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INTRODUCTION
Construction projects are realised by carrying 
out various activities which are dependent on 
one another by finish-to-start (FS), start-to-
start (SS), finish-to-finish (FF) or start-to-finish 
(SF) relationships, and by lag or lead times. 
Therefore, construction activities constitute 
networks. In order to provide managerial infor-
mation – such as the project completion time, 
the activity early start (ES), late start (LS), early 
finish (EF) and late finish (LF) times, the activ-
ity float times and the activity criticalities – the 
dependency relations between the activities 
should be analysed. Bar charts, Line of Balance 
and Critical Path Method (CPM) have been 
the popular methods of construction activity 
scheduling since the 1950s (Griffis & Farr 
2000; Halphin & Woodhead 1998; Oberlender 
2000). CPM, which was first developed in 1956 
by the DuPont Company with Remington 
Rand as consultants in the USA, is accepted as 
the most suitable means of scheduling activity 
networks (Oberlender 2000). This is due to its 
capabilities, such as showing the dependency 
relations between activities, detecting the 
critical activities and revealing the activity float 
times (Ökmen & Öztaş 2008).

In spite of its wide usage and popularity, 
CPM has some limitations and criticised 
features. The limitations of CPM are related 
to its deterministic calculation procedure, 
which is insufficient for modelling uncertainty. 
CPM is deterministic because of the invari-
able duration values assigned to activities in 
network calculations, as if these durations are 

known certainly and do not vary by various 
risk factors. This deficiency may lead to inac-
curate critical path identification and project 
duration measurement (Jaafari 1984; Ahuja 
& Thiruvengadam 2004). Unfortunately, 
construction network schedules are under the 
influence of uncertainty due to risk factors 
such as weather conditions, soil properties, 
labour productivity, etc (Edwards 1995; 
Flanagan & Norman 1993; Öztaş & Ökmen 
2004). All of the risk factors in a construction 
project might be schedule risks, because they 
are directly or indirectly related to time sched-
ules. Moreover, due to uncertainties, all activi-
ties might become critical in practice, even 
those that are not critical according to CPM.

In this context, this study aims at propos-
ing a method of the CPM network calculations 
(forward and backward pass calculations) with 
fuzzy sets. The activity durations are repre-
sented by special kinds of fuzzy sets called 
fuzzy numbers in this method, and accordingly 
the CPM forward and backward pass calcula-
tions are executed by fuzzy operations. The 
representation of activity durations by fuzzy 
numbers enables modelling the uncertainty 
effect. In construction projects, the duration of 
an activity cannot be proposed with certainty 
in advance. Predictions such as “this activity 
can be completed most probably between 
seven and ten days, but perhaps it takes 15 days 
maximum and five days minimum depending 
on the conditions” are frequently made. Fuzzy 
numbers are suitable to model these kinds of 
linguistic propositions mathematically. Since 
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the activity durations are represented by fuzzy 
numbers and the network calculations are per-
formed by fuzzy operations, the activity early/
late start/finish times and the project comple-
tion time or the project duration are calculated 
as fuzzy numbers through this new method. 
In other words, the effect of uncertainty on 
the results of CPM is modelled. Furthermore, 
the evaluation of activity/path criticalness is 
realised by using the geometric centres of the 
activity early/late times.

Simulation-based, probabilistic- or fuzzy 
set-based methods have been used in the past 
by researchers to model the uncertain activ-
ity durations and the uncertainty effect on 
the activity networks (Ayyub & Haldar 1984; 
AbouRizk & Halphin 1992; Diaz & Hadipriono 
1993; Wu & Hadipriono 1994). Program 
Evaluation and Review Technique (PERT) 
is the most popular probabilistic method 
developed for this purpose. While certain 
durations are assigned to the activities in CPM, 
activity durations are assumed as variables and 
represented by minimum, maximum and most 
likely durations in PERT. Through a simplifica-
tion process, the expected durations and the 
variances of variable activity durations are cal-
culated by utilising the minimum, maximum, 
and most likely durations. Subsequently, the 
traditional CPM calculations are performed 
by using the expected activity durations, and 
then the critical path is detected. The expected 
durations and variances of the activities on 
the critical path are added, and the project 
completion time is assumed to follow normal 
probability distribution having these calculated 
values as the distribution parameters, i.e. the 
mean and variance. Since the project comple-
tion time is obtained as a normal probability 
distribution in PERT, it becomes possible to 
draw some inferences regarding the uncertain-
ty of the activity network and project comple-
tion time, such as the probability of completing 
the project within a specific percentage 
(Halphin & Woodhead 1998; Griffis & Farr 
2000; Oberlender 2000; Plotnick & O’Brien 
2009). However, PERT has been criticised in 
the literature because of its limitations, such 
as taking only the critical path into account, 
assumption of normal probability distribution 
for the project completion time, simplification 
process used in the calculation of expected 
activity durations and variances through esti-
mated minimum, maximum and most likely 
durations, etc (Ahuja & Thiruvengadam 2004; 
Diamantas et al 2007; Kerzner 2009).

