to be reliable. There is need to employ
PLF solutions in the detection of estrus for local farms.
However, the technological solutions available in the market
are expensive and inaccessible to most farmers especially in
developing nations. This research aims to address these gaps
by proposing a cost-effective alternative solution that utilizes
an ML algorithm in the prediction of estrus. It explores a novel
approach by implementing an on-controller algorithm aimed at
ensuring minimal cost of technology while greatly improving
the sensitivity and accuracy of predicting the estrus period
of cattle, effectively increasing the profitability of livestock
farmers. This study is part of a larger research on the overall
prediction of health of animals using ML and the Internet of
Things (IOT).

II. METHODOLOGY

A. Overview

This section presents an account of the methodology em-
ployed in the study. Due to a fundamental scarcity of publicly
accessible datasets related to livestock health that could be
used to train ML algorithms, it was necessary to develop an
initial data collection system to facilitate the collection of
initial data that could be used for training of ML algorithms.
This collected data was then processed into a machine-learning
dataset. Several algorithms were tested, and based on several
design criteria, a functioning ML algorithm was selected. A
new system was designed with the ML algorithm incorporated
within the microcontroller system. This system was deployed
on the cattle and estrus predictions obtained. These results
were compared with other currently utilized methods of estrus
detection. An overview of these steps is shown in Figure 1.

Observations for this study were conducted in a dairy farm
in Kiambu County, Kenya. Due to financial and time con-
straints, data was collected from two multiparous (5 counts, 4
counts) Holstein Friesian cows aged 7 and 8 years respectively.
The cows were enrolled in the study between July 2022 and
August 2023. The cows were housed in a covered common
free stall pen with grooved concrete alleys for waste and water
direction. This protected the animals from extreme wind or
weather. Both animals had continuous access to water in each
pen and shared a feeding area. Both cows were fed and milked
daily, with milking happening twice a day between 06:00 HRS
- 08:00 HRS and between 16:00 HRS – 18:00 HRS. Both
animals were fed on the same food and diet throughout the

study. Similarly, both animals were examined by a veterinary
officer to exclude pregnancy or any major ailments before
the study began. During the entire duration of the study, the
animals were not inseminated or allowed access to a male
for purposes of mating. Only after adoption of the technology
would the animals be served when they came on heat.
All experimental activities undertaken in the study were non-
intrusive in nature and did not cause any pain, distress,
prolonged discomfort, or bodily harm to the animals. The
study was conducted in accordance with the Prevention of
Cruelty to Animals Act (Cap. 360) of the Laws of Kenya.

B. System Design

An initial system was developed to collect animal data. It
was observed that several parameters could be collected from
the cattle that could predict estrus [24]. These parameters were
compared and scored based on several factors including ease
and cost of measurement, possibility of continuous monitoring
of the parameter and how intrusive the measurement would be.
This scoring is shown in Table 1.

By merit, body temperature and activity level were settled
on as the parameters to be studied in this study. An animal
tag system was then designed, to be placed on the animal, to
measure and record this data. The key design considerations
that the system needed to meet included:

1) Design consideration 1: The system must be able to
read temperature and movement data continuously on
the animal.

2) Design consideration 2: The system must be cheap
enough to be economically viable in a livestock farm
setting.

3) Design consideration 3: The tag must be light and
comfortable enough to be carried by the animal without
significant stress.

4) Design consideration 4: The system must be able to
remain powered for a sufficient duration to allow for
continuous monitoring.

5) Design consideration 5: The system must be dirt and rust
resistant and should have an animal-friendly design.

To achieve these design considerations, an animal tag was built
on top of Arduino Pro Micro™, a miniature microcontroller
system preferred due to its small size(18mm by 48mm), cheap
cost (around 8 USD) as well as function-ability. The tag uti-
lized the LM35 temperature sensor [25] to obtain temperature
readings from the animal, and an ADXL ultra-low power, 3-
axis accelerometer to record the animal’s motion. A local SD
card shield was utilized with a memory card housed on the
tag. A real time clock (RTC) system was included to ensure
the system kept record of time. The various components were
assembled as shown in Fig. 2.

