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Abstract 

Subjective Bayesian reasoning offers a framework for understanding how teachers actively refine their 

professional judgement in response to the inherent uncertainties of the classroom. Drawing on Luhmann’s 

systems theory, Simon’s bounded rationality, and Shalem’s work on professional knowledge, in this paper I 

demonstrate how Bayesian reasoning models how teachers navigate three fundamental challenges: the 

operational separation between teaching and learning systems (creating inherent unpredictability); cognitive 

limitations that necessitate satisficing solutions (efficient ways to predict and decide); and the systematic 

development of professional knowledge through academic and diagnostic classifications (building the basis for 

better predictions). Through constructed scenarios, I demonstrate how novice teachers often begin with fragile 

priors based on theoretical knowledge and personal experience, which undergo dramatic updates when 

confronted with the mismatch between expectations and classroom realities (significant prediction errors). As 

teachers gain experience, they develop more robust and refined priors—belief systems that can incorporate new 

evidence while maintaining stable overall patterns, reflecting increasingly sophisticated predictive models. This 

evolution reflects the development of diagnostic classifications that guide professional decision-making. I show 

that subjective Bayesian reasoning provides a formal mechanism for modelling belief updating in professional 

judgement. While teachers may not engage in explicit probabilistic calculations, I argue that subjective Bayesian 

reasoning underlies the development of fast and frugal heuristics that become increasingly expert predictive 

tools with experience. By integrating Bayesian reasoning with established theories of professional knowledge 

development, a theoretical framework is offered that uses probability formally to demonstrate how teachers 

learn to make effective decisions by managing the inherent uncertainties and constraints of classroom teaching. 

 

Keywords: Bayesian reasoning, professional judgement, satisficing, uncertainty, teacher 

development, prediction error, robust priors 

 

Introduction 

Teaching is fundamentally an exercise in decision-making under uncertainty (Borko et al., 

2008), stemming from both classroom complexity and the impossibility of directly 

controlling student learning, which necessitates predictive judgement. Every day, teachers 

make hundreds of choices about instruction, assessment, and classroom management without 

being able to predict their outcomes perfectly (Bishop & Whitfield, 1972). As teachers 
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develop from novices to experts, they must learn to navigate this uncertainty through 

increasingly sophisticated professional judgement (Berliner, 1986, 1987). 

The analysis integrates three theoretical perspectives that, when viewed through a Bayesian 

lens (Joyce, 2004), show how teachers develop expertise in decision-making. Bayesian 

probability—named after Thomas Bayes (1701–1761)—represents a shift from viewing 

probability as a long-run frequency of events to understanding it as a measure of an 

individual's degree of belief, formed and updated through experience and reasoning (Bayes, 

1763). In this framework, teaching is conceptualized as a continuous process of belief 

revision in response to new classroom evidence.  

Luhmann’s systems theory (2002/2012) provides the first layer of analysis. It highlights why 

teaching inherently involves probability rather than certainty. Given the operational closure 

between teaching and learning systems, teachers cannot directly access learners' mental 

states. As a result, they must rely on probabilistic estimates of whether their interventions 

have been understood or internalized. This detachment between communication and 

cognition structures teaching as an act of inference rather than control.  

 Simon’s (1957) theory of bounded rationality adds a second layer. It explains why teachers 

do not search exhaustively for optimal solutions but instead develop satisficing strategies—

efficient, experience-based heuristics shaped by the complexity of classroom contexts and the 

cognitive limitations of real-time decision-making. These heuristics serve as compact 

predictive models that guide moment-to-moment teaching choices under uncertainty. 

 The third layer comes from Shalem’s work (2014, 2017) on professional knowledge, which 

traces how teachers transform these heuristics gradually into more disciplined forms of 

judgement. As they integrate theoretical insight with experiential knowledge, teachers refine 

their predictive beliefs, shifting from reactive patterns to more principled interpretive 

engagement with practice and theory. 

Seen together, these perspectives frame teaching as a process of continuous Bayesian 

updating. Early-career teachers often experience dramatic belief revisions in response to 

prediction errors—such as when classroom realities contradict pedagogical assumptions 

(Bobadilla-Suarez et al., 2022; Bertram, 2023). This often leads to a temporary dependence 

on externally structured tools like scripted lesson plans, which provide more predictable 

scaffolds during periods of high uncertainty. Over time, experienced teachers move beyond 

these scripts, developing adaptive and context-sensitive practices that reflect accumulated 

experience and more calibrated belief systems (Sawyer, 2001; Winch, 2017). I argue that 

teachers engage in continuous probabilistic inference about how their teaching strategies 

might influence learning outcomes (Shafto & Goodman, 2008). This process involves 

predicting likely effects, observing results, and updating beliefs—a naturally occurring form 

of Bayesian reasoning driven by the need to reduce predictive error and improve 

effectiveness through structured stages of professional growth. While teachers do not 

calculate probabilities explicitly, they develop increasingly sophisticated heuristics that 

approximate Bayesian updating (Gigerenzer et al., 1999), enabling them to make effective 
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decisions under uncertainty. By formalizing this intuitive process within a Bayesian 

framework, we gain deeper insights into the probabilistic mechanisms underlying teacher 

development and expertise. 

Through constructed scenarios I demonstrate how this theoretical framework helps explain 

common patterns in teacher development and offers vignettes for supporting teachers’ growth 

from novice to expert decision-makers. These scenarios illustrate how teachers develop from 

relying on fragile prior beliefs (leading to unreliable predictions) to establishing robust priors 

that enable stable yet flexible professional practice (grounded in well-calibrated predictive 

models). 

Literature review and theoretical foundations 

Longitudinal development of teacher decision-making 

Research demonstrates that teacher decision-making progresses loosely through three distinct 

phases. Sawyer’s (2001) decade-long study tracking three teachers in The United States 

provides an empirical account of this developmental trajectory. 

In the initial “survival” phase, teachers often prioritise reducing immediate uncertainty by 

relying on prescribed routines and scripted frameworks. Sawyer (2001) documented how 

Ellen, a mathematics teacher, focused on “keeping above water” by minimizing unpredictable 

situations, implementing “relatively prescriptive approaches to math, such as lecturing, 

explaining rules and taking formulaic approaches” (p. 46). Bertram’s research (2023) using 

the work of the Initial Teacher Education Research Project (Deacon, 2016) confirmed this 

pattern, and noted the reality shock of novice teachers trying to apply the teaching strategies 

learned at universities, the incessant demand on their time, and their struggle with school 

discipline (Bertram, 2023). It seems that these novice teachers needed a basic level of 

predictability regarding these urgent requirements before they could focus on the substantive 

aspects of teaching such as planning worthwhile lessons and learning activities, preparing 

high quality assessments, and thinking deeply about how to make conceptual connections 

between and within topics (Bertram, 2023). 

