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A CPM-based scheduling
method for construction
projects with fuzzy sets
and fuzzy operations

O Okmen, A Oztas

The Critical Path Method (CPM), which is used to schedule construction activities that

depend on one another through network relationships, is deterministic with regard to the
duration assigned to the execution of the activities and the results produced in certain values.
Unfortunately, construction activities are performed under uncertain conditions. Project risks
cause variations in activity duration, and in turn the entire network is affected by uncertainty. In
this context, activity duration can be represented by fuzzy sets, and CPM network calculations
can be performed by fuzzy operations through a method developed in this study. Since the
duration of activities is represented by fuzzy sets, and network calculations can be performed
by fuzzy operations, the activity early/late start/finish times and the project completion time are
calculated as fuzzy sets by the proposed method. An example CPM application with fuzzy sets
is also presented in the paper. The findings show that CPM is applicable with fuzzy sets, and the
developed method operates well for modelling the uncertainty in CPM calculations.

INTRODUCTION

Construction projects are realised by carrying
out various activities which are dependent on
one another by finish-to-start (FS), start-to-
start (SS), finish-to-finish (FF) or start-to-finish
(SF) relationships, and by lag or lead times.
Therefore, construction activities constitute
networks. In order to provide managerial infor-
mation — such as the project completion time,
the activity early start (ES), late start (LS), early
finish (EF) and late finish (LF) times, the activ-
ity float times and the activity criticalities — the
dependency relations between the activities
should be analysed. Bar charts, Line of Balance
and Critical Path Method (CPM) have been

the popular methods of construction activity
scheduling since the 1950s (Griffis & Farr
2000; Halphin & Woodhead 1998; Oberlender
2000). CPM, which was first developed in 1956
by the DuPont Company with Remington
Rand as consultants in the USA, is accepted as
the most suitable means of scheduling activity
networks (Oberlender 2000). This is due to its
capabilities, such as showing the dependency
relations between activities, detecting the
critical activities and revealing the activity float
times (Okmen & Oztas 2008).

In spite of its wide usage and popularity,
CPM has some limitations and criticised
features. The limitations of CPM are related
to its deterministic calculation procedure,
which is insufficient for modelling uncertainty.
CPM is deterministic because of the invari-
able duration values assigned to activities in
network calculations, as if these durations are

known certainly and do not vary by various
risk factors. This deficiency may lead to inac-
curate critical path identification and project
duration measurement (Jaafari 1984; Ahuja
& Thiruvengadam 2004). Unfortunately,
construction network schedules are under the
influence of uncertainty due to risk factors
such as weather conditions, soil properties,
labour productivity, etc (Edwards 1995;
Flanagan & Norman 1993; Oztas & Okmen
2004). All of the risk factors in a construction
project might be schedule risks, because they
are directly or indirectly related to time sched-
ules. Moreover, due to uncertainties, all activi-
ties might become critical in practice, even
those that are not critical according to CPM.
In this context, this study aims at propos-
ing a method of the CPM network calculations
(forward and backward pass calculations) with
fuzzy sets. The activity durations are repre-
sented by special kinds of fuzzy sets called
fuzzy numbers in this method, and accordingly
the CPM forward and backward pass calcula-
tions are executed by fuzzy operations. The
representation of activity durations by fuzzy
numbers enables modelling the uncertainty
effect. In construction projects, the duration of
an activity cannot be proposed with certainty
in advance. Predictions such as “this activity
can be completed most probably between
seven and ten days, but perhaps it takes 15 days
maximum and five days minimum depending
on the conditions” are frequently made. Fuzzy
numbers are suitable to model these kinds of
linguistic propositions mathematically. Since
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the activity durations are represented by fuzzy
numbers and the network calculations are per-
formed by fuzzy operations, the activity early/
late start/finish times and the project comple-
tion time or the project duration are calculated
as fuzzy numbers through this new method.
In other words, the effect of uncertainty on
the results of CPM is modelled. Furthermore,
the evaluation of activity/path criticalness is
realised by using the geometric centres of the
activity early/late times.