C. Power Calculations

As per design considerations 1 and 4, it was necessary
that the system could remain powered continuously to provide
uninterrupted data. A worker on the farm was present at the
cow-pen twice a day for milking, feeding and cleaning, and
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Fig. 1. Process overview showing steps undertaken to achieve the methodology.

TABLE I
ANALYSIS OF VARIOUS PARAMETERS FOR ANIMAL MONITORING

Criterion Weight Body
temp

Activity
level

Heart
Rate

Respiration Food
Intake

Gait Body
Weight

Ease of measurement 0.25 5 5 3 3 3 2 4
Cost of measurement 0.25 4 4 3 3 2 3 5
Continuous measurement 0.1 5 5 4 4 2 2 3
Level of intrusion 0.4 5 5 2 2 5 3 2
Total Score 1 4.75 4.75 2.7 2.7 3.45 2.65 3.35

Fig. 2. Assembly of electronic components.

as such, could change the batteries once on the device within
this interval. A safety factor of 2 was applied, and the system

was therefore designed to stay on for 2 days (48 hours)
before recharging or replacing the battery pack. The power
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TABLE II
POWER CONSUMPTION OF THE SENSOR SYSTEM

Component Current
(mA)

Voltage
(V)

Power
(mW)

Arduino Pro Micro 50 5 250
DCM01 - Power Supply 1.2 2 2.4
ADXL 345 Accelerometer 0.02 2.5 0.06
Contact Temp Sensor 0.012 5 0.06
ADC Converter MCP3008 0.55 5 2.75
Real Time Clock 0.5 5 2.5
Display 70 5 350

Total 122.285 607.77

consumption of the tag was tabulated from the consumption
of the individual components as shown in Table II.
Battery capacity, C (mAh) was calculated as shown in (1)

C =
P × T × 103

N × V
(1)

where P was power consumption (mW), T was the time the
system needed to stay on, N was the number of batteries and V
was the voltage of each cell. For a 2 – cell battery pack, each
3.7 volts, 3900 mAh was the required capacity to sufficiently
run the system. 5000 mAh batteries were therefore selected to
power the tag.

D. Tag Positioning

It was imperative to appropriately position the tag to ensure
that sufficient data was collected. Various positions were tested
and compared based on the following criteria:

• Level of comfort to the animal.
• The presence of a thermal window [26] that would allow

for accurate temperature measurements.
• Attachment of temperature sensor to the animal body.
• Exposure to dirt and possible microbial contamination.
• Accuracy of movement data obtained.

Temperature measurement at a thermal window allowed for the
concise measurement of body temperature. At these windows,
there would be minimal influence of external factors on the
temperature measurement obtained [27].

Due to availability, tag position testing was done on a herd
of Zebu cattle of similar size and stature as the animals under
study. Three body positions were tested. These were: the cow’s
neck (collar), the cow’s hind leg, and the cow’s head and
nasal area (halter). Casings were designed for each of these
positions using Computer Aided Design (CAD) software and
later printed using 3D printing technology. Overall, each tag
cost around 50 USD. For the neck position, a simple cuboid
design of 100 mm (length) by 100 mm (width) by 50 mm
(height) was realized for the tag casing. A groove was inserted
at the bottom for a collar to pass through and hold the tag in
place. A slot was designed for the temperature sensor. This
was designed to be in contact with the cow’s skin to ensure
valid temperature readings can be obtained. The accelerometer
was placed within the compartment on the circuit board. Fig.
3a. shows the positioning of the tag on the cow’s neck.

TABLE III
COMPARISON OF VARIOUS SENSOR POSITIONS

Parameter Position

Neck (collar) Hind leg Halter
Level of comfort 4 2 5
Presence of a thermal window 4 3 5
Attachment of the sensor 2 3 5
Exposure to dirt and bacteria 4 1 4
Quality of movement data 2 4 5
Average tally 3.2 2.6 4.8