The second phase involves what Sawyer (2001) identified as “seeing what works for 

students” (p. 47), marked by increased experimentation such as testing actively hypotheses 

about different approaches like cooperative learning and technology integration. Teachers try 

out different methods to gather information and start to refine their predictive sense of what 

works for them and what does not. 

The third phase manifests as “maturity,” characterised by “a more explicit use of multiple and 

thematically integrated approaches” (Sawyer, 2001, p. 47). Teachers demonstrate nuanced 

contextual decision-making guided by a robust, yet flexible, predictive framework. Rather 

than dramatic shifts between approaches, experienced teachers exhibit what Sawyer calls “a 

measured approach” (p. 54), thoughtfully evaluating and selectively incorporating new ideas 

against their well-calibrated predictive models while maintaining effective practices. 
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Systems theory and educational uncertainty: Luhmann’s perspective 

Niklas Luhmann’s work on education articulated a key source of uncertainty in teaching—the 

tension between causality and freedom (Qvortrup, 2024) where teachers attempt to cause 

certain learning outcomes without being able to control directly the actual learning process of 

a student, who is free to decide to learn or not. At the heart of his analysis is the concept of 

autopoietic systems—self-producing and self-maintaining systems that operate according to 

their own internal logic (Luhmann, 1986, 1984/1995). This concept fundamentally challenges 

traditional input-output models of education by positioning teaching and learning as distinct 

systems, creating an inherent gap that necessitates probabilistic judgement. 

The principle of operational closure (Luhmann, 1992) means that systems operate based on 

their own internal structures, with students’ learning systems ultimately controlling their own 

processes from within themselves. This operational closure is not absolute isolation; it 

describes how systems process external influences according to their own internal logic. As a 

result, teachers must operate probabilistically, estimating the likelihood that their teaching 

strategies will influence learning successfully.  

This necessity gives rise to what Luhmann calls the attribution of causality—a concept 

emerging from the condition of “double contingency” (Baraldi et al., 2017, p. 75), where both 

teaching and learning systems face mutual uncertainty about each other’s responses. This 

double contingency takes on special significance in education, where teachers must construct 

probability estimates based on situational observations and patterns rather than relying on 

direct cause-effect relationships (Qvortrup, 2024). 

As Luhmann and Schorr (2000) argued, causality in education is both impossible and 

necessary—impossible given the closed nature of each student’s cognitive system, but 

necessary because teachers must develop ways of working that produce learning effects 

reliably. This paradox is addressed through what Luhmann (1984/1995, 2002/2012) termed 

structural coupling, where teaching probabilistically influences or irritates the learning 

system rather than controlling it (Qvortrup, 2024). This coupling provides a pathway for 

communication—the basic operation of social systems—while acknowledging that specific 

outcomes cannot be dictated. 

In this way, Luhmann’s theory demonstrates why probabilistic reasoning must be at the heart 

of teaching. Teachers must continually interpret and re-evaluate the likely success of different 

strategies, using past observations to update their probability estimates—an ongoing process 

akin to Bayesian updating, driven by the need to manage the inherent uncertainty of 

educational situations while bridging the gap between their need to act and students’ freedom 

to respond unpredictably. 

Bounded rationality in teaching: Simon’s framework 

Herbert Simon’s theory of bounded rationality, developed in Models of Man (1957), 

fundamentally challenged fully rational assumptions about human decision-making. His 
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critique targeted the homo economicus model, which presumed that decision-makers possess 

perfect information and unlimited processing capacity. Instead, Simon proposed that human 

cognitive limitations make such optimization unrealistic, forcing reliance on more efficient 

ways to predict and decide, an insight particularly relevant for understanding teacher 

decision-making (Lee & Porter, 1990). 

Simon introduced the concept of satisficing to explain how people operate under constraints. 

Rather than seeking optimal solutions, individuals settle for options that meet a threshold of 

good enough predictive success (Simon, 1956, 1957). This framework helps explain why 

educators, faced with complex classroom situations, adopt practical, workable solutions 

rather than theoretically optimal ones. In teaching, this means that educators set acceptable 

levels for student engagement or learning outcomes and choose instructional strategies that 

meet these criteria, rather than searching for an elusive optimal method. 

To address these limitations further, Simon (1976) introduced procedural rationality in 

acknowledging that decision-making processes themselves must be efficient within cognitive 

constraints. People use heuristics—mental shortcuts—that help them respond adaptively to 

complex, uncertain situations. These heuristics can be viewed as simplified rules that 

efficiently approximate Bayesian updating, allowing teachers to adjust their beliefs and 

predictions quickly based on new classroom experiences without complex calculations. 

Simon’s work extended beyond explaining bounded rationality to explore how expertise 

develops through pattern recognition. Studying chess masters, he found that experts do not 

necessarily consider more information than novices. Instead, they recognise familiar patterns 

and retrieve associated predictive responses from memory. As he noted, “The situation has 

provided a cue; this cue has given the expert access to information stored in memory, and the 

information provides the answer. Intuition is nothing more and nothing less than recognition” 

(Simon, 1992, p. 155) triggering a well-honed prediction. 

This pattern recognition capacity is central to understanding the difference between novice 

and expert decision-makers. Research by Chase and Simon (1973) on chess players 

illustrated that masters could recall meaningful game positions almost perfectly because of 

these patterns, whereas novices struggled, especially with positions lacking strategic 

coherence. However, if the chess pieces were randomly placed on the board, this recall 

advantage dwindled away. Expert decision-making emerges not from expanded cognitive 

resources but from sophisticated heuristics encoded as patterns in long-term memory that 

enable rapid and effective prediction. 

Through pattern recognition, experts develop richer sets of prior experiences that allow more 

accurate predictions about outcomes. This enhanced ability to anticipate and interpret 

classroom situations means that experts effectively update their beliefs in a Bayesian manner. 