Simulation-based, probabilistic- or fuzzy
set-based methods have been used in the past
by researchers to model the uncertain activ-
ity durations and the uncertainty effect on
the activity networks (Ayyub & Haldar 1984;
AbouRizk & Halphin 1992; Diaz & Hadipriono
1993; Wu & Hadipriono 1994). Program
Evaluation and Review Technique (PERT)
is the most popular probabilistic method
developed for this purpose. While certain
durations are assigned to the activities in CPM,
activity durations are assumed as variables and
represented by minimum, maximum and most
likely durations in PERT. Through a simplifica-
tion process, the expected durations and the
variances of variable activity durations are cal-
culated by utilising the minimum, maximum,
and most likely durations. Subsequently, the
traditional CPM calculations are performed
by using the expected activity durations, and
then the critical path is detected. The expected
durations and variances of the activities on
the critical path are added, and the project
completion time is assumed to follow normal
probability distribution having these calculated
values as the distribution parameters, i.e. the
mean and variance. Since the project comple-
tion time is obtained as a normal probability
distribution in PERT, it becomes possible to
draw some inferences regarding the uncertain-
ty of the activity network and project comple-
tion time, such as the probability of completing
the project within a specific percentage
(Halphin & Woodhead 1998; Griffis & Farr
2000; Oberlender 2000; Plotnick & O’Brien
2009). However, PERT has been criticised in
the literature because of its limitations, such
as taking only the critical path into account,
assumption of normal probability distribution
for the project completion time, simplification
process used in the calculation of expected
activity durations and variances through esti-
mated minimum, maximum and most likely
durations, etc (Ahuja & Thiruvengadam 2004;
Diamantas et al 2007; Kerzner 2009).

In order to overcome the limitations of
CPM and PERT, CPM-based risk analysis
models have been developed by utilising
Monte Carlo Simulation Technique (Okmen
& Oztas 2008; Wang & Demsetz 2000).
Some of the researchers have tried to imple-
ment the CPM network calculations through
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Figure 1 Triangular fuzzy number

fuzzy sets and operations instead of utilis-
ing probabilistic or simulation techniques
(Chanas & Kamburowski 1981; Dubois &
Prade 1988; Lorterapong & Moselhi 1996).
Lorterapong and Moselhi (1996) developed a
complete project network analysis technique
by using a fuzzy set theory named FNET.
This technique includes a new procedure
for performing the forward and backward
pass calculations of CPM with fuzzy sets

in cases where the activities are dependent
on one another having only finish-to-start
relations, and where no lag or lead times

are used between the activities. However, if
other types of network dependencies, such
as finish-to-finish, start-to-start or start-
to-finish, and lag/lead times are used, this
technique fails. In this study, it is aimed to
propose a new method to be used for the full
implementation of CPM with fuzzy sets, in
case lag/lead times and all dependency types
are used.

The details of the new method are
described after introducing the basic infor-
mation about fuzzy set theory and fuzzy
numbers, and then an example application is
carried out. The paper ends with the conclu-
sions and recommendations for future work.

FUZZY SET THEORY AND

FUZZY NUMBERS

In classical set theory, the membership of
an element to a specified set is described

by two definite and opposite situations:
belonging to the set (membership degree =
1.0) or not belonging to the set (membership
degree = 0.0). However, in fuzzy set theory,
the membership of an element to a specified
set is described by the membership degrees
between 0.0 and 1.0 (Zadeh 1965; Sen 2004;
Ross 2010). This provides the opportunity of
modelling the uncertain expressions of real

life mathematically, performing fuzzy set
operations between these uncertainties and
finally reaching fuzzy results that cannot be
achieved analytically otherwise.

Consider a fuzzy set A of the universe U.

A = {(x, ppAR))[x€EA, p () € [0, 11}

where 1, (x) is a function called membership
function, and p,(x) exactly states the grade
or degree to which any element x in A is a
member of the fuzzy set A.

The definition given above combines each
element x in A with p,(x) in the interval [0,
1] which is assigned to x. Larger values of

H 4 (x) indicate higher degrees of membership
(Bojadziev & Bojadziev 1997; Han 2005; Ross
2010).