It was observed within this position that the tag could not
be tightened extremely as it would hinder the food passage
(oesophagus) and airway (trachea) of the animal. As such,
the tag remained loosely hanging on the neck of the cow.
This hindered the ability to collect temperature data as the
sensor failed to properly adhere to the skin of the cow. For
the hind leg position, a curved design was realized. This
created a more ergonomic fit for the animal, with the tag
taking the natural shape of the cow’s hind leg. Similar to the
neck design, the temperature sensor was wedged within the
portion of the system that maintained physical contact with
the cow. The accelerometer also retained its position within
the compartment on the circuit board. The tag was printed in
Thermoplastic Polyurethane (TPU) material which is flexible,
to allow for the design and subsequent positioning as shown
in Fig. 3b. With the halter position, a more flexible design
approach was adopted. The length of the halter allowed for
spacing out of the tag components. The temperature sensor was
placed on the tip of a nose ring fixture such that it maintained
constant contact with the nasal passage. TPU material was
used to ensure the tag did not injure the cow’s nose. The
battery pack was also positioned further back on the halter,
so the tag did not weigh too much at a single point. The
positioning is shown in Fig. 3c.

Table III shows the results obtained from these positioning
tests. These were graded on a scale of 1 – 5 with 1 representing
the least ideal situation and 5 representing a perfect fit. These
ratings were made by means of subjective observation by the
authors of the study. The particularly low score in comfort at
the hind leg was due to the resting position of the animal.
When the animal assumed a sternal recumbent position, the
placement of the tag would create discomfort as it was pressed
up against the cow’s abdomen. Attachment of the sensor was
particularly poor at the neck area due to the constant falling
of the sensor due to the narrow width of the animal’s neck
ridge. The halter was selected as the final positioning for the
data collection system due to its overall merit as shown.

E. Data Collection

Data related to body temperature and motion was collected
from the sensor system. X, Y and Z positions were collected
from the accelerometer, and instantaneous acceleration values
in the three axes (labelled as ‘Ax’, ‘Ay’ and ‘Az’) respec-
tively. These values were obtained by an accelerometer placed
at a fixed position on the halter. Two temperature values
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(a) (b) (c)
Fig. 3. Tag positioning on various points on the cow. (a) Neck tag. (b) Tag positioned on hind leg. (c) Tag positioned on the cow harness

were obtained: the body temperature (named temp1) obtained
through a temperature sensor attached to a nose ring within
the nasal cavity of the cow, and ambient temperature (named
temp2) obtained through a temperature sensor exposed to the
environment. Both temperature sensors had ensured accuracies
of 0.5◦C at ambient temperatures. An Arduino program was
written that performed conversion of the values received from
the analog temperature sensor into values of temperature by
applying (2)

temp1 =

[(
val × 5

1024

)
− 0.5

]
× 100 (2)

where temp1 was the temperature value desired and val was
the analog value obtained from the sensor. The raw value was
divided by 1024 and multiplied by 5 to convert it from an
analog reading (from 0 – 1023) to a voltage reading (0 – 5V).
The selected sensor had a 500-mV offset to allow for negative
temperature readings. This offset was compensated for by
subtracting 0.5. The value was then multiplied by 100 to obtain
a temperature value in degrees Celsius. This reading was
comparable to the reading obtained by a digital thermometer
with an accuracy of 0.1◦C (Mendy™ Handy TMP-02 Digital
Thermometer). Environmental temperature was obtained di-
rectly from an onboard temperature measurement unit on the
Inertial Measurement Unit. The trends in change of ambient
temperature were used to observe for any erratic readings or
spikes in body temperature measurement due to wind or other
weather factors.
The time and date stamp were collected from an onboard
real-time clock (RTC). This gave a date-time value in the
format YYYY-MM-DD HH-MM-SS. Data was obtained at
a resolution of 10 readings per second to allow enough
resolution for the accelerometer to indicate the animal’s head
movement. This data was saved into a text file located on an
on-board SD card. Data was collected over an 8-month period.
As the cows were located in the same pen, it was possible to
observe visual estrus cues demonstrated during interaction.

