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Introduction
When the 19th century mathematician George Cantor developed a set theory in his in-depth study 
of the natural numbers, a chain of reasoning was initiated that culminated in the incompleteness 
theorems of the mathematician Kurt Gödel and halting problem of the theoretical computer 
scientist Alan Turing. These theorems defined the boundaries of mathematical proofs. It applied 
to the digital models of the universe proposed by cosmologists and computer scientists such as 
Wolfram, Fredkin, Tegmark and others. In their views, the universe is fundamentally digital in 
nature, and reality may at the deepest level be a mathematical construct. We surmise that the 
ontology of digital models of the universe can be traced back to the ontology of the natural 
numbers through mathematical properties of the real numbers and other classes of numbers.

Infinities in mathematics
Towards the end of the 19th century, the German mathematician George Cantor (1845–1918) 
delved deeply into the ultimate properties of the natural numbers (the positive integers). To attain 
this objective, Cantor introduced the notion of sets (finite and infinite collections of elements), and 
developed the theory of relations between sets (Wikipedia 2017b:1 of 17). An important property 
of sets is a one-to-one relation between two sets. This relation exists if the members of the first set 
can be exhaustively paired with members of the second set without unpaired members remaining.

It is easy to realise that the ordinal numbers, that is, the sequence 1, 2, 3, …1 that we use when 
counting objects, can be extended by recursively adding 1 to the previous number up to any given 
number with no end in sight. The cardinality (size) of the set of natural numbers is infinite, larger 
than any number we can conceive. Cantor gave this infinity a name: he used the first letter of the 
Hebrew alphabet, calling the infinity aleph-0 (Stewart 1996).

The infinite set aleph-0 has some disturbing counter-intuitive properties (Gleiser 2014). Aleph-0 
plus any finite number, no matter how large, is still aleph-0. Multiplying aleph-0 by any finite 
number again yields aleph-0. But the strangest property is that an infinite set can be placed into a 
one-to-one correspondence with a proper subset of itself. This contradicts the notion, stated by the 
Greek mathematician Euclid that ‘The whole is greater than the part’ (Wikipedia 2017a:2). As an 
example, consider the even numbers 2, 4, 6, … which form a proper subset of the natural numbers 

1.There is some disagreement amongst mathematicians on whether 0 should be included in the set of natural numbers or not. The 
natural numbers including 0 are referred to as whole numbers. The integers include negative numbers ...,-3, -2, -1, 0, 1, 2, 3, ...

The essence of number was regarded by the ancient Greeks as the root cause of the existence 
of the universe, but it was only towards the end of the 19th century that mathematicians 
initiated an in-depth study of the nature of numbers. The resulting unavoidable actuality of 
infinities in the number system led mathematicians to rigorously investigate the foundations 
of mathematics. The formalist approach to establish mathematical proof was found to be 
inconclusive: Gödel showed that there existed true propositions that could not be proved to be 
true within the natural number universe. This result weighed heavily on proposals in the mid-
20th century for digital models of the universe, inspired by the emergence of the programmable 
digital computer, giving rise to the branch of philosophy recognised as digital philosophy. In 
this article, the models of the universe presented by physicists, mathematicians and theoretical 
computer scientists are reviewed and their relation to the natural numbers is investigated. A 
quantum theory view that at the deepest level time and space may be discrete suggests a 
profound relation between natural numbers and reality of the cosmos. The conclusion is that 
our perception of reality may ultimately be traced to the ontology and epistemology of the 
natural numbers.
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because the subset does not contain the odd numbers 1, 3, 5, 
… But we can count the even numbers up to infinity without 
missing any or counting a number twice. This is done 
by  pairing each even number with its natural number 
counterpart, which is the even number divided by 2. This 
property is very general and holds for any monotonically 
defined sequence of natural numbers.