A fuzzy number is a continuous fuzzy set
that possesses two properties: convexity and
normality. The convexity indicates that the
membership function has only one distinct
peak, while the normality ensures that at
least one element in the set has a degree of
membership equal to 1.0. These two proper-
ties make the concept of fuzzy numbers
attractive and naturally appropriate for
modelling imprecise fuzzy quantities such as
“approximately one week,” or “more or less
than seven days”. Theoretically, fuzzy num-
bers can take various shapes. In modelling
real-life problems, however, linear approxi-
mations such as trapezoidal and triangular
fuzzy numbers are frequently used (Chanas
& Kamburowski 1981; Dubois & Prade 1988).
Mathematical definitions and general shapes
of triangular and trapezoidal fuzzy numbers
are given below:

Triangular fuzzy numbers
A triangular fuzzy number with membership
function 1, (x) is defined by:
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Figure 2 Trapezoidal fuzzy number

wx—a)b-a) fora<x<b
x-0lb-c) forbsx<c @
0 otherwise

Halx) =

This set is graphically shown in Figure 1.
Trapezoidal fuzzy numbers
A trapezoidal fuzzy number with member-

ship function p, (x) is defined by

x—-—a)b-a) fora<sx<b

1 forb<x<c
“a® =V _die-d) forccxcd @
0 otherwise

This set is graphically shown in Figure 2.

CPM NETWORK CALCULATIONS
WITH FUZZY SETS AND

FUZZY OPERATIONS

The early/late start/finish times, total float
times, criticalness of the activities and the
project completion time of a network are
explored by applying forward and backward
pass calculations on the network. In other
words, forward and backward pass calcula-
tions constitute the network calculations

of CPM. In order to carry out the CPM
network calculations, activity durations,
activity interdependencies in the form of FS,
FF, SS or SF, and lag/lead times between the
activities are required. The activity dura-
tions should be predicted as invariable fixed
values (most likely durations) for the CPM
execution. However, if the activity durations
and lag/lead times are represented by fuzzy
sets, traditional forward/backward pass
calculation of CPM becomes inapplicable.
In this regard, a method has been developed
for the purpose of making the CPM network
calculations applicable with fuzzy sets and
fuzzy operations.

Forward pass calculations
with fuzzy sets
Forward pass calculations should be per-
formed through fuzzy operations in an activ-
ity network of which the activity durations
and lag/lead times are represented by fuzzy
sets. For this reason, fuzzy addition, fuzzy
subtraction, fuzzy maximisation and fuzzy
minimisation have been utilised in order to
develop the procedure of the CPM forward
pass calculation with fuzzy sets. The proce-
dure is described below:

If X and Y are the two trapezoidal fuzzy
numbers, such that

X =(a}, by, ¢y, dy)

Y = @@y, by, ¢, dy)

then
X{+}Y=(a;+ayb;+byc;+cyd;+dy) (3)
X{-}Y=(a;~dy b;—cy, c;~b,y d;—a,) (4)

max (X,Y) = (max (a,, a,), max (b, by),
max (c;, ¢,), max (d, d,)) (5)

min (X,Y) = (min (a; a,), min (b, b,),
min (c;, ¢,), min (d}, d,)) 6)

where {+}, {-}, max, min are fuzzy addition,
fuzzy subtraction, fuzzy maximisation and
fuzzy minimisation, respectively.

These fuzzy operations are only applied
between the fuzzy values possessing the
same membership degrees, which is a rule
based on the logic of fuzzy operations
(Lorterapong & Moselhi 1996).

If all of the activity dependencies are FS
and there is no lag/lead time between activi-
ties in an activity network, fuzzy forward

pass calculation is performed as follows
(Lorterapong & Moselhi 1996):

FES, = max (FEFp) 7)
FEF, = FES, {+} FD, ®)
T, = FEF, ©)

where p € P (the set of predecessor activi-
ties); FES,, FEF,, FD, are the fuzzy early
start time, fuzzy early finish time and fuzzy
duration of activity x respectively; and Toroj
and FEF, are the fuzzy project duration and
fuzzy early finish time of the last activity

respectively.

However, the construction project activity
networks may include lag or lead times,

and other dependencies such as SS and FF
between activities. This problem is resolved
by the following algorithm:

i. Subtract lead time from lag time with
fuzzy subtraction for each activity pair
having a predecessor/successor relation.

FN,,; = [fuzzy lagpi {-} fuzzy leadpi] (10

where pi denotes the predecessor activity
so that i takes values depending on the
number of predecessors.

ii. Add the fuzzy number calculated
in step (i) with fuzzy addition to
the corresponding early time of the
predecessor activity. For instance, if
the relation is FF between an activity
and one of its predecessors, then early
finish time of this activity is calculated
by adding the fuzzy number calculated
in step (i) to the early finish time of the
predecessor activity.

FEF,; = FEFp; {+} FN,, (11)
where si denotes the successor activity.

Once more, i takes values depending on
the number of predecessors.