In order to overcome the limitations of 
CPM and PERT, CPM-based risk analysis 
models have been developed by utilising 
Monte Carlo Simulation Technique (Ökmen 
& Öztaş 2008; Wang & Demsetz 2000). 
Some of the researchers have tried to imple-
ment the CPM network calculations through 

fuzzy sets and operations instead of utilis-
ing probabilistic or simulation techniques 
(Chanas & Kamburowski 1981; Dubois & 
Prade 1988; Lorterapong & Moselhi 1996). 
Lorterapong and Moselhi (1996) developed a 
complete project network analysis technique 
by using a fuzzy set theory named FNET. 
This technique includes a new procedure 
for performing the forward and backward 
pass calculations of CPM with fuzzy sets 
in cases where the activities are dependent 
on one another having only finish-to-start 
relations, and where no lag or lead times 
are used between the activities. However, if 
other types of network dependencies, such 
as finish-to-finish, start-to-start or start-
to-finish, and lag/lead times are used, this 
technique fails. In this study, it is aimed to 
propose a new method to be used for the full 
implementation of CPM with fuzzy sets, in 
case lag/lead times and all dependency types 
are used.

The details of the new method are 
described after introducing the basic infor-
mation about fuzzy set theory and fuzzy 
numbers, and then an example application is 
carried out. The paper ends with the conclu-
sions and recommendations for future work.

FUZZY SET THEORY AND 
FUZZY NUMBERS
In classical set theory, the membership of 
an element to a specified set is described 
by two definite and opposite situations: 
belonging to the set (membership degree = 
1.0) or not belonging to the set (membership 
degree = 0.0). However, in fuzzy set theory, 
the membership of an element to a specified 
set is described by the membership degrees 
between 0.0 and 1.0 (Zadeh 1965; Şen 2004; 
Ross 2010). This provides the opportunity of 
modelling the uncertain expressions of real 

life mathematically, performing fuzzy set 
operations between these uncertainties and 
finally reaching fuzzy results that cannot be 
achieved analytically otherwise.

Consider a fuzzy set A of the universe U.

A = {(x, μA(x))|xÎA, μA(x) Î [0, 1]}

where μA(x) is a function called membership 
function, and μA(x) exactly states the grade 
or degree to which any element x in A is a 
member of the fuzzy set A.

The definition given above combines each 
element x in A with μA(x) in the interval [0, 
1] which is assigned to x. Larger values of 
μA(x) indicate higher degrees of membership 
(Bojadziev & Bojadziev 1997; Han 2005; Ross 
2010).

A fuzzy number is a continuous fuzzy set 
that possesses two properties: convexity and 
normality. The convexity indicates that the 
membership function has only one distinct 
peak, while the normality ensures that at 
least one element in the set has a degree of 
membership equal to 1.0. These two proper-
ties make the concept of fuzzy numbers 
attractive and naturally appropriate for 
modelling imprecise fuzzy quantities such as 
“approximately one week,” or “more or less 
than seven days”. Theoretically, fuzzy num-
bers can take various shapes. In modelling 
real-life problems, however, linear approxi-
mations such as trapezoidal and triangular 
fuzzy numbers are frequently used (Chanas 
& Kamburowski 1981; Dubois & Prade 1988). 
Mathematical definitions and general shapes 
of triangular and trapezoidal fuzzy numbers 
are given below:

Triangular fuzzy numbers
A triangular fuzzy number with membership 
function μA(x) is defined by:

Figure 1 Triangular fuzzy number
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			   (x – a)/(b – a)	 for a ≤ x ≤ b
μA(x)	 =	

ìïíïî
	(x – c)/(b – c)	 for b ≤ x ≤ c� (1)

				    0	 otherwise

This set is graphically shown in Figure 1.