Cantor studied the real numbers, which are numbers such as 
pi (the ratio of the circumference of a circle to its diameter) 
and the square root of 2 that require an infinite non-repeating 
decimal expansion for their numerical representation. He 
concluded that the real numbers were much more numerous 
than the natural numbers, and showed that it is impossible 
to count the real numbers or to effectively list the real 
numbers in any interval, no matter how small, on the number 
line. He designated the cardinality of the real numbers by the 
symbol aleph-1 and proved that aleph-1 is exponentially 
larger than aleph-0.

This notion of an ‘infinity of infinities’ brought him into 
conflict with many of his mathematical contemporaries, 
who did not accept his view of infinity. Some Christian 
theologians (particularly neo-Scholastics2) unfortunately 
misunderstood the mathematical notion of infinity: they 
saw Cantor’s work as a challenge to the uniqueness of the 
absolute infinity in the nature of God (Dauben 1977:120; 
1979:120, 143; Wikipedia 2017b:9 of 17). David Hilbert (1862–
1943), the leading mathematician at the time, defended 
Cantor, declaring: ‘From the paradise that Cantor with us 
unfolded, we hold our breath in awe; knowing we shall not 
be expelled’ (Hilbert 1926).

Formal logic
In the first quarter of the 20th century, various antimonies 
arising from a study of what became known as naïve set 
theory were uncovered by mathematicians. The best known 
is probably Russell’s paradox. He considered an unusual set: 
the set of all sets that are not members of themselves. He 
asked whether such a set is a member of itself. A valid line of 
logic reasoning brought a contradiction: if the set is a member 
of itself, then it is not a member of itself and if it is not a 
member of itself, then it is a member of itself. Such a 
conclusion is not allowed in mathematics: a statement is 
either TRUE or FALSE: there are no alternative ‘truths’.

These antimonies led mathematicians to rigorously 
examine the foundations of mathematics. Formal logic 
with  its emphasis on strict rules for induction, deduction 
and inference was perceived as a reliable means to this end. 
Various axiomatic systems such as Peano arithmetic, the 
Zermelo-Fraenkel system of set theory, as well as the 
system in Russels’s Principia Mathematica, were believed 
by many to prove the soundness of the foundations of 
mathematics.

2.Neo-Scholasticism (also known as neo-scholastic Thomism or neo-Thomism because 
of the great influence of the writings of St. Thomas Aquinas on the movement) is a 
revival and development of medieval scholasticism in Roman Catholic theology and 
philosophy which began in the second half of the 19th century.

The leading mathematician in the early 20th century, David 
Hilbert, together with other mathematical logicians, initiated 
the discipline of metamathematics, which is a study of the 
laws of mathematics itself. An informal definition states that 
‘2 + 2 = 4’ is a mathematical statement, while ‘2 + 2 = 4 is 
valid’ is a metamathematical statement.

The principal school in the search for a sound basis for 
mathematics was that of the formalist approach, and David 
Hilbert was the leading proponent, culminating in what is 
known as Hilbert’s programme (Barrow 2000:276; Penrose 
1989:129). He believed that mathematics could be formulated 
on a solid and complete logical foundation. In principle, this 
could be performed by showing that all of mathematics 
follows from a correctly chosen finite system of axioms; and 
that some such axiom system is provably consistent.

An axiom or postulate is a statement that is taken to be true 
to serve as a premise or starting point for further reasoning 
and argument, following the rules of logic. The oldest extant 
set of axioms is those formulated by Euclid in his Elements 
some 2300 years ago.

In the study of geometrical properties of lines, triangles and 
circles, Euclid postulated (Wikipedia 2017a: 2 of 15):

‘To draw a straight line from any point to any point’.

‘To produce [extend] a finite straight line continuously in a 
straight line’.

‘To describe a circle with any centre and distance [radius]’.

‘That all right angles are equal to one another’.

‘That, if a straight line falling on two straight lines make the 
interior angles on the same side less than two right angles, the 
two straight lines, if produced indefinitely, meet on that side on 
which are the angles less than the two right angles’.