This development path shows that while bounded rationality limits perfect optimisation, 

experts’ pattern recognition enables them to transcend some limitations through procedurally 

rational heuristics that are able to project forward probabilities of specific actions. The 
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framework complements Bayesian perspectives by explaining how teachers make satisficing 

decisions, while developing increasingly sophisticated pattern recognition skills through 

experience, that are used to make probabilistic predictions about which decision will produce 

which results under given conditions. 

Professional judgement in teaching: Shalem’s framework 

Professional judgement emerges as a key mediating factor in teaching, bridging the 

theoretical challenges identified by Luhmann’s systems theory (1984/1995, 2002/2012) and 

Simon’s concept of bounded rationality (1957). Teachers face a dual challenge: they must 

influence student learning without direct control over it while making decisions under 

cognitive constraints and with incomplete information. Shalem and Slonimsky (2010), 

Slonimsky and Shalem (2006), and De Clercq and Slonimsky (2014) have provided a 

theoretical framework for understanding how teachers develop the professional judgement 

necessary to navigate these challenges by building better predictive models of practice. 

De Clercq and Shalem (2014) distinguished between two types of pedagogical content 

knowledge (PCK) that develop through epistemological labour (the intellectual work of 

refining one’s understanding and practice). The first type, PCK1, involves organising 

teaching over time—sequencing and pacing content, using coherent lesson structures, 

establishing routines, and designing learning activities focused on structuring instruction to 

manage complexity and increase predictability. The second type, PCK2, encompasses 

specialised knowledge about how to enable learners to understand the meanings, rules, and 

procedures of the subject matter, providing them with “epistemological access” to new 

knowledge (requiring more nuanced predictions about student thinking) (De Clercq & 

Shalem, 2014, p. 140; see, too, Morrow, 1994). 

Wally Morrow’s pilot analogy illustrates this distinction. 

A good teacher of piloting has in the back of his mind an understanding of what is 

involved in flying an aeroplane . . . You can contrast such a teacher . . . who 

understands what the bigger thing is . . . from one who follows a book which says in 

lesson one you need to do this and in lesson two you need to do that and it is never 

properly tied together. (cited in Shalem & Slonimsky, 2010, p. 21) 

Developing from PCK1 to PCK2 involves four key processes of epistemological labour: 

distantiation; appropriation; research; and articulation (Shalem & Slonimsky, 2006)—

processes that actively refine the teacher’s internal predictive model. Distantiation allows 

teachers to step back and examine their assumptions critically, moving beyond immediate 

practices and establishing cognitive distance from taken-for-granted knowledge. 

Appropriation involves integrating theoretical knowledge into existing understanding, 

adapting it for specific contexts—essentially, making the strange familiar. Research enables 

teachers to systematically investigate the effects of their teaching practices systematically, 

while articulation involves communicating and making public their knowledge and 

judgements. Through these processes, teachers engage in activities akin to Bayesian updating. 
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They adjust their prior beliefs about effective teaching strategies based on new theoretical 

insights and practical evidence, improving their predictive accuracy over time. 

Relying solely on PCK1 limits teachers’ ability to adapt to unexpected situations since 

procedural routines may not address the deeper understanding required for effective teaching. 

As De Clercq and Shalem (2014) have noted, scripted lesson plans can incorporate routines 

of PCK1 but fail to support the development of PCK2, which is essential for learners’ 

epistemological access. Appropriate judgement about how close or far a learner is from what 

is correct depends on understanding the disciplinary rules—a key aspect of PCK2, giving 

what the bigger thing is about teaching (enabling better prediction of student learning needs). 

Shalem (2014) further developed her framework through engagement with Abbott’s (1988) 

work on professional knowledge. Abbott’s distinction between academic and diagnostic 

classifications offered important insights into how predictive judgement develops. Academic 

classifications are organised frameworks that establish boundaries within disciplinary 

knowledge, providing theoretical concepts like the “zone of proximal development” and 

“epistemological access” that help teachers understand the bigger thing beyond procedural 

routines (Shalem, 2014, p. 98) and form structured prior hypotheses about learning. 

Diagnostic classifications, in contrast, are practice-oriented and they guide decision-making 

in specific cases. They enable professionals to interpret and act in particular situations by 

highlighting relevant features for predicting outcomes. 

By integrating academic and diagnostic classifications, teachers develop a comprehensive 

predictive framework that informs their expectations and interpretations. This integration 

supports more accurate belief updating since theoretical knowledge provides a basis for 

forming priors, while practical experience supplies the evidence needed to calibrate 

likelihood estimates. 

The progression from PCK1 to PCK2 represents a fundamental challenge in teaching 

practice, especially in light of Luhmann’s observation that teaching and learning operate as 

separate systems (Luhmann & Schorr, 2000), and Simon’s account of bounded rationality, 

which highlights the cognitive and contextual constraints that shape teacher decision-making 

(Simon, 1957). To bridge this gap, teachers must engage in systematic epistemological labour 

that develops both academic and diagnostic classifications, and they do so under risk. This 

development process mirrors Bayesian reasoning through which teachers continually update 

their beliefs about effective teaching based on new evidence and insights, thus honing their 

predictive capabilities. 

Shalem’s framework (2014) illustrates how professional judgement develops through 

processes analogous to Bayesian reasoning. Teachers move beyond procedural knowledge to 

achieve the deeper professional judgement characterised by PCK2, enabling them to make 

informed predictions and decisions despite systemic uncertainty and cognitive constraints. 

This progression is essential for supporting genuine epistemological access for learners since 

teachers refine their strategies through ongoing belief updating and adaptation. 
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Understanding subjective probability in teaching 

 Bayesian probability offers a structured way to think about how prior knowledge is 

combined with new evidence to inform judgements under uncertainty. Rather than defining 

probability in terms of repeated trials or long-run frequencies, as in classical (frequentist) 

approaches (see Fisher, 1925), Bayesian reasoning treats probability as a measure of 

plausibility—how strongly one should believe a claim given the information currently 

available (Bayes, 1763). This makes it especially applicable to teaching, where the events of 

interest (such as whether a learner has understood a concept or will respond to an 

intervention) often cannot be observed repeatedly or measured directly. In such contexts, 

teachers must make forward-looking judgements by drawing on prior classroom experience, 

theoretical understanding, and immediate cues from learners—an approach well aligned with 

Bayesian reasoning (Shafto & Goodman, 2008). Rather than offering certainty, this 

perspective legitimates professional judgement as a rational, evidence-sensitive process, even 

when operating under conditions of ambiguity or limited feedback. The Bayesian framework 

provides three key elements that help explain professional judgement (Gleason & Harris, 

2019): 

• Prior Beliefs—P(H): The initial subjective probability P of a hypothesis H based on 

existing knowledge; 

• Likelihood—P(E|H): The subjective probability of observing the evidence E given 

that the hypothesis H is true (how well the hypothesis predicts the evidence); 

• Posterior Beliefs—P(H|E): The updated subjective probability P of the hypothesis H  

 after considering the new evidence E. 