Trapezoidal fuzzy numbers
A trapezoidal fuzzy number with member-
ship function μA(x) is defined by

			   (x – a)/(b – a)	 for a ≤ x ≤ b

μA(x)	 =	
ìïíïî

		  1	 for b ≤ x ≤ c�
(2)

			   (x – d)/(c –d)	 for c ≤ x ≤ d
				    0	 otherwise

This set is graphically shown in Figure 2.

CPM NETWORK CALCULATIONS 
WITH FUZZY SETS AND 
FUZZY OPERATIONS
The early/late start/finish times, total float 
times, criticalness of the activities and the 
project completion time of a network are 
explored by applying forward and backward 
pass calculations on the network. In other 
words, forward and backward pass calcula-
tions constitute the network calculations 
of CPM. In order to carry out the CPM 
network calculations, activity durations, 
activity interdependencies in the form of FS, 
FF, SS or SF, and lag/lead times between the 
activities are required. The activity dura-
tions should be predicted as invariable fixed 
values (most likely durations) for the CPM 
execution. However, if the activity durations 
and lag/lead times are represented by fuzzy 
sets, traditional forward/backward pass 
calculation of CPM becomes inapplicable. 
In this regard, a method has been developed 
for the purpose of making the CPM network 
calculations applicable with fuzzy sets and 
fuzzy operations.

Forward pass calculations 
with fuzzy sets
Forward pass calculations should be per-
formed through fuzzy operations in an activ-
ity network of which the activity durations 
and lag/lead times are represented by fuzzy 
sets. For this reason, fuzzy addition, fuzzy 
subtraction, fuzzy maximisation and fuzzy 
minimisation have been utilised in order to 
develop the procedure of the CPM forward 
pass calculation with fuzzy sets. The proce-
dure is described below:

If X and Y are the two trapezoidal fuzzy 
numbers, such that

X = (a1, b1, c1, d1)

Y = (a2, b2, c2, d2)

then

X {+} Y = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)� (3)

X {–} Y = (a1–d2, b1–c2, c1–b2, d1–a2)� (4)

mãx (X,Y) = �(max (a1, a2), max (b1, b2), 
max (c1, c2), max (d1, d2))� (5)

mĩn (X,Y) = �(min (a1, a2), min (b1, b2), 
min (c1, c2), min (d1, d2))� (6)

where {+}, {–}, mãx, mĩn are fuzzy addition, 
fuzzy subtraction, fuzzy maximisation and 
fuzzy minimisation, respectively.

These fuzzy operations are only applied 
between the fuzzy values possessing the 
same membership degrees, which is a rule 
based on the logic of fuzzy operations 
(Lorterapong & Moselhi 1996).

If all of the activity dependencies are FS 
and there is no lag/lead time between activi-
ties in an activity network, fuzzy forward 

pass calculation is performed as follows 
(Lorterapong & Moselhi 1996):

FESx = mãx (FEFP)� (7)

FEFx = FESx {+} FDx� (8)

Tproj = FEFe� (9)

where p Î P (the set of predecessor activi-
ties); FESx, FEFx, FDx are the fuzzy early 
start time, fuzzy early finish time and fuzzy 
duration of activity x respectively; and Tproj 
and FEFe are the fuzzy project duration and 
fuzzy early finish time of the last activity 
respectively.

However, the construction project activity 
networks may include lag or lead times, 
and other dependencies such as SS and FF 
between activities. This problem is resolved 
by the following algorithm:

i.	 Subtract lead time from lag time with 
fuzzy subtraction for each activity pair 
having a predecessor/successor relation.

	 FNpi = [fuzzy lagpi {-} fuzzy leadpi ]� (10)

�where pi denotes the predecessor activity 
so that i takes values depending on the 
number of predecessors.

ii.	 Add the fuzzy number calculated 
in step (i) with fuzzy addition to 
the corresponding early time of the 
predecessor activity. For instance, if 
the relation is FF between an activity 
and one of its predecessors, then early 
finish time of this activity is calculated 
by adding the fuzzy number calculated 
in step (i) to the early finish time of the 
predecessor activity.