F. Data Analysis

Data was periodically collected from the on-board SD card
and assembled into a collection of CSV files. A python
program was written to store this data in a MySQL™ database.
First, the accelerometer direction values were averaged out to
obtain an overall value for acceleration. Due to the immense
amount of data being written at a go, queueing was executed
to ensure that no values were lost, and the database connection
was maintained without any data loss. The data was then
visualized using Python bokeh plots. Here, erratic values
were observed and removed. The gaps created were filled by
interpolation to ensure a continuous dataset. Erratic values
occurred to a number of factors including the temperature
sensor dislodging, system shut down in the event of battery
depletion or falling off as well, errors in the RTC system and
system reset at the point of battery changeover.
Once cleaned, acceleration data was further averaged to obtain
second, minute, hourly and daily averages of acceleration.
This was used to develop movement intensity profiles, similar
to Heatime’s application. The data was then loaded onto a
Python data-frame from the SQL database using the Pandas
“read sql” function. The data was then split into training and
test data. The overall dataset used contained 10,457,267 rows.
This was split into 7,000,000 values for training data (around
67%) and 3,457,367 values for test data (around 33%). It was
observed that the training data had at least 7 distinct periods
of estrus Various ML models were applied to the training data,
and then tested on the rest of the dataset. The standard inputs
for the models were the date-time values, acceleration and
position values, and the temperature variables. The outputs
were the ”mens” values derived from prediction based on value
averaging. The test data had four periods of estrus.

G. ML Algorithm Selection

Various ML algorithms were explored to select an optimal
ML algorithm based on the available dataset and deployment
conditions. This would be done by evaluating the performance
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TABLE IV
LINEAR REGRESSION PERFORMANCE METRICS

Performance Metric Results
Mean Squared Error 0.01424
Accuracy 88.0653%

of each algorithm on the test dataset as well as evaluating
running time, resource consumption as well as portability of
each model. The different algorithms considered are discussed
below:

1) Linear Regression: Linear regression was applied on
the data using the LinearRegression() function from the
sklearn.linear model Python library. From this application,
an output data set containing predictions was generated. This
was compared to the provided dataset. The accuracy, A of the
prediction was then obtained by utilizing (3).

A = 100×

(
1−

√
MSE

y range

)
(3)

where MSE was the Mean Squared Error and y range was the
difference between the maximum and minimum values of the
dependent variable. The results obtained are shown in Table
IV.

2) Random Forest Classifier: The random forest classifier
is an extension of decision tree classifiers that uses multiple
decision ‘trees’ to improve prediction accuracy. It can handle
both continuous and categorical variables [28]. The data was
split into four datasets:

X train: A subset of the training dataset that included
the input variables of acceleration, position, body and
ambient temperature.
X test: A subset of the dataset containing input values of
acceleration, position, body and ambient temperature that
was used to test the algorithm.
Y train: A subset of the training dataset that included
data on whether the animal was undergoing oestrus.
Y test: A subset of the dataset containing oestrus data
that was used to test the algorithm.

The model was applied to the dataset, and a dataset of
predicted outcomes was generated. This dataset was compared
to the true labels of the test set. The ratio of the number of
matches to the total number of elements was computed as
the accuracy score. This algorithm gave an accuracy score of
85.3%.

3) Logistic Regression: Similar to the Random Forest clas-
sifier, the data was split into four datasets X train, X test,
Y train and Y test. The logistic regression algorithm was
applied to the training datasets in order to develop the model.
Once trained, the model was run on the test data to produce
predictions. The algorithm gave an average accuracy of 96.2%

4) Neural Networks (Multi-layer Perceptron (MLP) Classi-
fier): A neural network algorithm with multiple layers from
the scikit-learn library was tested on the dataset. The model
was constructed with the inputs being the acceleration, posi-
tion and temperature values. Various parameters were varied

including the number of hidden layers, nodes in each layer,
and the maximum iterations permitted.
It was observed that an increase in number of nodes per layer
led to an increase in accuracy to an extent after which there
was a gradual and substantial decrease in accuracy. The same
effect was observed with time, with computing time reducing
first before exponentially increasing as shown in Fig. 4a. It was
observed that a change in the maximum number of iterations
allowed for the solver to converge led to no significant change
in accuracy, despite an increase in time taken by the model
to run as shown in Fig. 4b. At optimal parameters (2 layers,
40 nodes per layer and a max iteration value of 3000), this
algorithm yielded an accuracy of 93%.

5) Neural Networks (Sequential with Binary Classification):
The neural network algorithm was improved by using a
sequential (fully connected) neural network. The TensorFlow
library was used, which provided for more flexibility. This
algorithm allowed for more tuning of hyper parameters with
better management of each layer. The results of this algorithm
were much better with an accuracy of 99.36%. From this,
neural networks were considered as the model of choice.