This structure mirrors how teachers develop professional judgement: they begin with 

theoretical knowledge and initial beliefs (priors), gather evidence through classroom 

experience (evidence), and update their understanding (posteriors) based on what they 

observe, essentially refining their internal predictive model. 

While humans may not engage in precise mathematical computations of probabilities, the 

Bayesian framework can still model effectively how individuals intuitively update their 

beliefs in response to new information that challenges their predictions. Extensive research 

on cognitive biases and heuristics has demonstrated that human probability judgements often 

deviate from normative mathematical models (Kahneman et al., 1982). However, these 

intuitive judgements, although suboptimal from a purely mathematical perspective, are highly 

effective in real-world decisions where uncertainty and complexity are the norm (Gigerenzer 

et al., 2011). 

This ecological rationality suggests that teachers use simple heuristics—mental shortcuts—to 

make quick decisions under pressure. These heuristics can be viewed as practical 

approximations of Bayesian updating, allowing teachers to adjust their beliefs and actions to 

reduce predictive error without complex calculations. Such fast and frugal rules of thumb, 

while not mathematically precise, are well-adapted to the specific challenges of classroom 
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decision-making. Future research could explore specific heuristics teachers use (e.g., 

recognition, satisficing), but here I focus on how the underlying Bayesian principle models 

change in beliefs. 

I position subjective Bayesian inference between simple heuristics and full-scale probabilistic 

models. It involves making intuitive judgements about what might work—drawing on 

heuristics—while systematically updating these judgements based on experience in a manner 

consistent with Bayesian principles (Parpart et al., 2018). This approach enables teachers to 

refine their professional judgement and predictive accuracy without relying on complex 

mathematical calculations. 

Furthermore, the Bayesian framework is valuable for two key reasons: first, it provides a 

formal mechanism for understanding how feedback loops drive the probabilistic 

improvement of our beliefs. Subjective Bayesian reasoning outlines formally how these loops 

operate in teaching in probabilistic ways. When teachers implement a strategy (based on prior 

beliefs), they observe the outcomes (evidence). These observations act as feedback that 

informs whether their initial beliefs were accurate. By comparing predicted outcomes with 

actual results, teachers update their beliefs (posterior beliefs), refining their understanding of 

what strategies are effective (Tenenbaum et al., 2008). This updating mechanism offers 

insights into how professional judgement develops and improves over time, even when 

operating through simple intuitions rather than formal probabilistic reasoning. The point is 

that teachers do this in ways that work with best guesses that will probably work in the given 

conditions, and do these many times a day. We need a language that formally catches this, 

and Bayes assists with a first take. 

Second, the Bayesian framework is useful because it helps explain both the stability and 

flexibility of professional judgement as characteristics of a well-calibrated predictive model. 

It shows how teachers can maintain coherent beliefs while continually updating them based 

on new evidence, integrating theoretical knowledge with practical experience systematically. 

This approach aligns with Luhmann and Schorr’s (2000) emphasis on the probabilistic nature 

of teaching—acknowledging the inherent uncertainties—Simon’s (1957) insights about 

bounded rationality—highlighting cognitive limitations and the use of heuristics—and 

Shalem’s (2014) description of the development of sophisticated professional judgement 

through epistemological labour. By providing a formal mechanism for understanding how 

teachers develop and refine their professional judgement, the Bayesian framework enriches 

our comprehension of the complexities involved in teaching under uncertainty. 

Bayesian models of teacher development: Using vignettes 

as a method 

The application of Bayesian reasoning to teaching is risky for a broad readership in education 

since it involves probabilistic terminology that is off-putting to many. I use vignettes as 

constructed scenarios that take an imaginary narrative walk through the probabilistic terms to 

exemplify how the dynamics of probabilistic judgement unfold in practice (Klotz et al., 
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2021). Vignettes are “short, carefully constructed description of a person, object or situation, 

representing a systematic combination of characteristics” (Atzmüller & Steiner, 2010, p. 

129). I present two constructed scenarios to illustrate how teachers develop professional 

judgement through intuitive Bayesian updating in response to specific classroom challenges: 

first, a classroom management scenario showing immediate belief updating done in an 

intuitive way; and second, a longer-term analysis with formal Bayesian terms of how teachers 

adopt and adapt scripted lesson plans (SLPs). 

Constructed scenario 1: Classroom management decisions 

Setting the Scene 

It’s third period on a Friday morning. Sarah, a new teacher in her first term, has been 

struggling with classroom management in her Grade 8 Science class. The staffroom has 

become her sanctuary during breaks, where experienced teachers offer advice, most of it 

centred on “establishing authority early” and “showing them who’s boss.” Today, after two 

previous challenging lessons, she’s finally gotten her class settled for independent writing 

work. The room is quiet except for the scratch of pens, when suddenly, a rhythmic tapping 

breaks the silence. Lexi, a student in the middle row, is drumming her pencil. 

Prior beliefs and multiple hypotheses 

As Sarah confronts this moment of decision, her mind holds competing ideas about how to 

handle minor disruptions. These competing hypotheses—strict verbal intervention versus 

proximity control—represent what Bayesian theorists would call a probability distribution 

over possible actions and their predicted effectiveness. Note that in this account I am not 

providing hundreds of possible actions with strict probability distributions; it is a more 

natural process with the most obvious options present. 

In the staffroom, her older colleagues have been clear: “These kids today need firm 

boundaries.” Their voices echo in her mind, carrying the weight of institutional knowledge 

and experience. This advice has strongly biased her toward strict intervention, reflected in a 

high prior P(H_strict). Her own recent struggles with classroom management reinforce this 

belief: just yesterday, a gentle reminder to a chatting student seemed to undermine her 

authority further, leading to more disruption. 