=

iii. Fuzzy early start times of an activity
are calculated by employing the

fuzzy duration of this activity to the
fuzzy early start times found in step
(ii). However, this step is executed

if the dependency is SF or FF. If the
dependency is SS or FS, the fuzzy early
time found in step (ii) is already the

fuzzy early start time.

FEF,; {+} FN,,; If relation is FS
FESpi {+} FNpi If relation is SS
12)

FES,; = {
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FEF. - {FEFPL' {+} EN,,; If relation is FF
si FES,; {+} FN,,; If relation is SF
(13a)
Then
FE, = FES, {+) FD, (130

where FD shows the fuzzy duration of
the successor activity in question.

iv. In step (iii) different fuzzy early start
times are calculated as many as the num-
ber of predecessors (pi) of the successor
activity (si) in question. Therefore, the
final fuzzy early start time of an activity
is found with fuzzy maximisation of
the fuzzy early start times calculated in
step (iii).

FES, = max (FES,;) (14)

The procedure of fuzzy forward pass calcula-
tion described above is clarified by an appli-
cation in a short example network portion
(four predecessors — one successor network
portion), which is shown in Figure 3.

All of the fuzzy numbers in the Figure 3
example are accepted as trapezoidal.
However, the mode values, b and ¢, are
accepted as equal to each other for the
purpose of modifying the trapezoidal fuzzy
numbers to triangular fuzzy numbers in
order to simplify the calculations. The
network consists of a single activity whose
fuzzy early start and fuzzy early finish times
are being searched, and four predecessor
activities whose dependency and lag/lead
times differ as shown in Figure 3. FES and
FEF designate the fuzzy early start and fuzzy
early finish times respectively. Fuzzy forward
pass calculations of this example network are
performed as follows:

B Predecessor 1 (pl):
FES = FEFpl {+} [fuzzy lagpl {-} fuzzy
Ieadpl]
FES,, = (5,6,6,8) {+} [(0,0,0,0) {-} (0,1,1,2)]
FES; = (5,6,6,8) {+} (-2,-1,-1,0)
FES,, = (3,5,5,8)

B Predecessor 2 (p2) :
FES,, = FESlD2 {+} [fuzzy lagp2 {-}
fuzzy lead ;)]
FES, = (4,5,5,7) {+} [(0,1,1,2) {-} (0,0,0,0)]
FES,, = (4,5,5,7) {(+} (0,1,1,2)
FES,, = (4,6,6,9)

B Predecessor 3 (p3) :
FEF 3 = FEF ;3 {+} [fuzzy lagpg -}
fuzzy lead 3]
FEF, = (8,10,10,12) {+} [(0,1,1,2) {-}
(0,0,0,0)]
FEF,, = (8,11,11,14)

FES,: (3,4, 4, 6)
FEF,;: (5,6, 6, 8)

FES: (4,5,5,7)
FEF,: (5, 6,6, 8)

FES 5: (6, 8, 8, 10)
FEF,: (8, 10, 10, 12)

FES,;: (6,9,9, 13)
FEF,,: (8, 10, 10, 15)

FD; (1,2,2,3)

Figure 3 Four predecessors - one successor network portion

FEF 3 = FES 5 {+} Fuzzy Act. Dur.  (FD)
(8,11,11,14) = FES 5 {+} (1,2,2,3)
FES, = (7,9,9,11)

B Predecessor 4 (p4) :
FEF,, = FESp4 {+} [fuzzy lagp4 {-}
fuzzy lead,,,]
FEF, = (6,9,9,13) {+} [(0,2,2,3) {-} (0,0,0,0)]
FEF , = (6,11,11,16)
FEF, = FES, {+} Fuzzy Act. Dur., (FD,)
(6,11,11,16) = FES_, {+} (1,2,2,3)
FES,, = (59,9,13)

W FES;:
FES, = max (FES, ), FES,,, FES 5, FES,,)
FES, = (7,9,9,13)

® FEF,:
FEF, = FES, {+} Fuzzy Act. Dur.  (FD)
FEF, = (7,9,9,13) {+} (1,2,2,3)
FEF, = (8,11,11,16)

This example application shows that the
fuzzy early start time of the successor activi-
ty S in Figure 3 is (7,9,9,13), i.e. the early start
time of the activity S is certainly between the
7th and 13th unit times (day, month, etc), and
it is most plausibly at the 9th unit time from
the starting date of the network.