H. Implementation of ML-Enabled Controller

The suitable model was then converted to a TensorFlow
Lite™(TF Lite) model by using the TFLiteConverter module
from the TensorFlow library. The TF Lite model is a more
compact and efficient model that allows for deployment on
resource – constrained devices [29]. The model occupied disk
space of only 2172 bytes, roughly the equivalent size of a
basic Arduino sketch. The model file was then converted into
a C source file using the xxd tool from the vim-common
package. The resultant file contained a C array that held TF
Lite model’s binary data making it possible to embed the
module on the microcontroller. The Arduino Nano BLE Sense
microcontroller unit was used. This board was an ideal choice
as it intrinsically supports ML applications. Further, with 1 MB
of program storage and extensive RAM, the microcontroller
unit could run the ML algorithm. The board has an integrated
Inertial Measurement Unit (IMU) and an internal temperature
sensor [30], significantly reducing the circuit footprint needed
to realize the animal tag. The system arrangement is as shown
in Fig. 5.

An Arduino program was written for the microcontroller.
The TensorFlow Lite model was loaded into the interpreter
within the program, with tensors for input and output data
were defined. These tensors were assigned acceleration and
temperature for input, and a “mens” reading indicative of
estrus for output. Acceleration data was then obtained from the
onboard accelerometer while temperature data was collected
from the body temperature sensor. Acceleration magnitude was
obtained from the raw readings by averaging. An inference of
the ML algorithm was run after every loop iteration and a
prediction was generated. This prediction was 0 if the animal
is not predicted to be in estrus, and 1 if the animal is predicted
to be in estrus. To avoid erratic predictions, the number of
positive predictions were counted over hourly periods, and a
positive output was only registered when this value surpassed
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(a) (b)
Fig. 4. (a). Effect of change of number of nodes per layer on accuracy and time taken to compute and (b) The effect of changing the maximum number of
iterations allowed on time and accuracy.

Fig. 5. Components of ML-enabled animal tag.

a trigger threshold. This threshold was varied, and the results
studied.

I. Model Retraining

To ensure continued improvement of the model, a retraining
schedule was maintained. New collected motion and temper-
ature data was pre-processed like the original training data
monthly. The previously deployed TensorFlow lite model was
loaded, and the new data appended to the existing dataset.
The model was then retrained with the updated dataset main-
taining the same architecture and similar hyper parameters.
The models’ weights were then updated with the new results,
and the model was converted back into a TensorFlow Lite
format before being uploaded back into the microcontroller.
The results were observed over the duration of the validation
phase.

III. RESULTS AND DISCUSSION

The study involved the accumulation of training data over
an 8-month period, followed by validation tests spanning
3 months between March 2023 and July 2023. Throughout
the initial 8-month phase, both cow temperature and motion
intensity data were captured using an animal tag affixed to
the cow’s halter. The data was sampled at a frequency of
10 Hz, allowing for the collection of a substantial volume
of raw accelerometer data. This high resolution facilitated the

creation of comprehensive motion intensity profiles, which, in
turn provided a foundation for categorizing the amount of cow
movement.

Each data reading was accompanied by a corresponding
timestamp obtained from the RTC module. The captured data
was stored locally on an onboard SD card and retrieved
manually on a weekly basis through a swapping process to
support the training of the ML algorithm. To ensure continuous
operation, the system was sustained by changing the batteries
daily whenever the farm worker was present in the cowshed.
It was ensured that the change-over period was under 1
minute to minimize blank data within the dataset. The data in
these periods was filled in by interpolation from neighbouring
data points. Since predictions were averaged out over hourly
periods, the effect of this change-over period on the accuracy
of the data was observed to be minimal.

A sample of the data collected over a specific 24-hour
period is shown in Fig. 6. A farmer’s record was maintained
concurrently. During instances when the cow exhibited visual
signs of estrus i.e. restlessness, attempts to mount or redness
and swelling on the vulva, a veterinary officer was called to
determine the status of estrus based on physical examination.
These findings were then correlated with sensor data collected
by the animal tag. Observation of the raw data demonstrated
noticeable differences in motion intensity between the periods
of estrus and similar periods compared outside estrus. Outside
of estrus, the average value of movement intensity during the
day was observed to be 0.4 m/s-2 /s while this reduced to
an average of 0.28 m/s-2 /s during the night. During estrus,
it was observed that the average movement intensity was
slightly higher, with this value rising to about 0.6 m/s-2 /s
as shown in Fig. 7. Further, there were also clear variations in
body temperature. It was observed that there was temperature
deviated by an average of 1.85% during periods of estrus
in comparison with periods of no estrus as shown in Fig.
8. The combined changes in motion intensity as well as
temperature variations were used as a basis for classification
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Fig. 6. Cow data collected over a period of 24 hours.