Yet somewhere in her consciousness, her university training persists. She remembers learning 

about proximity control, about subtle interventions that maintain student dignity and 

classroom flow. But these theories feel distant now, weighted down by daily reality and her 

growing need to establish herself as what she thinks of as a proper teacher. The chances of 

her using these gentler approaches, reflected in her prior P(H_gentle), have diminished with 

each challenging day. 
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Likelihood assessment 

In the moment of Lexi’s tapping, Sarah conducts what Simon would recognise as a bounded 

rationality analysis—a quick, intuitive assessment of likely outcomes under intense time 

pressure and cognitive constraints. She sees that the whole class can hear the tapping; she 

predicts a public response would likely demonstrate her control. The room’s current quiet 

feels precarious and hard-won after previous struggles. She predicts a firm intervention could 

probably reinforce her authority, show students she will not tolerate disruption. Other 

students might be getting annoyed; they’d appreciate her taking action. It’s an opportunity 

she predicts might set an example. 

The possibility of proximity control flickers through her mind, but her likelihood estimates 

for its success—P(Success | H_gentle)—have been eroded by staffroom conversations and 

her own fears. It feels too risky, and the predicted outcome seems weak, might seem weak, 

might undermine the quiet she’s finally achieved. The consensus among experienced teachers 

weighs heavily in her probability calculations, though she would not express it in these terms. 

Notice that the description of likelihood is forward looking; it is a projection of what is 

predicted to happen, given each hypothesis. 

Evidence collection 

Following her weighted probabilities (her current predictions), Sarah chooses the strict 

intervention: “Lexi, stop that tapping right now! We’re trying to work!” 

The evidence arrives with immediate clarity or what Bayesian theorists would call strong 

evidence creating a significant prediction error signal that challenges prior beliefs. Lexi 

jumps; she is startled and embarrassed. Several students look up from their work, the spell of 

concentration broken. Whispers break out in the back corner, the focused atmosphere 

dissipating like smoke. Two students start a side conversation, and Lexi looks confused and 

hurt since she hadn’t even realised she was tapping. 

Updating beliefs (Posterior) 

This cascade of evidence forces Sarah to update her simple probability distribution over 

effective responses, adjusting her predictions about the effectiveness of public corrections. 

Her new understanding emerges not as abstract theory but as lived experience: public 

corrections can disrupt the whole class’s learning more than the original problem; 

unconscious behaviours might need different approaches than does deliberate disruption; the 

cost of maintaining authority through strict intervention can outweigh its benefits; student 

embarrassment can damage both the learning environment and the crucial teacher-student 

relationship. 

The next iteration 

When similar tapping starts in the next lesson, Sarah’s prior beliefs have shifted significantly 

given the updates (her predictive model has been adjusted). Though she still holds the 
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possibility of strict intervention in her repertoire, her updated probability distribution leads 

her to predict proximity control might work better. She quietly moves near Lexi, gently 

touches her desk. The tapping stops, the class continues working undisturbed, Lexi remains 

engaged with her work, and the learning atmosphere is preserved. 

This new evidence further refines her probability estimates and future predictions: minor, 

unconscious disruptions can be handled without sacrificing authority; maintaining learning 

momentum often matters more than public displays of control; different types of disruption 

require different responses; authority can be maintained through subtle interventions. 

Through this process, Sarah begins developing professional judgement about classroom 

management. She learns that authority is not simply about strict control but about making 

strategic choices that balance immediate behaviour management with broader learning goals 

based on increasingly accurate predictions. She manages to distance herself from initial 

assumptions and then rework her assumptions to fit her experiences in a better way. Each 

new situation provides opportunities to refine these judgements further, leading to 

increasingly nuanced understanding of when to use different approaches. 

This case illustrates how teachers, while not explicitly calculating probabilities, engage in 

intuitive Bayesian reasoning that allows them to refine their predictive judgement through 

experience. The process maintains coherent belief systems while incorporating new evidence, 

develops intuitive probability distributions over possible actions, and enables rapid yet 

nuanced decision-making in the dynamic classroom environment. It is a simple insight into 

how teachers weigh options when making decisions; there is no guarantee that any one 

method will work, and the number of methods are kept to a minimum. A few possible 

responses are weighed based on their probable success in the moment. Sarah’s journey 

demonstrates how professional judgement evolves through systematic learning from 

experience, guided by an implicit Bayesian framework of prior beliefs, evidence collection, 

and belief updating driven by the need to improve predictions and outcomes. 

Bridge between scenarios 

The first case study, while illustrating the basic mechanics of Bayesian belief updating, 

operates primarily at the level of classroom management decisions. It shows how a novice 

teacher updates relatively simple beliefs about behavioural interventions but does not yet 

engage with the deeper aspects of professional judgement that constitute expert teaching. The 

case remains largely at the level of PCK1—the basic routines and management strategies that 

help teachers maintain classroom order and deliver lessons. 

The following constructed scenario attempts to trace a more complex trajectory on how 

teachers, often reacting to the predictive failures of their initial approaches, might develop 

from PCK1 to PCK2 through their engagement with scripted lesson plans. By following a 

teacher’s journey from university training through early classroom experiences with SLPs 

and beyond, I examine how Bayesian reasoning operates when teachers confront the 

fundamental challenges of predicting and enabling student learning rather than just managing 
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behaviour. The constructed scenario is based loosely on De Clercq and Shalem’s discussion 

of SLPs (2014), Shalem’s (2017) work, Bertram’s account of novice teachers developing 

experiences (2023), as well as the work of Sawyer (2001). In this account I will introduce 

Bayesian terms more formally. 

Constructed scenario 2: The evolution of teacher beliefs: A Bayesian analysis of 

professional development 

Intuitive account: Initial priors—The idealistic graduate 

When Sarah graduated from her education program, her prior probability distribution 

reflected two distinct belief sets (initial predictions) about teaching effectiveness. Her 

university-acquired constructivist priors carried strong positive weightings; she considered 

student-centred learning highly likely to succeed along with problem-based instruction and 

creative exploration—high P(H_constructivist). 

In contrast, her experiential priors from her own schooling carried much lower likelihood 

estimates, given her memories of how boring school was. Her prior probability distribution 

assigned relatively low likelihoods to the effectiveness of direct instruction and teacher-led 

discussions—low P(H_traditional). These traditional approaches, which she had experienced 

as a learner, were considered unlikely to produce optimal learning outcomes according to her 

university-influenced belief system (even though her university used lectures mainly as the 

delivery device). 

Formal Bayesian analysis—Prior probabilities P(H₁) and P(H₂) 

In Bayesian terms, Sarah’s initial beliefs (predictions) are represented by the prior 

probabilities P(H₁) and P(H₂), where: 

• H₁: Hypothesis that constructivist approaches are effective. 