The convoluted expression for axiom 5 is generally known 
as the parallel postulate, which is informally interpreted that 
parallel lines never meet. For at least 1000 years, geometers 
were troubled by the disparate complexity of the fifth 
postulate compared to the first four, and suspected that it 
could be proved as a theorem from the first four.

Because the angles of a triangle sum to two right angles, we 
might argue that a triangle formed with two right angles 
results in the third angle being 0°, implying that the two 
lines emanating from the right angled side never meet. 
However, proof that the three angles of the triangle sum to 
two right angles depends on the truth of the parallel 
postulate. Thus, we fall into a circular reasoning trap, which 
proves nothing at all.

In the 19th century, Gauss, Bolyai, Lobachevsky and other 
mathematicians showed definitively that the parallel 
postulate is independent of the first four (Ball 1960:45; 
Wikipedia 2017a: 9 of 15). The parallel postulate is an 
assumption, a choice from alternative axioms. The newly 
developed non-Euclidean geometry allowed ‘parallel’ lines 
to intersect. As an example, longitudinal lines on the earth 
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(a sphere) are geodesics (‘straight’ lines on a curved surface) 
that meet at the poles.

It is clear that defining a set of axioms satisfying Hilbert’s 
requirements was a formidable task: the axioms must be 
independent, self-consistent and sufficiently diverse to cover 
all of mathematics. It came as a shock to Hilbert when Kurt 
Gödel (1906–1978), an Austrian, later American, logician, 
mathematician and philosopher published a paper in 1931 
showing that such a set of axioms from which all theorems 
about the natural numbers can be proven did not exist (Gödel 
1931). Gödel’s first incompleteness theorem states that no 
consistent system of axioms relating to arithmetic is capable of 
proving all truths about the relations of the natural numbers. 
For any such system, there will always be statements about the 
natural numbers that are true, but that are unprovable within 
the system. The second incompleteness theorem, an extension of 
the first, showed that such a system cannot demonstrate its 
own consistency. Adding more axioms to the initial set to 
remove inconsistencies could not solve the problem. Working 
from inside the system did not allow theoreticians to transcend 
the limits inherent in a closed system.

Computable numbers
The British scientist and mathematician, Alan Turing 
(1912–1954), who is widely regarded as the father of theoretical 
computer science and artificial intelligence, developed a 
formalisation of the concepts of algorithm and computation. 
He proposed an abstract construction, now known as the 
Turing machine, which can be considered an idealised model 
of a digital computer able to simulate the workings of any 
digital computer. In 1936, Turing published a paper on a 
decision problem posed by Hilbert. In this article, Turing 
(1937; 1938) reformulated Gödel’s (1931) results on the limits 
of proof and computation, replacing Gödel’s universal 
arithmetic-based formal language with the formal and simple 
hypothetical devices that became known as Turing machines. 
He proved that his ‘universal computing machine’ would 
be  capable of performing any conceivable mathematical 
computation if it were representable as an algorithm, which 
is  an effective finite step-by-step procedure to compute a 
mathematical function. He went on to prove that there was no 
reliable solution to Hilbert’s decision problem. He showed 
that it was not generally possible to determine beforehand 
whether a Turing machine working on a decision problem 
would stop calculating in a finite time and deliver a verdict 
‘TRUE’ or ‘FALSE’. This is now known as the halting problem.

Consider Goldbach’s conjecture, which states that all 
even  numbers greater than 4 can be expressed as the 
sum of two (odd) prime numbers,3 for example, 12 = 5 + 7 
(Wikipedia 2017d). Goldbach’s conjecture was formulated 
275 years ago. Despite substantial effort by leading 
mathematicians since then, the conjecture remains 
unproven. A computer-based search checking each even 
number up to the number 4 million trillion (4 followed by 18 

3.A prime number is a natural number that is not divisible by a natural number greater 
than 1 and smaller than the number itself. 