Fig. 7. Comparison of movement intensity over sample periods of 24 hours.

of estrus windows. The study effectively established the ade-
quacy of temperature and motion data in accurately predicting
estrus in cattle. Notably, these parameters can be measured
through cost-effective and non-intrusive methods, which opens
up substantial possibilities for enhancing estrus prediction.
This gains credence from the observed correlation between
significant shifts in motion intensity and body temperature and
the initiation of estrus. Similar variations have been reported
in several studies across literature. Wang et al [31] observed
body temperature increases of up to 3% in cows during estrus
observed by thermal infrared imaging. Suthar et al [32] also
observed that cows housed in a tie stall demonstrated higher
fluctuations in body temperature during estrus. The study

hypothesized that this was attributed to higher activity and
increased blood flow demonstrated during estrus.

Sensor positioning was also observed to be critical to the
assurance of reliable data. To achieve successful prediction,
it was observed that it was critical to ensure firm contact of
the temperature sensor with the animal’s skin. Better motion
profiles were observed from capturing head movement data as
compared to capturing movement data from the neck or leg
area. This could be attributed to the various activities carried
out that can be translated into head movement including eating,
movement and restlessness.

Once validated by veterinary examination, this data was
marked for periods of estrus and used as a basis for the
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Fig. 8. Comparison of average hourly temperature values over sample periods of 24 hours.

Fig. 9. The observed occurrence of peak estrus at different times of the day.

classification of the dataset used to train the ML algorithm.
It was observed that peak estrus most often occurred between
20:00 and 04:00. There were minimal occurrences of peak
estrus between 04:00 and 08:00 and 16:00 and 20:00, the
times when the farm worker was likely to be observing the
cow as shown in Fig. 9. This is comparable to studies such as
Parish et al [12] and demonstrates the need to advance estrus
detection by use of technology.

Several ML algorithms were applied on the training data
as discussed in the methodology section. The performance of
these algorithms is shown in Table V.

The sequential neural network approach stood out as the
preferred choice due to its high accuracy for the given dataset.
The choice was further reinforced by the model’s compati-
bility with the TensorFlow and TensorFlow Lite frameworks
that provided the platform for deployment of the ML al-
gorithm on the microcontroller device. Once deployed, the
microcontroller-enabled animal tags remained on the animals
for a period of three months. During this period, an additional
data point was recorded to indicate whether the ML algorithm

TABLE V
ACCURACY COMPARISON OF ML MODELS CONSIDERED

Algorithm Accuracy(%)
Linear Regression 88.0653
Random Forest Classifier 85.3
Logistic Regression 96.2
Neural Networks (MLP) 93
Neural Networks (Sequential) 99.36

had predicted estrus. The acquired data was stored on the
onboard SD card and collected manually on a weekly basis.
In cases where the tag signalled a positive estrus event,
an on-board LED lit up to give the farmer an indication
of estrus. A veterinary officer was notified, and estrus was
verified through physical examination. The results of the
algorithm were compared to observations from a farmer’s
journal maintained concurrently, as well as with manual data
analysis from the raw data collected from the sensor system.
During the validation period, there were four observed estrus
cycles for cow 1 and five observed cycles for cow 2. The
estrus windows within these cycles were observed and veri-
fied by a veterinary officer and marked by correlation with
the raw dataset. The ML algorithm deployed was evaluated
based on several performance metrics. These are: Sensitivity,
(Sn) which was calculated as TP/(TP+FN) × 100; Specificity
(Sp) calculated as TN/(TN+FP) × 100 and Accuracy (Acc)
calculated as (TP+TN)/(TP+TN+FP+FN) × 100 where TP =
true positive, TN = true negative, FP = false positive, and FN
= false negative. The results were as shown in Table VI.
TP, FP, TN, and FN values were obtained from sensor data
and divided by 3600 to obtain hourly values. The algorithm
demonstrated an increase in sensitivity across subsequent
cycles for both cow1 and cow2 as shown in Fig. 10.
Estrus occurs for a relatively short duration, typically around
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TABLE VI
ML PREDICTION RESULTS ON HOLSTEIN FRIESIAN COWS (N=2) OVER 4 & 5 CYCLES RESPECTIVELY