• H₂: Hypothesis that traditional approaches are effective. 

Her prior P(H₁) is high due to her university training, while P(H₂) is low based on her 

personal experiences as a learner. The likelihood functions P(E|H₁) and P(E|H₂) 

represent the predicted probability of observing successful learning outcomes E given 

each teaching approach. Initially, P(E|H₁) is considered high (she predicts success is 

likely with H₁), and P(E|H₂) is considered low (she predicts success is unlikely with 

H₂). This reflects her strong confidence in constructivist methods over traditional ones 

as she enters the classroom. 

Intuitive account: Confronting classroom reality: when theory meets reality 

Sarah’s confidence in student-centred teaching methods was quickly tested in the reality 

shock of early classroom experiences. A particularly memorable moment came during what 

she thought would be an engaging inquiry-based science lesson. She had planned carefully, 

creating open-ended exploration activities that matched perfectly her university training. 

However, the lesson descended into chaos: students were confused, off-task, and learning 
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objectives were not met. Similar experiences followed with other constructivist lessons she 

attempted. Each unsuccessful attempt represented a significant prediction error, chipping 

away at her certainty about these methods, while more structured approaches started showing 

better results than she had expected. The stark contrast between her theoretical expectations 

and classroom reality forced her to reconsider rapidly her initial beliefs about what would 

work with real students. 

Formal Bayesian analysis—Updating with likelihood P(E|H) and posterior probability 

P(H|E) 

Sarah’s belief-updating process demonstrates Bayesian reasoning driven by prediction error: 

• Likelihood Functions: 

o P(E|H₁): The predicted probability of observing the classroom evidence E 

given constructivist methods H₁. 

o P(E|H₂): The predicted probability of observing E given traditional methods 

H₂. 

As she gathers evidence that constructivist methods are less effective than anticipated (the 

evidence makes P(E|H₁) seem lower than predicted) and traditional methods are more 

effective (evidence makes P(E|H₂) seem higher than predicted); she updates her beliefs. 

• Posterior Probabilities: 

o P(H₁|E): The updated probability that constructivist methods are effective 

given the evidence. 

o P(H₂|E): The updated probability that traditional methods are effective given 

the evidence. 

The likelihood ratio P(E|H₂) / P(E|H₁) shifts dramatically with each new piece of evidence, 

leading to rapid updates in her posterior probabilities. Her initial priors lacked strong 

empirical grounding, so the new evidence (the prediction errors) significantly reshapes her 

beliefs about teaching effectiveness. 

Intuitive account: Seeking stability—Turning to scripted lesson plans 

After her early struggles (driven by predictive failures and resulting uncertainty), Sarah found 

comfort in the structured approach of scripted lesson plans. These detailed guides promised to 

solve her immediate challenges by offering predictability and providing clear, step-by-step 

instructions for every lesson over an extended period. For Sarah, these scripts offered a 

lifeline—a way to manage the overwhelming complexity of classroom life by providing clear 

structures and routines (strengthening her PCK1). They also began to offer insights into how 

to present content more effectively, subtly contributing to her ability to facilitate student 

understanding (initiating PCK2 development). The scripts reduced her cognitive load, freeing 

her from the need for constant difficult prediction and decision-making, letting her focus on 

delivery rather than constantly making decisions about content and pacing. SLPs gave her 

extensive scaffolding with PCK1 by providing pre-set lesson structures, explicit routines of 
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work, along with assessment activities and worked out answers. Their apparent success with 

other teachers and their basis in systematic planning made them seem like a reliable solution 

to her current uncertainty about what would work in the classroom. 

Formal Bayesian analysis—New prior P(H₃), likelihood P(E|H₃), and posterior P(H₃|E) 

Sarah’s adoption of SLPs represents a shift in her prior beliefs: 

• New Hypothesis: 

o H₃: Hypothesis that Scripted Lesson Plans are effective. 

Her new prior probability P(H₃) is high due to the reputed success of SLPs and their 

structured nature. The likelihood function P(E|H₃) represents the probability of observing 

successful outcomes E given the use of SLPs. 

The posterior probability P(H₃|E) reflects her strong belief that standardised procedures can 

increase teaching effectiveness, temporarily stabilising her shifting belief distribution by 

providing a seemingly reliable predictive model. 

Intuitive account: Scripts meet students 

As Sarah used the scripted lessons in her daily teaching, she began noticing important 

patterns (gathering new evidence). While the scripts worked reasonably well for introducing 

basic concepts in straightforward lessons, they often fell short when she was faced with the 

real complexities of her classroom. Her predictions based solely on the script were often 

inaccurate. Some students raced ahead of the prescribed pace while others needed more time. 

Key teachable moments were lost when she stuck rigidly to the script. Sometimes, the 

scripted explanations confused her students more than they helped. She found herself 

naturally adapting the scripts—actively testing modifications—adding extra examples for 

struggling students, skipping redundant steps for quick learners, and weaving in personal 

connections that engaged her specific class. This adaptation signified a deeper engagement 

with the content (developing her PCK2) while still relying on the structured framework 

provided by the scripts (utilising her PCK1). These daily experiences (new evidence 

challenging the simple model) showed her that effective teaching required more flexibility (a 

more nuanced predictive model) than pure script-following could provide. In Shalem’s terms 

(2014), we see the emergence of a realised need for PCK2, the need for a more flexible and 

responsive understanding of what teachers need to do to enable student learning. Ironically, it 

is partly the cognitive space enabled by SLPs reducing cognitive load (less need for constant 

low-level prediction) that allows Sarah to engage with PCK2 (refining higher-level 

predictions about learning). 

Formal Bayesian analysis—Revising likelihood functions P(E|H₃) with conditional 

dependencies 

Sarah’s evidence collection led to significant revisions in her likelihood estimations for SLP 

effectiveness (her predictive model became more complex), 
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• Updated Likelihood Functions: 

o P(E|H₃, student_type): Probability of success predicted given SLPs and 

different student types. 

o P(E|H₃, content_difficulty): Probability predicted given SLPs and varying 

content difficulty. 

o P(E|H₃, class_dynamics): Probability predicted given SLPs and specific class 

dynamics. 

These conditional dependencies revealed that while strict script adherence (supporting her 

PCK1) provided lesson structure, it often resulted in lower likelihoods of deep student 

understanding (highlighting the need for further PCK2 development) than initially estimated 

(since the simple model failed to predict accurately across contexts). Her posterior probability 

P(H₃|E) shifted toward a more nuanced view, where effectiveness probabilities depended 

heavily on contextual factors rather than just script fidelity. 

