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Abstract

The paper discusses the modelling of the influence
of temperature on average daily electricity demand
in South Africa using a piecewise linear regression
model and the generalized extreme value theory
approach for the period - 2000 to 2010. Empirical
results show that electricity demand in South Africa
is highly sensitive to cold temperatures. Extreme
low average daily temperatures of the order of
8.20C are very rare in South Africa. They only
occur about 8 times in a vear and result in huge
increases in electricity demand.
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1. Introduction
Drivers of electricity demand are generally divided
into economic factors, calendar effects, weather
variables and lagged demand variables. Inclusion of
these factors in electricity demand models improves
the predictive power of the models and also
enables system operators and load forecasters to
have a better understanding of the factors that
have a greater impact on electricity demand.
Weather variables such as temperature, solar radia-
tion, humidity, wind speed and rainfall are often
used as explanatory variables in regression based load
forecasting models. Most authors, however, use tem-
perature as the main driver (Munoz et al., 2010).
The influence of temperature on daily electricity
load forecasting has been studied extensively in the
enerqy sector using classical time series, regression
based methods including artificial neural networks
(Miragedis et al., 2006; Hekkenberg et al., 2009;
Psiloglou et al., 2009; Munoz et al., 2010; Pilli-

Sihvola et al., 2010; among others). The paper dis-
cusses the modelling of the effect of average daily
temperature on daily electricity demand in South
Africa using a piecewise linear regression modelling
framework and the generalized extreme value theory
approach. A generalized extreme value distribution
(GEVD) is fitted to the temperature data below the
reference temperature. Extreme value theory
(EVT) is a powerful and fairly robust framework
for modelling the tail behaviour of a distribution
(Gencay and Selcuk, 2004). Extreme value theory
has been applied in various fields such as flood fre-
quency analysis, environmental sciences, model-
ling extreme temperatures, finance and insurance
including material and life sciences. The family of
extreme value distributions is called the generalized
extreme value distribution. GEVD consists of the
Gumbel, Frechet and Weibull class distributions
which are also known as the type I, Il and III extreme
value distributions respectively.

The rest of the paper is organized as follows. The
models are discussed in Section 2. In Section 3 we
briefly describe the data used. Empirical results are
presented in Section 4 while Section 5 concludes.

2. The models

Our modelling approach is in two stages. A piecewise
linear regression model is used to explore the effect of
temperature on daily electricity demand. In stage
two, we fit a generalized extreme value distribution
to the temperature values below the reference tem-
perature. The fitted distribution is then used to esti-
mate extreme low temperatures and calculating the
corresponding marginal increases of electricity
demand.

2.1 Piecewise linear regression model

The piecewise linear regression model used for
modelling the influence of temperature on electric-
ity demand is given in equation (1).
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ADED = ay + a; max(0,t, — ADT)
+ a, max(0,ADT —t,) + &, (D

where ADED (Average Daily Electricity Demand),
ADT (Average Daily Temperature), t;, and t, are
temperatures which separate summer and winter
sensitive periods (hot and cold temperatures) from
the weather neutral period respectively. The
parameters to be estimated are @, @; and a, and
& is the error term with &~N(0,6?). A
Multivariate Adaptive Regression Splines (MARS)
algorithm developed by Friedman (1991) is used
to estimate the two reference temperatures t. and
t, which are 18°C and 20°C respectively and
discussed in Chikobvu and Sigauke (2012).

2.2 Generalized extreme value distribution
The GEVD consists of the Gumbel, Frechet and
Weibull class of distributions. The unified GEVD for
modelling maxima is given by

G:(x) = exp {— [1 +¢ (x—:f)]_é},ifl +
f(%)>0and§¢0 2)

where pand o are the location and scale para-
meters respectively. The shape parameter ¢ also
known as the extreme wvalue index (EVI)
determines the rate of tail decay. If £ > 0, G¢(x)
belongs to the heavy-tailed Frechet class of
distributions (Beirlant et al., 2004). For é < 0 we
have the short- talled Weibull class and is bounded
above by u —— (Beirlant et al., 2004). If § =0,
G (x) belongs io the light-tailed Gumbel class of
distributions (Beirlant et al., 2004).