Backward pass calculations

with fuzzy sets

If the activity durations and lag/lead times
are represented by fuzzy sets, fuzzy back-
ward pass calculations should be performed
through fuzzy operations just as in the case
of fuzzy forward pass calculations. For this
reason, fuzzy subtraction has been utilised
in order to develop the fuzzy backward pass
calculation procedure. However, a problem
occurs due to the usage of fuzzy subtraction.
Fuzzy subtraction produces unrealistically
large uncertainties associated with fuzzy late
start and fuzzy late finish times of activities.

These uncertainties accumulate quickly as
the backward pass calculation progresses.
Moreover, earlier activities may be assigned
with negative early finish and late finish
times at the end of the calculation which has
no meaning from the scheduling point of
view. Lorterapong and Moselhi (1996) tried
to overcome this problem by developing a
procedure while developing their so-called
model, FNET. However, only FS relation was
considered and lag/lead times were ignored
in FNET. For this reason, their method has
been carried one step further in this study
to circumvent these limitations. The used
assumptions and the developed backward
pass calculation procedure are described
below.

Assumptions

B All the values in fuzzy numbers (lower,
upper and mode values — a,b,c,d) should
have a positive value.

B Each value should not exceed its succes-
sor(@a<b<c<d).

B The values of the fuzzy early start time
or fuzzy early finish time of an activity
found by fuzzy forward pass calculation
should not exceed the values of the fuzzy
late start or fuzzy late finish times found
by the fuzzy backward pass calculation.

B The right spread of fuzzy late times (the
difference between d and c) should be
at least as uncertain as their respective
fuzzy early times.

Procedure

i. First, lag/lead times between the activi-
ties are processed. Since the operation
is now the backward pass, lag times are
considered just like the lead times of for-
ward pass, and lead times are considered
just like the lag times of forward pass. In
other words, lag time is subtracted from
lead time, with fuzzy subtraction for each
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activity pair having predecessor-successor
relation.

FN; = [fuzzy lead; {-} fuzzy lag; | (15)

where si denotes the successor activity
so that i takes values depending on the
number of successors.

ii. The fuzzy number calculated in step
(i) is added with fuzzy addition to the
corresponding late time of the successor
activity. For instance, if the relation is FF
between an activity and one of its succes-
sors, then late finish time of this activity
is calculated through fuzzy adding of the
fuzzy number calculated in step (i) to the
late finish time of the successor activity.

FLF,; = FLE,;{+} FN,, (16)
where pi denotes the predecessor activity.

Once more, i takes values depending on
the number of successors.

=

iii. Fuzzy late finish times of an activity x are
calculated with employing fuzzy duration
of this activity to the fuzzy late times
found in step (ii). However, this step is
executed if the dependency is SF or SS. If
the dependency is FS or FF, the fuzzy late
time found in step (ii) is already the fuzzy

late finish time.

FLS,; {+} FN; If relation is FS, FF
FLS; (+} FNg) {+} FD,
If relation is SS, SF 17)

FLF,; = {

where FD,, shows the fuzzy duration of
the predecessor activity in question.

iv. Final fuzzy late finish time of an activity
is found with fuzzy minimisation of the
fuzzy late finish times calculated in step

(ii).
FLF, = min (FLF,,) 18)

v. The fuzzy number found in step (iv) is
accepted as the preliminary fuzzy late
finish time (PFLFP).

vi. FEF and PFLF are compared to find
which of the two fuzzy numbers has a
greater right spread. Suppose that FEF, is
represented by (a,b,c,d) and the PFLFp is
represented by (p,q.e,f). In this case, the
comparison is made between (f — €) and
(d — ¢) (Lorterapong & Moselhi 1996).

vii.If (d — ¢) > (f — e), which means that the
right spread of FEFp is more uncertain,
the right spread of the final fuzzy late

FEFP: (8, 10, 10, 14)
SS “3g52

FD; (2, 4, 4, 6)

L0, 1,120

FLS,;: (9, 10, 10, 11)
FLE,;: (10, 11, 11, 13)

FLS,,: (10, 11, 11, 13)
FLF,,: (11,12, 12, 14)

FLSy: (11,12, 12, 14)
FLE5: (12, 14, 14, 16)

FLS,,: (12, 14, 14, 16)
FLF4: (14, 16, 16, 18)

Figure 4 Four successors - one predecessor network portion

finish time (FLFP) is set equal to the

right spread of FEFP. In this case, FLFp is
calculated by Equation 19 (Lorterapong &
Moselhi 1996).