zeros) yielded no counterexample. If the conjecture is false, 
a counterexample will exist and will eventually be found 
although it may take a time of cosmological dimension 
before the counterexample is reached. If the conjecture is 
true, the computer will continue forever without coming to 
a halt. It is not known whether the Goldbach’s conjecture is 
true; thus, it is not possible to predict whether a computer 
working on the decision problem ‘The Goldbach’s conjecture 
is TRUE’ will halt in a finite time.4

Surveying these momentous historical developments in 
mathematics, the present-day philosopher Roberto Unger 
invalidated Hilbert’s ironic statement ‘From the paradise 
that Cantor with us unfolded, we hold our breath in awe; 
knowing we shall not be expelled’:

... mathematics before Gödel and Turing was on a track defined 
by Hilbert’s ambition to reduce it to a closed system under 
axioms. Then Gödel and others appeared, and drove mathematics 
out of a paradise to which it has never since been able to return. 
(Unger & Smolin 2015)

As a consequence, mathematics lost its claim that 
mathematical insight represents a shortcut to eternal truths 
about incorruptible objects. This result weighed heavily on 
philosophers of science in formulating new views on 
ontology and epistemology of science.

The Argentine-American computer scientist Gregory Chaitin 
(2007), who found a new proof of Gödel’s incompleteness 
theorems, states that his own findings in mathematical logic 
and algorithmic information theory show that there are 
mathematical facts that are true for no reason, they are true 
by accident. They are random mathematical facts (Wikipedia 
2017e:1 of 3). He proposes that mathematicians must abandon 
any hope of proving those mathematical facts and adopt a 
quasi-empirical methodology. As claims of consistency of 
any system are usually unprovable, many theorems in that 
system would remain a matter of belief or non-rigorous kinds 
of justifications.

The universe as a computer
The emergence of the programmable digital computer 
in  the  1940s influenced many scientists in their search for 
understanding the cosmos.

A hypothesis that the universe is an enormous digital 
computer was first proposed by Konrad Zuse, a German 
computer pioneer, often regarded as the inventor of the 
modern computer, in 1941 (Wikipedia 2017f.:1, 5 of 9).

Others who have modelled the universe as a giant computer 
include Stephen Wolfram, a British-born American computer 
scientist, physicist and businessman.5 The concept of a 
cellular automaton, which is a discrete mathematical model 

4.This statement does not exclude the possibility that in future, a gifted mathematician 
might find a proof of the conjecture through a new imaginative approach using 
known properties of the natural numbers.

5.Wolfram developed and marketed the commercially successful symbolic maths 
programme Mathematica.
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studied in computability theory, mathematics and many 
branches of science, played an important role in Wolfram’s 
view of the universe.

Cellular automata
A cellular automaton consists of a regular grid of cells, each 
being in one of a finite number of states, such as, in the 
simplest case, two states designated by the terms 0 and 1 or 
OFF and ON. Each cell is connected to a finite number of 
cells, called its neighbours. In a one-dimensional cellular 
automation, each cell has two neighbours, one on its left and 
one on its right, except at the edges, where there would 
only  be one neighbour. Communication to any cell in the 
automation occurs only through information passed on to it 
by its neighbours. Conversely, communication from any cell 
to the other cells again only occurs through its neighbours.

The dynamics of a cellular automaton is determined by 
continuous updating of the states of the cells in discrete time 
increments. The update is mediated by a transition function, 
usually a mathematical formula that takes as input the state 
of a particular cell and the states of its neighbours and 
delivers an output that switches the chosen cell to a new 
state.

Wolfram published a controversial book with the title A New 
Kind of Science (Wolfram 2002), which presents an empirical 
study of very simple computational systems like cellular 
automata. Wolfram’s conclusion was that the universe is 
digital in its nature, and runs on fundamental laws which can 
be described as simple programmes. He argues that these 
types of systems, rather than traditional mathematics, are 
needed to model and understand complexity in nature. He 
predicted that a realisation of this within the scientific 
community will have a major and revolutionary impact 
on  physics, chemistry and biology and the majority of 
the scientific areas in general.