In order to model minima we use the duality
between the distributions for maxima and min-
ima. If M, = min{x;,x,,...,x,,} where x;i=
1,2,..,n  represents temperature, then M, =
max{—xy, =Xz, ..., —X,}. Extreme maxima theory
and methods are then used to model extreme
minima. The Maximum Likelihood (ML) method is
used to estimate the parameters &, pand . The
survival distribution of the GEVD given in
equation (2) is given by:

P(X>x):1—G§(x):1—exp{—[1+

g(%)]_?},im +&(ZE)>0and =0 (3)

If we let p =P(X > x) and rearranging equation
(3) to make x the subject we get the quantile
function:

X, = U +%[{—ln(1 —-p} ¥ - 1],5 #*0 (4)

Now as p » 0 and ¢ < 0 we get x, =u—2 The
quantile function for the unified GEVD given in
equation (4) is then used to estimate high quantiles
and predicting the probability of exceedance levels.

3. Data

National daily electricity data for the industrial,
commercial and domestic sectors of South Africa
is used in this study. The data is from Eskom,
South Africa’s power utility company. Figure 1 shows
that ADED data exhibits strong seasonality and has
a positive upward trend.

Aggregated ADT from 32 meteorological sta-
tions of South Africa representing all provinces
(regions) of the whole country is used in the analy-
sis.!

Figure 2 shows that ADT has strong seasonality
and is stationary. The minimum ADT and maxi-
mum ADT over the sampling period (2000-2010)
are 7.59C and 26.19C respectively.

4. Empirical results and discussion

4.1 Piecewise linear regression model
output

The model identifies the winter sensitive, weather
neutral and summer sensitive periods. The model is
not used for forecasting electricity demand but
rather to explain the influence of temperature on
electricity demand.

E(ADED = 23932 + 263 max(0,22 — ADT)
+ 138 max(0,ADT - 18) (5)

The graphical plot of ADED against ADT is shown
in Figure 3. The three demand-temperature equa-
tions are given in equations 6-8. If average daily
temperature is less than or equal to 18°C equation
(5) reduces to

E(ADED = 23932 + 263 max(0,22 — ADT) (6)

That is, if the temperature decreases by 1°C (e.g.
from 189C to 179C) electricity demand will increase
marginally by 263 MW. A fall in ADT of 19C (say,
from 16°C to 15°C) would result in an increase of
about 1.03% in electricity consumption.

If average daily temperature is greater than or
equal to 22°C equation (5) reduces to

E(ADED = 23932 + 138 max(0,ADT - 18) (7)

If temperature increases by 1°C (e.g. from 22°C
to 239C) electricity demand will increase marginally
by 138 MW. For a rise in average daily temperature
of 1°C (say, from 25°C to 26°C) would result in an
increase of about 0.55% in electricity consumption.

For the average daily temperature between
189C and 229C we use the full model given in equa-
tion (5), i.e.
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Figure 1: Average daily electricity demand (megawatts) from 2000-2010
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Figure 2: Time series plot of average temperature (degrees C)

E(ADED = 23932 + 263 max(0,22 — ADT)
+ 138max(0,ADT - 18) (8)

If temperature decreases by 19C (e.g. from 22°C
to 219C) electricity demand will increase marginally
by 125 MW. A decrease of ADT from 20°C to 19°C
would result in an increase of about 0.51% in elec-
tricity consumption.

This analysis shows that electricity demand in
South Africa is highly sensitive to cold temperature
(see Figure 3). There is a non-linear relationship
between temperature and electricity demand as
shown in Figure 3. This non-linear relationship is
modelled in literature using heating degree days
(HDD) and cooling degree days (CDD). Modelling
of this relationship between temperature and elec-
tricity demand is discussed in literature (Mirasgedis,
2006; Franco and Sanstad, 2008; Psilogu et al.,
2009; Munoz et al., 2010; Pilli-Sihvola et al.,
2010; among others). HDD and CDD are calculat-
ed using the following functions:

HDD, = max(T, — ADT)) (9)

CDD; = max(ADT - T, ,0) (10)

where ADT is the average daily temperature at
time and is the reference temperature.