	 FEFsi = FEFPi {+} FNpi� (11) 

�where si denotes the successor activity. 
Once more, i takes values depending on 
the number of predecessors.

iii.	Fuzzy early start times of an activity 
are calculated by employing the 
fuzzy duration of this activity to the 
fuzzy early start times found in step 
(ii). However, this step is executed 
if the dependency is SF or FF. If the 
dependency is SS or FS, the fuzzy early 
time found in step (ii) is already the 
fuzzy early start time.

				    FEFpi {+} FNpi If relation is FS
	

FESsi	 =
	
ìïíïî	FESpi {+} FNpi If relation is SS 

� (12)

Figure 2 Trapezoidal fuzzy number
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				    FEFpi {+} FNpi If relation is FF
	

FEFsi	 =
	
ìïíïî	FESpi {+} FNpi If relation is SF 

� (13a)

Then

	 FEFsi = FESsi {+} FDs� (13b)

�where FDs shows the fuzzy duration of 
the successor activity in question.

iv.	 In step (iii) different fuzzy early start 
times are calculated as many as the num-
ber of predecessors (pi) of the successor 
activity (si) in question. Therefore, the 
final fuzzy early start time of an activity 
is found with fuzzy maximisation of 
the fuzzy early start times calculated in 
step (iii).

	 FESs = mãx (FESsi )� (14)

The procedure of fuzzy forward pass calcula-
tion described above is clarified by an appli-
cation in a short example network portion 
(four predecessors – one successor network 
portion), which is shown in Figure 3.

All of the fuzzy numbers in the Figure 3 
example are accepted as trapezoidal. 
However, the mode values, b and c, are 
accepted as equal to each other for the 
purpose of modifying the trapezoidal fuzzy 
numbers to triangular fuzzy numbers in 
order to simplify the calculations. The 
network consists of a single activity whose 
fuzzy early start and fuzzy early finish times 
are being searched, and four predecessor 
activities whose dependency and lag/lead 
times differ as shown in Figure 3. FES and 
FEF designate the fuzzy early start and fuzzy 
early finish times respectively. Fuzzy forward 
pass calculations of this example network are 
performed as follows:

■■ Predecessor 1 (p1) : 
FESs1 = �FEFp1 {+} [fuzzy lagp1 {–} fuzzy 

leadp1]
FESs1 = (5,6,6,8) {+} [(0,0,0,0) {–} (0,1,1,2)]
FESs1 = (5,6,6,8) {+} (–2,–1,–1,0)
FESs1 = (3,5,5,8)

■■ Predecessor 2 (p2) : 
FESs2 = �FESp2 {+} [fuzzy lagp2 {–}  

fuzzy leadp2]
FESs2 = (4,5,5,7) {+} [(0,1,1,2) {-} (0,0,0,0)]
FESs2 = (4,5,5,7) {+} (0,1,1,2)
FESs2 = (4,6,6,9)

■■ Predecessor 3 (p3) :  
FEFs3 = �FEFp3 {+} [fuzzy lagp3 {–}  

fuzzy leadp3]
FEFs3 = �(8,10,10,12) {+} [(0,1,1,2) {–} 

(0,0,0,0)]
FEFs3 = (8,11,11,14)

FEFs3 = FESs3 {+} Fuzzy Act. Dur.s (FDs)
(8,11,11,14) = FESs3 {+} (1,2,2,3)
FESs3 = (7,9,9,11)

■■ Predecessor 4 (p4) :  
FEFs4 = �FESp4 {+} [fuzzy lagp4 {–}  

fuzzy leadp4]
FEFs4 = (6,9,9,13) {+} [(0,2,2,3) {–} (0,0,0,0)]
FEFs4 = (6,11,11,16)
FEFs4 = FESs4 {+} Fuzzy Act. Dur.s (FDs)
(6,11,11,16) = FESs4 {+} (1,2,2,3)
FESs4 = (5,9,9,13)

■■ FESs : 
FESs = mãx (FESs1, FESs2, FESs3, FESs4)
FESs = (7,9,9,13)

■■ FEFs : 
FEFs = FESs {+} Fuzzy Act. Dur.s (FDs)
FEFs = (7,9,9,13) {+} (1,2,2,3)
FEFs = (8,11,11,16)

This example application shows that the 
fuzzy early start time of the successor activi-
ty S in Figure 3 is (7,9,9,13), i.e. the early start 
time of the activity S is certainly between the 
7th and 13th unit times (day, month, etc), and 
it is most plausibly at the 9th unit time from 
the starting date of the network.