Critics questioned his assumption that simple systems 
such  as cellular automata are sufficiently multifaceted to 
describe the degree of complexity present in evolved systems. 
Some viewed Wolfram’s theory as a minor development and 
dispute Wolfram’s claim of a paradigm shift. Others found 
that the work contained valuable insights and refreshing 
ideas, amongst them Chaitin, who have been mentioned 
earlier.

Digital philosophy
Digital philosophy is a direction in philosophy and 
cosmology advocated by certain mathematicians and 
theoretical physicists, including Edward Fredkin, Seth 
Lloyd  and Jürgen Schmidhuber, all associated in one form 
or another with the Massachusetts Institute of Technology.

The school of digital philosophy, which is known as 
pancomputationalists, claims that all the physical processes of 
nature are forms of computation or information processing at 

the most fundamental level of reality. They believe that 
biology reduces to chemistry which, in turn, reduces to 
physics which, in turn, reduces to the computation of 
information. Fredkin’s digital philosophy contains several 
fundamental ideas: everything in physics and physical reality 
must have a digital informational representation. All changes 
in physical nature are consequences of digital informational 
processes. Nature is finite and digital. Pancomputationalism 
is related to several larger schools of philosophy: atomism, 
determinism, mechanism, monism, naturalism, philosophical 
realism, reductionism and scientific empiricism.

Digital philosophy is considered to be a modern interpretation 
of Gottfried Leibniz’s 17th century monist metaphysics as 
exposited in his Monadologie (Schrecker & Schrecker 1965; 
Wikipedia 2017c:8 of 28). According to Leibniz, monads are 
the ultimate elements of the universe. The monads are 
‘substantial forms of being’ with remarkable properties: they 
are eternal, indecomposable, individual, subject to their own 
laws, un-interacting, and each reflecting the entire universe 
in a pre-established harmony. Monads are centres of force; 
substance is force, while space, matter and motion are merely 
phenomenal. Digital philosophy appears to replace Leibniz’s 
monads with aspects of the theory of cellular automata.

Lloyd (2006), a member of the MIT Research Laboratory of 
Electronics, contends that the universe itself is one big 
quantum computer6 producing what we see around us, and 
ourselves, as it runs a cosmic programme. According to 
Lloyd, once we understand the laws of physics completely, 
we will be able to use small-scale quantum computing to 
understand the universe completely as well.

A mathematical universe
A different view was presented by physicist and philosopher 
Max Erik Tegmark, a Swedish-American cosmologist who 
is a professor at the Massachusetts Institute of Technology 
and the scientific director of the Foundational Questions 
Institute.

Tegmark made the bold assertion that ‘all structures 
that  exist mathematically exist also physically’ (Tegmark 
2014:321 of 399). He has formulated the ‘Ultimate Ensemble 
Theory of Everything’, whose only postulate is that in 
structures that are complex enough to contain self-aware 
substructures, these substructures will subjectively perceive 
themselves as existing in a physically ‘real’ world. This idea 
is formalised as the Mathematical Universe Hypothesis (MUH), 
which implies that mathematical existence equals physical 
existence. Tegmark postulated a number of hypotheses to 
clarify his views.

The Computable Universe Hypothesis (CUH) states that the 
mathematical structure of our external physical reality is 
defined by computable functions that, by their definition, do 

6.A quantum computer is a computing device that will exploit the quantum properties 
of atomic and subatomic particles to rapidly compute mathematical functions. The 
technology is at present in an exploratory phase with realisation of a full-scale 
quantum computer somewhere in the future.
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not suffer the Gödel incompleteness properties. The Finite 
Universe Hypothesis (FUH) implies the CUH and eliminates 
all concerns about reality being undefined. The CUH or FUH 
may explain why our universe is so simple. Physics is so 
successfully described by mathematics because the physical 
world is completely mathematical; isomorphic to a mathematical 
structure and that we are simply uncovering it bit by bit.