Cow Cycle TP TN FP FN Sn(%) Sp(%) Acc(%)
1 1 5.39 440.73 54.47 3.41 61.22 89.00 88.52

2 7.85 732.45 90.43 2.6 75.09 89.01 88.83
3 7.2 812.25 100.43 2.78 72.12 89.00 88.81
4 10.21 629.98 77.85 1.96 83.88 89.00 88.91

2 1 2.41 899.65 93.16 2.56 48.51 90.62 90.41
2 4.51 660.92 65.48 2.57 63.71 90.99 90.64
3 6.87 655.59 64.79 3.65 65.31 91.01 90.64
4 7.83 635.96 74.47 2.85 73.29 89.52 89.28
5 8.63 604.3 70.33 1.93 81.70 89.58 89.45

Fig. 10. Sensitivity of ML model across oestrus cycles.

8 to 24 hours, whereas for most of the rest of the cycle,
which spans approximately 18 to 24 days, cows are not in
estrus [33]. This high ratio of non-estrus to estrus periods is a
contributing factor to the relatively stable and high specificity
values observed in the results. Overall, the algorithm had an
average accuracy of 89.50% in the prediction of estrus.

The values obtained were compared to the farmer’s predic-
tion of estrus through farm records. Here the farmer main-
tained a record of visual cues of estrus observed during milk-
ing and cleaning. The parameters of the farmer’s predictions
were marked as:

• True Positives (TPs) - Periods within estrus when the
farmer observed and recorded corresponding visual cues.

• True Negatives (TNs) – Periods outside of estrus when
the farmer recorded a lack of any corresponding cues.

• False Positives (FPs) – Periods outside of estrus when the
farmer observed and recorded visual cues.

• False Negatives (FNs) – Periods within estrus when the
farmer recorded a lack of any corresponding cues.

FPs occurred due to a possible number of reasons including
cow sickness, abrupt movements from disturbances or abnor-
mal shifts in ambient temperature. In one notable instance, the
farmer noticed other signs of sickness on one of the animals

TABLE VII
COMPARISON OF VARIOUS DAIRY MONITORING TECHNOLOGIES AS
SHOWN IN LITERATURE, EVALUATED FOR ESTRUS DETECTION ON

HOLSTEIN COWS

Detection method Sn(%) Sp(%) Acc(%)
AfiAct Pedometer 80.9 86.7 81.7
CowScout S Leg 77.4 100 80.4
IceQube 57.0 83.3 60.4
HR Tag 41.8 91.7 48.4
CowManager 89.5 100.0 90.8
Track a Cow 70.0 90.9 73.8
Results from this study 83.9 89.0 89.5

including a lack of appetite and restlessness. Upon inspection,
a veterinary officer confirmed that the animal was ill and
prescribed a remedy for it. At around that time, the sensors
pushed out a high concentration of FPs on estrus prediction.
Similar to the ML algorithm, the farmer’s prediction efficiency
was calculated for each cycle period and for each cow. The
results were averaged out and it was observed that the farmer
was able to predict estrus with an average efficiency of
37.29%. The developed ML-enabled tag demonstrated far bet-
ter prediction of estrus than visual observation. These results
were further compared with other experiments conducted on
dairy animals of similar breed and husbandry as shown in
Table VII [34].

It can be observed that the on-controller ML algorithm
developed in this study realized results that were better than
most available commercial methods. Further, a discernible
time lag was observed between the commencement of estrus
(as per raw data) and the initiation of ML prediction, as well
as between the conclusion of estrus and the cessation of ML
prediction. This lag was graphed over time as shown in Fig.
11.