FLF, = FEF, {+} (f-d, f-d, f- d,f-d)
FLF,=(a b ¢, d)(+} (f-d, f-d, f-d,

f-d
FLFp:(a+f—d,b+f—d,c+f—d,
d+f-d)
FLE,=(a+f-d b+f-d,c+f-d,f)

(19)

viil. If (d - ¢) < (f — e), which means that the
right spread of FEF, is less uncertain, the
right spread of FLE, is set equal to the
right spread of PFLF,,. In this case FLF, is
calculated by Equation 20 (Lorterapong
& Moselhi 1996).

FLFp=FEFp{+}(e—c,e—c,e—c,f—d)
FLFp:(a, bcd{+}le-ce-ce—c

f-d)
FLsz(a+e—c,b+e—c,c+e—c,

d+f-d)
FLFp=(a+e—c,b+e—c,e,ﬂ (20)

ix. Fuzzy late start time (FLSP) is computed
by substituting FLF, and fuzzy duration
(FDP) into Equation 21 (Lorterapong &
Moselhi 1996).

FLS, {+} FD, = FLF, 1)

x. The procedure described up to now is
applied to all activities starting from the
last activity towards the start activity
by following the paths in the backward

direction.

The fuzzy backward pass calculation proce-
dure described above is clarified by an applica-
tion on a short example network (one activity
with four successors) shown in Figure 4.

All of the fuzzy numbers are taken as
trapezoidal. However, mode values b and ¢
are taken equal for the purpose of modifying
the trapezoidal fuzzy numbers to triangular
fuzzy numbers in order to provide simplicity
in this example. The network consists of a
single activity whose fuzzy late start and
fuzzy late finish times are being searched,
and four successor activities whose depend-
ency and lag/lead times differ, as shown in
Figure 4. Fuzzy backward pass calculations
of this network are as follows:

B Successor 1 (s1):

FLFpl = FLS,; {+} [fuzzy lead; {-}
fuzzy lag ]

FLF,; = (910,10,11) {+} [(0,1,1,2) {-}
(0,0,0,0)]

FLFpl =(9,11,11,13)

B Successor 2 (s2) :
FLS,, = FLS,, {+} [fuzzy lead, {-}
fuzzy lag,]
FLSp2 =(10,11,11,13) {+} [(0,0,0,0) {-}
0,1,1,2)]
FLS,, = (10,11,11,13) {+} (-2,-1,-1,0)
FLS, = (8,10,10,13)
FLFlD2 = FLSp, {+} Fuzzy Act. Dur.; (FDP)
FLF,, = (8,10,10,13) {+} (244,6)
FLF,, = (10,14,14,19)
B Successor 3 (s3) :
FLFpg = FLF 5 {+} [fuzzy lead; {-}

fuzzy lag ]

FLF 5 = (12,14,14,16) {+} [(0,0,0,0) {-}
(0,1,1,2)]

FLF ;= (12,14,14,16) {+} (-2,-1,-1,0)

FLFpB = (10,13,13,16)
B Successor 4 (s4) :
FLSp4 = FLF, {+} [fuzzy lead, {-}
fuzzy lag,]
FLSp4 = (12,14,14,16) {+} [(0,0,0,0) {-}
0,2,2,3)]
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Table 1 Network information of example application

by using geometric centres of fuzzy early and
fuzzy late times of the activities, and critical
and uncritical activities have been determined
with respect to the total float times. The
calculation procedure of total float times (TF)
by using the geometric centres of the fuzzy
numbers is given by Equations 22 and 23 as
follows (Lorterapong and Moselhi 1996):

TF, € y = CLF, - CEF,

(22)

Fuzzy Fuzzy lag Fuzzy lead
Activity Predecessor duration Dependency time time
(day) (day) (day)
Start : (0,0,0,0) ES
A Start (2,3,3,4) FS
B Start (5,7,7,10) FS
A ES 0,1,1,2)
C (6,8,8,10)
B SS (1,2,2,3)
D C (3,4,4,5) FF (1,3,3,4)
E C (7,8,8,10) ES 0,1,1,2)
D FF (2,4,4,6)
Finish (0,0,0,0)
E SE (1,2,2,4)

FLSP4 = (12,14,14,16) {+} (-3,-2,-2,0)
FLSP4 =(9,12,12,16)