The theory can be considered a form of Pythagoreanism or 
Platonism in that it posits the existence of mathematical 
entities; a form of mathematical monism in that it denies that 
anything exists except mathematical objects.

On responding to criticism of his theory, Tegmark offered the 
explanation that only Gödel-complete (fully decidable) 
mathematical structures have physical existence. This places 
a tight constraint on realisable universes, essentially placing 
an upper limit on complexity, but may have the attractive 
side effect of explaining the relative simplicity of our universe. 
The expressions for Newton’s laws of motion and gravity, 
and the basic principles of Einstein’s relativity theory and the 
theory of gravity, are in principle easy to understand, if not 
aesthetically pleasing, but the corresponding mathematical 
expressions tend to be complex.

Jürgen Schmidhuber, a computer scientist who works in the 
field of artificial intelligence, put forward a more restricted 
ensemble which admits only universe representations 
describable by constructive mathematics. The intuitionists, of 
whom the mathematician L.E.J. Bouwer (1881–1966) was the 
main exponent, stated that a mathematical object does not 
exist unless it can be constructed from whole numbers in a 
finite number of steps. In a modern view, this implies that the 
object only exists if it can be coded in a computer programme. 
He explicitly includes universe representations describable 
by halting programmes whose output bits converge after a 
finite time, but because of the undecidability of the halting 
problem, it may not be possible to predict the convergence 
time itself.

Natural numbers
Amongst the Pythagorean Sacred Discourses (2500 years 
ago), there is a dictum attributed to Arignote:

The eternal essence of number is the most providential cause of 
the whole heaven, earth and the region in between. Likewise it is 
the root of the continued existence of the gods and daimones, as 
well as that of divine men. (Wikipedia 2017i:3 of 16)

The German mathematician Leopold Kronecker (1823–1891) 
reportedly exclaimed ‘God created the integers. All the rest is 
the work of Man’ (Bell 1986). This was his reaction to Cantor’s 
transfinite numbers, which Kronecker found hard to accept. 
He may be right: given the set of natural numbers, human 
intellect has created an assortment of new classes of numbers: 
negative numbers; rational numbers (fractions); algebraic 
numbers; irrational numbers; real numbers; transcendental 
numbers; imaginary numbers and complex numbers (see 
Appendix 1). These number classes have all found their way 

into descriptions of physical processes and systems 
and  undoubtedly form the basis of Wigner’s (1959) lecture 
titled the ‘Unreasonable effectiveness of mathematics in the 
natural sciences’ and the follow-up publication (Wigner 
1960). Because these number classes can be derived from 
manipulation of the natural numbers, once we understand 
the ontology and epistemology of the natural numbers, 
understanding of all other number classes will follow.

The physical world of becoming is an imitation of the 
mathematical world of being. This view is echoed over the 
centuries by many mathematicians: Hilbert argued that 
mathematical truth was independent of the existence of 
God or other a priori assumptions. Once we study the natural 
numbers, they seem to assume a life of their own. If we 
consider the subset of natural numbers 1–10, the numbers 2, 
3, 5 and 7 are prime numbers.7 They cannot be divided 
without remainder by any number found between 1 and the 
number itself. The numbers 4, 6, 8, 9 and 10 are composite, as 
these can be written as the product of two or more numbers 
greater than 1 and less than the composite number. Numbers 
have properties of their own. The mathematician G.H. Hardy, 
quoted in Ferguson (1994), stated:

317 is a prime number, not because we think so, or because our 
minds are shaped in one way or another, but because it is so, 
because mathematical reality is built that way. (p. 63)

But do the natural numbers exist in reality outside the human 
imagination? We would like to believe that numbers are 
universal and recognised by intelligent beings in other 
galaxies which are too far away to ever be in touch with 
earthlings. These intelligent beings would in some way or 
other arrive at the same conclusions as we do when studying 
those numbers. Perhaps, they are intellectually more 
advanced and discover properties of the numbers of which 
we are totally ignorant at present.