Notably, this overlap displayed a noticeable reduction over
successive cycles for both observed animals. This progressive
diminish demonstrated advancement in the performance of the
ML algorithm. Findings of the current study show that the
ML algorithm had a lower accuracy operating on live data as
compared to the accuracy achieved on the training dataset.
This can be attributed to the cleaning and pre-processing
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(a) (b)
Fig. 11. Lag between (a) start of estrus and ML prediction start and (b) end of estrus and stop of ML prediction over subsequent cycles.

activities which ensured that training data was of a suitable
nature for the ML algorithm. In live operating conditions on
the microcontroller, the ML algorithm was met by raw data
including spikes, aberrant data points and gaps. This affected
prediction while under deployment. Further, the improvement
in sensitivity in subsequent cycles could be attributed to
the retraining of the model. Through iterative training, the
ML algorithm continued to adapt to the evolving patterns
and dynamics within the data. Retraining holds immense
significance in ML as it enables the algorithm to adjust
and refine its internal representations, adapting to the dataset
better over each iteration. In the prediction of estrus, the
concept of model retraining is relatively new and has not been
extensively explored. The implications of this work extend
beyond estrus prediction. The successful implementation of
ML algorithms to predict estrus showcases the potential to
scale into applications in prediction of overall animal health.
The correlation between various physiological parameters and
health conditions has over time been well established, and
the adaptation and finetuning of ML algorithms similar to
this study can be implemented for early disease detection,
timely intervention and overall animal welfare. Zhou et al [35],
for example, combined variables from physical activity with
milk yield, rumination time and electrical conductivity of milk
to predict common health disorders such as clinical mastitis
and lameness. The novel implementation of on-controller ML
algorithms as demonstrated by this research is a powerful con-
tribution to the area of animal health prediction. This approach
addresses the efficiency concerns associated with the current
approaches that involve data transmission to the cloud. This
method drastically cuts down on the need for constant data
streaming, leading to reduced transmission costs, minimized
latency and near real time prediction. By processing the data
locally on an embedded device, the system can significantly
reduce the reliance on high-bandwidth connections and costly
cloud infrastructure.

IV. CONCLUSION

This study clearly identified correlations between body
temperature and movement intensity with estrus in cows. As
was noted, there was an average deviation of 1.85% in body
temperature during periods of estrus in comparison with non-
estrus periods. Similar deviations were also observed in motion
intensity, giving a good basis for the classification of estrus.

The accuracy of the temperature sensors used was consid-
ered a limitation in this study. To increase the reliability of the
readings obtained, the study relied on observation of the trend
of change of temperature rather than individual readings. This
proved satisfactory in the identification of variations due to
estrus. Further iterations would help to improve the overall
design of the experiments used and the rate of erroneous
values.

This study also demonstrated that it is possible to utilize
ML techniques in the prediction of estrus cycles in animals
with significantly higher performance than existing methods.
Further, the study successfully demonstrated the novel imple-
mentation of an on-the-controller ML algorithm to generate
prediction real-time and without the need to transmit any data.
This implementation presents an opportunity for significant
cost reduction for farmers employing PLF systems.

Further work can be done to extend the study to a larger
group of animals, as well as more human experts, in order to
observe the results obtained from running on-controller algo-
rithms for estrus detection. The implementation of long range,
low-power communication protocols such as LoRaWAN can
provide a more robust means of notification than is detailed
in this study, and can provide real-time tracking of estrus
conditions for the farmer.

Research can also be done to refine algorithms designed
to run offline on lean microcontroller systems designed for
such applications as estrus detection. This could involve
exploring advanced ML techniques; or feature engineering
to ensure the deployed algorithms are as lean as possible.
Future endeavors could also explore expanding the algorithm’s
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capabilities to broader monitoring of general animal health and
behavior. Multi-modal sensor data could be integrated to en-
able comprehensive real-time or near real-time monitoring of
animal health, thus allowing farmers to make quick informed
decisions on their farms. The retraining of ML models for
improved performance is also an area that could benefit from
more research as the iterative retraining of models is pivotal to
sustain their effectiveness within dynamic environments. More
work can be done to explore the possibilities of performing
iterative training in edge environments. By virtue of the
enhanced success rates in estrus prediction, farmers stand to
benefit significantly from this technology through optimized
insemination practices, leading to improved reproductive out-
comes.
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