FLF,, = FLSp, {+} Fuzzy Act. Dur.p (FD))
FLFP4 =(9,12,12,16) {+} (2,4,4,6)

FLE,, = (11,16,16,22)

W PELE,:
PFLF, = min (FLF,, FLF,, FLF 5, FLF )
PFLF, = min [(9,11,11,13), (10,14,14,19),
(10,13,13,16), (11,16,16,22) ]
PFLF, = (9,11,11,13)

W FLF,:
PFLF, = (9,11,11,13) and
FEF, = (6,8,8,11) (11 - 8) > (13 — 11) then,
FLF, = FEF, {+} (f—d, f—d,f-d, f-d)
FLF, = (6,8,8,11) {+} (13 - 11,13 - 11,
13- 11,13 - 11)
FLF, = (8,10,10,13)

| FLSP:
FLSp {+} Fuzzy Act. Dur.p, (FDP) = FLFp
FLS, {+} (244,4,6) = (8,10,10,13)
FLSp = (6,6,6,7)

Fuzzy backward pass calculation may some-
times produce negative values, especially for
the lower and mode fuzzy values (a,b,c) or it
may produce zero for the mode fuzzy values
(b,c) of the activities at the beginning of the
network. In the former case, negative values
are converted to zero and in the latter case all
the fuzzy values (a,b,c,d) are accepted as zero.

AN EXAMPLE APPLICATION
This section introduces an example applica-
tion of the proposed fuzzy set CPM-based
methodology on a hypothetic activity net-
work. Network information and the results
of the application are given in Tables 1 and
2, respectively. The network is a short and
simple one, but it contains all types of net-
work dependencies, i.e. FS, FF, SS, SF with lag
and lead times. Therefore, it stands as a good
example for showing the application of all of
the features of CPM with fuzzy sets.

The results given in Table 2 reveal that the
total float times of activities were calculated

where the C designation denotes the geomet-
ric centre of the early and late times, x€X
(the set of activities), and CEF and CLF show
geometric centres of fuzzy early finish and
fuzzy late finish times respectively.

The geometric centre of a trapezoidal fuzzy
set is calculated by Equation 23.

c_?+d?-a’-b+cd-ab
3 {d+c—a->b)

(23)

It should be mentioned that the activities
with total float times close to zero, and
with early and late times very close to one
another, have been considered as critical
in this study for the sake of detecting the
critical path. For example, total float time,
fuzzy early finish and fuzzy late finish
times of activity C have been found as 1.67,
(8,12,12,16) and (8,12,12,21), respectively
(refer to Table 2). Therefore, activity C has
been considered as a critical activity.
Another float type examined in Table 2 is
the independent float. While the total float
time is the amount of time that an activity
can be delayed without delaying the project
completion time, the independent float time
is the amount of time that an activity can be
delayed without delaying the start of any of
its successor activities (Newitt 2008). In other

words, independent float is the delay possible

Table 2 Results of example application

2 g @ & qé o g
B = . g g TS |Bg |BE (8%
= = S i = £€ | &5 |Ez |&2 o
N 8 = 3 E g & -=! = =R = z
= 173 i) = S i) L iG=) ] Y= v 3’ - 4=
= > > &S @ = o= | o® o & o E S o b 2
dg) | (] & = o o == Qo R 9.z %Q‘T' IS 5]
> S £ 5 5 = = = =i 8= == =i} S-Eoy S % =
= =1 g = — — 2 O 0 = gt ° = =) =
= SE = = = e o = = £ > £ > E > E > = == 8
= N & > N 2 N T E N & N & g3 g3 SN SN - 8% S & =
- £ E z Z S 2 g EIRERIRERRERE £S83 °3 5
< el mE mE aASE mE mE UEE|IUEZ(UER(TEE Ko~ =HE O
Start | (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) 0.00 0.00 0.00 0.00 0.00 0.00 Critical
A (2,3,3,4) (0,0,0,0) (2,3,3,4) 0,3,3,11) (0,0,0,0) (2,3,3,4) 3.00 0.00 3.00 3.00 0.00 0.00 Critical
B (5,7,7,10) (0,0,0,0) (5,7,7,10) (4,9,9,20) (2,2,2,10) (7,9,9,20) 7.33 4.66 12.00 7.33 —4.66 — 0.00 | 4.67 | Uncritical
C 168810 | (2446 | (8121216) | 6,12,12,21) | 244,11) | (812,12,21) | 12.00 | 566 | 13.67 | 800 | —1.66—0.00 | 1.67 | Critical
D | (3445) | (611,11,15) | (91515,20) | (91717,26) | (8,13,13,21) | (11,17,17,26) | 14.67 | 14.00 | 18.00 | 4.00 | —3.33 >0.00 | 3.33 | Uncritical
E | (78810 | (6,11,11,16) | (13,19,19,26) | (10,19,19,29) | (6,11,11,19) | (13,19,19,29) | 19.33 | 12.00 | 20.33 | 833 | —1.00»0.00 | 1.00 | Critical
Finish | (0,0,0,0) (0,0,0,0) (7,13,13,20) | (7,13,13,20) | (7,13,13,20) | (7,13,13,20) 13.33 13.33 13.33 0.00 0.00 0.00 Critical
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for an activity if all preceding activities start
as late as possible and all subsequent activities
start at their earliest time. The independent
float times (IF) given in Table 2 have been
calculated through Equations 23 and 24.