In this paper a piecewise linear regression model
is used with two reference temperature values
which are estimated using the MARS algorithm
(Friedman, 1991).

Figure 3 shows the plot of the model in equation
(5). The piecewise linear regression plot separates the
non-linear response of electricity demand to tempera-
ture into three regions: cold for temperatures lower
than 189C, neutral for temperatures between 18°C
and 229C, and hot for temperatures above 22°C.

There are other several methods of filtering data
(i.e. removing both the trend and the calendar
effects) which are discussed in literature (see Moral-
Carcedo and Vic ens-Otero, 2005; Munoz et al.,
2010; among others).
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Figure 3: Scatter plot of ADED (seasonally adjusted) against ADT with the fitted piecewise
regression line of equation (5)

4.2 Modelling the minimum daily
temperature (tail quantile estimation)

In section 4.1 it was noted that demand of electric-
ity is more sensitive to cold temperatures (less than
1809C) than to hot temperatures (more than 22°C).
Modelling of extreme minimum temperatures is
therefore important to load forecasters and system
operators for planning, load flow analysis and
scheduling of electricity. In this section, we estimate
the extreme tail quantiles of ADT below 18°C using
the GEVD. The data is seasonally adjusted. There
are 1649 observations below 18°C. Figure 4 shows
data for temperature below 18°C.

4.3 Tail quantile estimation

We use the principle of duality between the distri-
butions of minima and maxima as discussed in
Section 2.2. Figure 5 shows the graph of —x;, i = 1,
..,n where x; represents temperature below 18°C.
The R statistical package Ismev (Heffernan and
Stephenson, 2013) is used to obtain the ML esti-
mates. The estimates are given as (the standard
errors are given in parentheses):

—0.2004(0.01817),
= —15.02544(0.05758) and
= 2.0800(0.04176)

Q)-‘; L 4a
I

The standard errors of the ML estimates of the
parameters, are small. This shows that uncertainty
about the parameters is small. These results show
that the data can be modelled using a Weibull
class of distributions, (since ¢ < 0) and the right
endpoint is finite and is given by:

o 2.08
u— E = —15.202544 — = —4.646

—0.2004

This implies that for any degree decrease below
4.69C there won't be any further increase in elec-
tricity demand.

The quantile-quantile (QQ) and probability-
probability (PP) plots given in Figure 6 show that a
Weibull distribution is a good fit to the data. The
return level estimates are inside the 95% confi-
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Figure 4: ADT below 18°C (2000 to 2010)
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Figure 5: Inverted graph of Figure 4. Figure 4 is inverted so that we can use the duality between the
distributions for maxima and minima

dence interval. This is an indication that the fitted
distribution is capable of accurately predicting
future return levels. We then use equation (4) to
estimate the future return levels for different return
periods. The return level is the quantile of the
GEVD (Weibull distribution). For example, the 95t
quantile is obtained as follows:

—Xg 05 = —15.025 — Ozﬂ[{_ In(0.95)}02004 _ 1]

.2004
= —10.369 = xg,45 = 10.369
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The number of observations that are smaller
than the estimated tail quantile (xg g5 = 10.369) are
then counted and found to be 78. For the observed
number of exceedances, we get 0.05 X 1649 =
82.45 ~ 82 where 1649 is the number of tempera-
ture values below 18°C. The increase in electricity
demand for a drop of temperature from 18°C to xg o5
= 104°C is given by (18 - 104) X 263 =
1998.8MW, where 263 is the marginal increase in
demand for a decrease of 1°C below 18°C as dis-
cussed in Section 4.1. It should be noted that this
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Figure 6: Diagnostic plots illustrating the fit of the data (temperature below 18°C) to the GEVD, (a)
Probability plot (top left panel), (b) Quantile plot (top right panel), (c) Return level plot (bottom left
panel) and (d) Density plot (bottom right panel)
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Table 1: In-sample evaluation of estimated tail quantiles at different probabilities (number of

exceedances)
Quantiles Temp (xp) Observed no. GEVD (no. of Marginal increase in
of exceedances exceedances) demand (MW)
90th 11.3°C 164 159
95th 10.4°C 82 78 236.7
9oth 8.89C 16 12 420.8
99.5th 8.20C 8 8 157.8
Table 2: Monthly frequency of exceedances below x5 =10.4°C
Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Fregency 0 0 0 0 11 16 45 6 0 0 0 0

increase in ADED for temperature decreases below
189C is bounded above. As temperature decreases
below 18°C, the increases in ADED reaches a cer-
tain maximum after which any further decrease in
temperature will not have any effect on ADED. That
is as temperature decreases people will switch on
heating systems up to a point when all the heating
systems are all switched on and no additional ener-
gy is consumed.