Intuitive account: Developing professional insight—Beyond scripts 

Sarah’s journey led her to both discover and appreciate educative curriculum materials, 

resources that explained the why behind teaching decisions rather than just prescribing the 

what and the how (Shalem, 2017). Unlike rigid scripts, these materials helped her understand 

the reasoning behind different teaching approaches, enhancing both her lesson structuring 

skills (PCK1) and her ability to facilitate deep understanding (PCK2), effectively improving 

her predictive model. She found herself developing a deeper professional insight in knowing 

how to organise her lessons effectively and enable students to comprehend complex concepts, 

allowing her to adapt guidelines based on her students’ needs (making better context-

sensitive predictions). Rather than experiencing dramatic swings between different teaching 

approaches, she began making smaller, more refined adjustments to her practice in terms of 

fine-tuning her predictions and actions. When something did not work perfectly, she no 

longer abandoned it entirely (as she had with her early constructivist attempts) but, instead, 

thought carefully about how to modify it. Her understanding grew more stable but more 

nuanced: she could incorporate new experiences without completely overturning her existing 

knowledge (her predictive model became robust). In Morrow’s (1994) epistemological access 

terms, a good teacher has in the back of their mind an understanding of what is involved in 

teaching (a sophisticated predictive model). 

Formal Bayesian analysis—Joint likelihood function P(E|H₄) and emergence of robust priors 

Her evolving probability model demonstrates: 

• New Hypothesis: 

o H₄: Hypothesis that combines theoretical understanding with practical 

adaptation (a more complex predictive model). 

• Joint Likelihood Function: 

o P(E|H₄): Predicted probability of success given both understanding and 

adaptation. 



Hugo: Probabilistic professional judgement in teaching    19 

 

 

  

  

  

This refined model produced higher likelihood ratios than relying solely on SLP adherence. 

Her belief-updating process showed the emergence of robust priors—probability distributions 

that maintain their fundamental structure while accommodating new evidence through 

parameter updates rather than wholesale revision. Her predictions became more stable yet 

adaptable. Her new posterior probabilities P(H₄|E) exhibited the stability characteristic of 

mature professional judgement. 

Intuitive account: A measured approach to new teaching trends 

When learning styles theory swept through her school, Sarah responded differently from how 

she would have as a new teacher. Instead of immediately embracing this new approach with 

enthusiasm or rejecting it outright, she took a measured approach. Her hard-won experience 

and daily epistemological labour had taught her to evaluate carefully new ideas against her 

existing predictive model. While colleagues rushed to categorise students as visual, auditory, 

or kinaesthetic learners, Sarah tested these ideas cautiously in her classroom, comparing 

results with her existing effective practices. She found herself asking, “How does this fit with 

what I already predict works?” rather than seeing it as a complete solution. She did not go 

and read the latest research and empirical evidence on learning styles theory—she did not 

have the time or inclination for this—but took what was useful pragmatically if it improved 

her predictions/outcomes without radically changing her practices. 

Formal Bayesian analysis—Incorporating sceptical priors P(H) and evaluating new evidence 

with likelihood ratios 

Sarah’s matured Bayesian framework involved: 

• Sceptical Prior: 

o A prior probability P(H) that requires robust evidence to significantly shift her 

beliefs (her predictive model is stable). 

• Evaluating New Hypotheses: 

o H_new: Hypothesis representing the new teaching trend (e.g., learning styles 

theory). 

o Likelihood Functions: 

� P(E|H_new): Predicted probability of observing evidence given the 

new approach. 

� P(E|H_proven): Predicted probability given proven methods. 

• Likelihood Ratio: 

o P(E|H_new) / P(E|H_proven): Used to compare the predicted effectiveness of 

new approaches against established ones. 

Her strong professional judgement enabled gradual belief updating rather than dramatic 

shifts, maintaining high posterior probabilities P(H_proven|E) for effective practices while 

methodically evaluating new claims. 
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Intuitive account: Achieving confident flexibility—The seasoned professional 

After years of teaching, Sarah developed a deep, stable sense of what works in her classroom. 

Her understanding was not rigid; it was flexibly responsive to new situations while remaining 

grounded in proven practices (a robust and refined predictive model). She could assess 

quickly whether a new approach would be likely to succeed with particular students or topics, 

drawing on her rich experience without being trapped by it. When faced with novel teaching 

challenges, she neither clung desperately to old methods nor jumped impulsively to new 

ones. Instead, she adapted her approach thoughtfully based on the specific context in making 

nuanced predictions about the students involved, the subject matter at hand, and the particular 

learning goals. When reading research on learning and how to books on teaching, she looked 

for ways to incorporate these insights into her teaching practices, but almost never in a 

wholesale way and always integrating them to refine her predictive model). Her professional 

judgement had become more reliable and more nuanced, reflecting the mature integration of 

PCK1 and PCK2. This allowed her to navigate new situations with confident flexibility—

structuring her lessons effectively (PCK1) while understanding deeply how to facilitate 

student learning of complex material (PCK2)—all while maintaining what she knew worked 

(relying on her well-calibrated predictive model). 

Formal Bayesian analysis—Mature robust priors P(H) and evolved likelihood function 

P(E|H) 

Sarah’s mature professional judgement is reflected in: 

• Robust and Refined Priors: 

o P(H) distributions that maintain structural stability while incorporating new 

evidence (a stable yet adaptable predictive model). 

• Evolved Likelihood Function: 

o P(E|H) that handles complex combinations (allowing for nuanced 

predictions): 

� P(E|H) = P(success | strategy, context, student_needs, subject_matter) 

Her probability framework generated high posterior probabilities for approaches balancing 

structure with adaptability. The key feature of her evolved belief system was its ability to 

produce accurate probability estimates for novel situations without dramatic distribution 

shifts based on limited evidence. Her likelihood function P(E|H) demonstrated professional 

maturity by processing new information effectively (refining predictions) while maintaining 

responsiveness to substantive evidence of effective approaches. 

Conclusion 

I have argued that Bayesian reasoning offers a probabilistic framework for understanding 

how professional judgement develops as teachers learn to navigate uncertainty through 

prediction and belief updating. Probabilistic thinking helps teachers navigate the inherent 

uncertainties of education while working within cognitive constraints. Subjective Bayesian 
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analysis formalises the mechanisms of belief updating that underlie heuristic decision-making 

processes by modelling how prior beliefs are adjusted in response to prediction errors 

observed in practice. 