IF,€+y = CEF, - CLS, - CFD, (24)

where the C designation denotes the geomet-
ric centre of the early and late times; xeX
(the set of activities); CEF, CLS, and CFD
show geometric centres of fuzzy early finish
time, fuzzy late start time, and fuzzy activity
duration respectively (refer to Equation 23). If
IF is calculated below zero, then it is accepted
equal to zero as in the case of the activity
network examined in the example applica-
tion (refer to Table 2). Otherwise, it would be
meaningless to have a negative time value.

CONCLUSIONS AND FUTURE WORK
Construction activities are performed under
uncertain conditions. Various risks cause
variation in activity duration, and in turn the
values found by CPM, such as the activity
early/late times, become uncertain. In this
context, activity durations are represented by
fuzzy sets and the CPM network calculations
are performed by fuzzy operations through a
new method developed in this study. In this
method, fuzzy sets are utilised to model the
uncertainty in activity durations, activity
early/late times and project completion time.
An example CPM application with fuzzy sets
was also presented. The findings show that
CPM is applicable with fuzzy sets, and the
developed method operates well for modelling
the uncertainty in CPM network calculations.

The representation of activity durations by
fuzzy sets enables modelling the uncertainty
effect. In construction projects, it is not possi-
ble to predict the duration of an activity with
certainty. Predictions such as “this activity
can be completed most probably between
seven and ten days, but perhaps it takes 15
days maximum and 5 days minimum depend-
ing on the conditions” are frequently made.
Fuzzy sets are suitable to model these kinds of
linguistic propositions mathematically. Since
the activity durations are represented by fuzzy
sets and the network calculations are per-
formed by fuzzy operations, the activity early/
late start/finish times and the project comple-
tion time or the project duration are calcu-
lated as fuzzy sets through this new method.
In other words, the effect of uncertainty on
the results of CPM is modelled. Furthermore,
the evaluation of activity/path criticalness is
realised by using the geometric centres of the
activity early/late times.

Execution of CPM by using fuzzy sets
and fuzzy operations through the proposed

method possesses some advantages over the

traditional use of PERT, such as the following:

B While PERT takes only the critical path
into account by ignoring the other activ-
ity paths, the proposed method evaluates
the uncertainty in all of the activities, and
accordingly on all of the activity paths.

B While PERT applies a simplification
process to the estimated minimum, maxi-
mum and most likely durations in order
to calculate the expected activity dura-
tions and variances, the proposed method
does not require any simplifications,
because the activities are represented
by fuzzy sets, and CPM calculations are
performed by using these fuzzy sets as a
whole.

B While PERT assumes that project com-
pletion time follows normal probability
distribution represented by the mean and
variance parameters found by adding the
expected durations and variances of the
activities on the critical path, the pro-
posed method computes the project com-
pletion time as a fuzzy set through fuzzy
forward and backward CPM calculations
performed by using the fuzzy durations
of all of the activities, both on the critical
and uncritical paths.

The new method for the CPM network

calculations with fuzzy sets, as proposed in

this study, can also be compared with the
other uncertainty analysis methods such as
the Monte Carlo simulation-based models.

Furthermore, it can be used for developing

a fuzzy schedule risk analysis model operat-

ing with simulation, on which the authors

currently focus their studies. It can also be
computerised easily by utilising table proces-
sor software or computer programming
languages. These issues are proposed as
future work.
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