But what is a natural number? The ancient Greeks in their 
study of geometry saw number as a multiple or fraction of a 
unit length of a line drawn in the sand. The concept of a 
rational number, which is the ratio of two integers (excluding 
zero as the denominator), followed naturally from extending 
or subdividing a given line. But the unit of counting as we 
see it now is a discrete indivisible object. The collection of 
countable objects has the property that these objects can be 
distinguished by some means which allows us to count the 
objects, that is, exhaustively pair the objects with the set of 
natural numbers. Surely, God created the environment in 
which natural numbers can exist, and left it to intelligent 
beings to discover those properties.

The mathematician and cosmologist Roger Penrose (2004) 
gives a physics-based example of a discrete countable 
phenomenon which hints that numbers have physical 
existence of their own: electric charge in an isolated body 
always occurs in integral multiples of the charge on the 

7.The first prime number is 2, by definition. If 1 is considered prime, factorisation of 
composite numbers would not be unique.
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proton or electron.8 Electric charge is an instance of what 
is  called an additive quantum number: in order to derive the 
charge on a composite body, we use standard arithmetic 
and  add up the constituent individual charges, taking into 
account that some of the constituent charges may be negative.9

Wolfram’s cellular automaton approach presupposes that 
space and time ultimately take on a discrete characterisation. 
The Planck length, named after Max Planck, the originator of 
quantum theory, is a miniscule length 32 orders of magnitude 
smaller than 1 mm and 12 orders of magnitude smaller than 
the proton (Wikipedia 2017g). Planck time is 44 orders of 
magnitude smaller than a standard second (Wikipedia 
2017h). Quantum theorists suspect that at the Planck length, 
quantum effects become dominant, and may well break 
space and time, or Einstein’s space time up into discrete 
chunks. This assumption will support the view that at the 
most fundamental level, time and space lose their appearance 
of continuity, and resolve into discrete forms, analogous to 
the natural number system.

By the various (human) constructions, the ontology of real 
and complex numbers can be traced back to the ontology of 
the natural numbers.

Conclusion
The Pythagorean School viewed the essence of number as the 
cause of the existence of the universe, and so it remained 
until Cantor in the late 19th century initiated a deep study 
to  understand the fundamental properties of numbers. 
He  showed that the cardinality of the natural numbers 
are  transfinite and have counter-intuitive properties: the 
elements of an infinite set may be put into a one-to-one 
correspondence with the elements of a proper subset of the 
set, which contradicts Euclid’s axiom that the whole is 
greater than the part. Bertrand Russell and others disclosed 
that naïve set theory leads to antimonies not compatible 
with  mathematical truth. These developments inspired 
early  20th  century mathematicians to rigorously examine 
the  foundations of mathematics. The leading figure in this 
venture was the German mathematician David Hilbert, who 
strove to find a set of axioms that would provide a firm basis 
in proving postulates and theorems in mathematics. He was 
surprised when Kurt Gödel published a proof that such a set 
of axioms cannot exist. Gödel disclosed in his incompleteness 
theorems that there are statements about numbers that are 
true but cannot be proven in the number system itself. The 
philosopher Unger characterised this development as that 
mathematics was driven from its paradise of undeniable 
truth and has not been able to return since then. The 

8.The empirical observation that the magnitudes of the electric charges on the 
electron and positron are exactly equal is a cosmic mystery. Since the charges are of 
opposite sign, a configuration with the same number of protons and electrons is 
electrically neutral.