Table 1 presents a summary of the estimated tail
quantiles at different tail probabilities. The tail
quantiles (temperature) are given in column 2. The
observed number of observations (temperature)
that are smaller than the estimated tail quantiles are
shown in column 3 while column 4 shows the cor-
responding number estimated using GEVD. In
equation (5) it is given that for a degree decrease in
temperature below 18°C there will be a marginal
increase in demand of 263 MW. For each of the esti-
mated quantiles in column 2, column 5 shows the
marginal increases from one quantile to the next, e.g.
if temperature drops from 11.39C to 10.4°C there

Temperature (°C)

6.0

5.5

Temperature (°C)

5.0

4.5

2 4 6 8 10 12 14
Observation number

will be an increase in demand of 263(11.3 — 10.4)
= 236.7MW. Similarly, for a decrease from 10.4°C
to 8.89C the marginal increase will be 263(10.4 —
8.8) = 420.8MW. Extreme low average daily tem-
peratures of the order of 8.29C are very rare in South
Africa. This only occurs about 8 times in a year.

Table 2 given in the Appendix summarizes the
temperature values at high quantiles and the corre-
sponding marginal increases while Figure 7 shows
that the marginal increases converge to 1.58 MW
when temperature converges to 4.6°C.

A summary of the monthly frequency of occur-
rence of temperature values below 12.49C (i.e.
above the 95t quantile —x; o5 = 10.369 is given in
Table 2. Over the sampling period, i.e. years 2000
to 2010 the month of July has the highest number of
days with temperature values below 10.4°C. This is
an indication that the month of July is the coldest
month in South Africa and the winter period is from
May to August of each year.

The bar chart of the monthly frequency of
occurrence of exceedances is given in Figure 8.
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Figure 7: (a) Left panel shows that the gradual decrease in temperature converges to 4.6°C
and (b) Right panel shows that the marginal increases converge to 1.58MW when temperature
converges to 4.6°C
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Figure 8: Bar chart of the monthly frequency of
occurrence of exceedances (x5 = 10.4).
The exceedances are average daily
temperature values below 10.4°C

5. Conclusion

An analysis of the intensity and frequency of
occurrence of extreme low temperatures is impor-
tant for load forecasters in the electricity sector. In
this paper, the modelling of the influence of tem-
perature on average daily electricity demand in
South Africa using a piecewise linear regression
model and the extreme value theory modelling
framework is discussed. The developed piecewise
linear regression model is not meant for forecasting
but to model the effect of temperature on electricity
demand. The study establishes temperature as an
important variable in explaining electricity demand.
Empirical evidence from this study shows that for
temperature values below 18°C demand for elec-
tricity in South Africa increases significantly while
for temperature values above 22°C demand
increases slightly. This analysis is important for deci-
sion makers in Eskom, South Africa’s power utility
company. Extreme low temperatures can be mod-
elled by the Weibull class of distributions. Extreme
low temperatures of the order of 6°C are very rare
in South Africa, but can cause huge increases in
electricity demand. An investigation of expected

cooler or warmer than typical years is important
and helps in guiding planning to decision makers in
the electricity sector.

Areas for future research would include a compar-
ative analysis of the generalized extreme value distri-
bution with a generalized Pareto distribution and a
generalized single Pareto distribution in modelling
extreme low temperatures in South Africa. These
areas will be studied elsewhere.

Note

1. Average daily temperature for the whole country is
usually built into the modelling as weighted average
temperatures from different meteorological stations of
a country. The weightings should reflect consumption
of electricity of each region (province). Population
figures are often used for estimating the weights. In
this research, the weightings were not done since only
aggregated average daily temperature was available.
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