Luhmann and Schorr’s (2000) insight about the separation between teaching and learning 

systems highlights why teachers must think probabilistically; they can influence but never 

directly control student learning, requiring them to constantly update predictions about 

effectiveness. Simon’s (1957) bounded rationality framework explains why teachers must 

develop efficient predictive heuristics rather than seek optimal solutions, while Shalem’s 

work (2014) shows how these heuristics can become increasingly sophisticated as teachers 

build the knowledge structures underpinning effective prediction through systematic 

development of professional knowledge. While this development may not always align with 

formal academic classifications, it represents a sophisticated form of professional judgement 

adapted to the practical demands and constraints of classroom teaching. 

The Bayesian framework helps explain how teachers progress from being novices to experts. 

Novice teachers often start with fragile priors—initial beliefs based primarily on theoretical 

knowledge and personal learning experiences, which may lack robust empirical grounding. 

This leads to easily disrupted predictions and dramatic belief updates when they are 

confronted with classroom realities (significant prediction errors), explaining phenomena like 

the rapid abandonment of learner-centred methods in favour of more structured approaches. 

As teachers gain experience, they develop more robust and refined priors—stable predictive 

models that can be updated efficiently with new evidence without requiring drastic changes 

to their overall framework. This development allows teachers to refine their professional 

judgement and predictive accuracy efficiently while maintaining a consistent and adaptable 

teaching approach. 

Postscript 

A key motivation for this analysis stems from my interest in developing a more general 

theory of pedagogy—one that can account for teaching to learn processes in both humans 

and, increasingly, artificial intelligence systems. It concerns the fundamental question of how 

we teach to facilitate learning in both biological and computational systems. Central to this 

project is the subjective Bayesian reasoning explored in this paper. It provides a powerful, 

abstract language for describing how systems manage uncertainty, make predictions, and 

update their internal models based on experience. This probabilistic perspective applies 

remarkably well to modelling cognitive processes in humans, as argued here for teacher 

development, and it is also foundational to how many modern AI systems learn. I chose not 

to weigh down the main body of this paper with such a detailed juxtaposition since my 

primary aim was to establish the utility of the Bayesian framework within the familiar context 

of teacher professional development. I know that Bayesian reasoning is not what most readers 

of the Journal of Education are familiar with but really do feel that it is a vital conceptual tool 

for us to learn as AI progressively becomes a part of our lives. It cannot be that our only 

major question is how we work with AI in teaching and researching. We need to ask about 
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the fundamental processes behind how AI is taught to learn and what this means for a more 

general theory of pedagogy. 

AI systems, particularly those designed for learning and adaptation, can be understood as 

engaging in ongoing probabilistic inference. They construct and maintain internal models that 

represent their so-called beliefs about the world—often structured as probability distributions 

(e.g., the probability that an image contains a certain object, the probability of the next word 

in a sentence). Learning, in this context, is the process of refining these internal probabilistic 

models based on interaction with data or an environment. 

This learning process fundamentally aligns with Bayesian principles. An AI system starts 

with an initial model, reflecting its prior beliefs—P(H). These priors can originate from 

various sources—the vast amounts of data used in “pretraining,” explicit rules programmed 

by designers, or even an initial state of relative ignorance (e.g., uniform probability 

distributions). As the AI encounters new data or receives feedback—collectively termed 

evidence E—it must integrate this information. The critical step involves evaluating how 

likely this new evidence was, given the system’s current model. This is captured by the 

likelihood—P(E|H). If the evidence strongly contradicts the model’s predictions, it signifies a 

large “prediction error” or high “surprise.” 

Bayes’ Theorem provides the formal mechanism for updating the system’s beliefs. It 

mathematically combines the prior belief—P(H)—with the likelihood of the new evidence—

P(E|H)—to compute an updated belief, the posterior probability—(P(H|E). This posterior 

represents a revised internal model that better accounts for the recent evidence. Through 

repeated cycles of encountering evidence and updating beliefs, the AI’s model becomes 

progressively more accurate in its representation of the world and its ability to make 

predictions. Many sophisticated AI algorithms, including those in deep learning, implement 

efficient methods to approximate this Bayesian updating cycle, enabling learning even in 

highly complex scenarios (Gal & Ghahramani, 2016). 

Reinforcement learning (RL) in AI offers a clear example of this in action. An RL agent 

learns to make sequences of decisions in an environment to maximise cumulative rewards. Its 

current strategy for choosing actions in different situations can be seen as its policy, 

reflecting its prior beliefs about optimal behaviour. When it takes an action and observes the 

outcome (a new state and a reward signal), this serves as evidence. The agent calculates a 

prediction error—the difference between the expected reward and the actual reward received 

(related to the likelihood). This error signal drives adjustments to its policy, using algorithms 

functionally equivalent to Bayesian updating, leading to a posterior policy that incorporates 

the new experience. This iterative process allows the agent to learn effective strategies 

through trial-and-error, guided by probabilistic updates informed by feedback (Sutton & 

Barto, 2018). This mirrors the teacher development process, where practical experience and 

feedback drive updates to pedagogical beliefs and strategies, although there are dramatic 

differences as well. 
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The convergence of Bayesian principles in modelling learning across diverse fields from the 

AI techniques discussed here (Pearl, 1988; MacKay, 2003) to cognitive neuroscience, where 

the brain is conceptualised as a “Bayesian prediction machine” actively working to minimise 

prediction error (Friston, 2010, 2013) suggests strongly that we are identifying fundamental, 

abstract mechanisms of intelligence and adaptation. For educational theory, this is significant. 

It opens the door to developing a more unified science of learning and instruction. By 

focusing on these underlying principles—how systems represent uncertainty, make 

predictions, and update beliefs based on error—potentially we can identify pedagogical 

strategies that are effective precisely because they align with these core learning dynamics, 

irrespective of whether the learner is human or artificial. This pursuit echoes the ambitions of 

Cybernetics (Wiener, 1948; Pask, 1961) to discover general principles governing complex 

adaptive systems. Subjective Bayesian reasoning provides a robust and contemporary 

framework for continuing this important work, leading potentially to breakthroughs in both 

how we understand learning and how we design effective teaching for all types of learners in 

an increasingly integrated future. 
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