9.This smallest unit charge has recently been subdivided by scientists into smaller 
units. The family of new fundamental particles, the quarks, has fractional charges.  
The up quark has a positive charge of 2/3; the down quark has a negative charge of 
-1/3.  The proton is a configuration consisting of two up quarks and one down quark, 
giving it a net charge of +1. The neutron is a configuration consisting of two down 
quarks and one up quark, giving it a net charge of zero. The electron, which is a 
fundamental particle, has a charge of -1.

incompleteness theorems of Gödel were extended by the 
theoretical computer scientist Alan Turing who introduced 
the notion of computable numbers. These are, in present-day 
idiom, mathematical functions that can be computed in a 
finite number of steps on a digital computer.

New possibilities in constructing models of the universe in 
which we live were opened up by the emergence of the 
digital computer. The computer scientist Stephen Wolfram 
proposed that the universe is digital in nature, and runs on 
fundamental laws which can be characterised by simple 
programmes akin to cellular automata. Edward Fredkin, Seth 
Lloyd and Jürgen Schmidhuber have developed the branch 
of philosophy known as digital philosophy which supports 
digital models of the universe with various properties. The 
physicist and philosopher Max Tegmark made the bold 
assertion that ‘all structures which exists mathematically also 
exist physically’. Tegmark and others have hypothesised that 
nature is based on well-behaved Turing-complete (computable) 
functions that will allow humans to eventually comprehend 
the fundamental structure of the universe. Tegmark’s theory 
is considered to be a form of monism in that it assumes that 
only mathematical objects exist in the universe.

Many mathematicians, physicists and computer scientists 
view reality as ultimately a reflection of the postulated digital 
nature of the universe. Penrose presents the example of 
electric charge that supports the notion that discrete number 
entities exist in the physical universe. This is reinforced by 
the quantum-mechanical view that at the deepest level, time 
and space are discrete, losing their appearance of continuity. 
Discreteness implies digital properties, which can be traced 
back through the rational, real and complex number systems 
to the natural numbers. If we fully understand the ontology 
and epistemology of the natural numbers, it will assist in 
understanding the reality of the cosmos.

These ideas are hypotheses in need of further observations, 
insights and revelations to prove their value in the ongoing 
debate on the nature of reality. Until then, nature and reality 
in the final analysis remain a mystery to us.
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Appendix 1
The Romans did not use a symbol for zero in their subtractive 
numeral system. The word nulla meaning ‘nothing’ was used to 
indicate zero. The famous Italian mathematician Fibonacci (c 1175-
1250) introduced the Hindu-Arabic numeral system in Europe in 
which ‘0’ denoted both the number zero (the additive identity) and 
a place holder in the place-value notation of numbers. The negative 
integers are related to the natural numbers through the solution of 
the equation x + n = 0, that is, x = -n.

The ancient Greeks used rational numbers, being the ratio of two 
natural numbers m/n, where n may not be zero. An algebraic 
number is the solution of a polynomial in an unknown x with 
rational number coefficients, for example, x x3

2
1
2

0.2 − + =  It is 

easy to check that the equation has two solutions, namely 1
2

=x
and x = 1. The equation x2 – 2 = 0 has the solution x is equal to 
the square root of 2. The Pythagoreans, circa 2500 years ago, 
discovered that the square root of 2 cannot be expressed as a 

rational number m/n for any two whole numbers m and n. These 
numbers are referred to as surds or irrational numbers.

Irrational numbers are a subset of the real numbers. There exist 
real numbers that are not the solution of any algebraic equation. 
Real numbers were defined by in the late 18th century by the 
Dedekind cut, named after the mathematician Richard Dedekind, 
who devised a method to intersperse the real numbers into the 
rational numbers, which, as presented above, are derived from the 
natural numbers.

The equation x2 + 1 = 0, that is, x2 = -1, has no solution in the real 
numbers. There is no number, positive or negative, that when 
multiplied with itself yields a negative number. Mathematicians 
postulated an imaginary number denoted by i with the property that 
i2 = -1. Complex numbers are a combination of real and imaginary 
numbers, such as 3 + 4i. These numbers are of vital importance in 
mathematical descriptions of wave propagation, particularly 
electromagnetic waves and their connection with quantum theory.
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