Backward pass calculations 
with fuzzy sets
If the activity durations and lag/lead times 
are represented by fuzzy sets, fuzzy back-
ward pass calculations should be performed 
through fuzzy operations just as in the case 
of fuzzy forward pass calculations. For this 
reason, fuzzy subtraction has been utilised 
in order to develop the fuzzy backward pass 
calculation procedure. However, a problem 
occurs due to the usage of fuzzy subtraction. 
Fuzzy subtraction produces unrealistically 
large uncertainties associated with fuzzy late 
start and fuzzy late finish times of activities. 

These uncertainties accumulate quickly as 
the backward pass calculation progresses. 
Moreover, earlier activities may be assigned 
with negative early finish and late finish 
times at the end of the calculation which has 
no meaning from the scheduling point of 
view. Lorterapong and Moselhi (1996) tried 
to overcome this problem by developing a 
procedure while developing their so-called 
model, FNET. However, only FS relation was 
considered and lag/lead times were ignored 
in FNET. For this reason, their method has 
been carried one step further in this study 
to circumvent these limitations. The used 
assumptions and the developed backward 
pass calculation procedure are described 
below.

Assumptions
■■ All the values in fuzzy numbers (lower, 

upper and mode values – a,b,c,d) should 
have a positive value.

■■ Each value should not exceed its succes-
sor (a ≤ b ≤ c ≤ d).

■■ The values of the fuzzy early start time 
or fuzzy early finish time of an activity 
found by fuzzy forward pass calculation 
should not exceed the values of the fuzzy 
late start or fuzzy late finish times found 
by the fuzzy backward pass calculation.

■■ The right spread of fuzzy late times (the 
difference between d and c) should be 
at least as uncertain as their respective 
fuzzy early times.

Procedure
i.	 First, lag/lead times between the activi-

ties are processed. Since the operation 
is now the backward pass, lag times are 
considered just like the lead times of for-
ward pass, and lead times are considered 
just like the lag times of forward pass. In 
other words, lag time is subtracted from 
lead time, with fuzzy subtraction for each 

Figure 3 Four predecessors – one successor network portion

FESp1: (3, 4, 4, 6)
FEFp1: (5, 6, 6, 8)

FESp2: (4, 5, 5, 7)
FEFp2: (5, 6, 6, 8)

FESp3: (6, 8, 8, 10)
FEFp3: (8, 10, 10, 12)

FESp4: (6, 9, 9, 13)
FEFp4: (8, 10, 10, 15)

FDs: (1, 2, 2, 3)

FS [leadp1 : (0, 1, 1, 2)]

SF [lag p4: (
0, 2, 2, 3)]

SS [lagp2: (0, 1, 1, 2)]

FF [lagp3: (0, 1, 1, 2)]

P1

P2

P3

P4

S
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activity pair having predecessor-successor 
relation.

	 FNsi = [fuzzy leadsi {-} fuzzy lagsi ]� (15)

�where si denotes the successor activity 
so that i takes values depending on the 
number of successors.

ii.	 The fuzzy number calculated in step 
(i) is added with fuzzy addition to the 
corresponding late time of the successor 
activity. For instance, if the relation is FF 
between an activity and one of its succes-
sors, then late finish time of this activity 
is calculated through fuzzy adding of the 
fuzzy number calculated in step (i) to the 
late finish time of the successor activity.

	 FLFpi = FLFsi {+} FNsi� (16)

�where pi denotes the predecessor activity. 
Once more, i takes values depending on 
the number of successors.

iii.	Fuzzy late finish times of an activity x are 
calculated with employing fuzzy duration 
of this activity to the fuzzy late times 
found in step (ii). However, this step is 
executed if the dependency is SF or SS. If 
the dependency is FS or FF, the fuzzy late 
time found in step (ii) is already the fuzzy 
late finish time.

				    FLSsi {+} FNsi� If relation is FS, FF
	

FLFpi	 =
	
ìïíïî	�FLSsi {+} FNsi) {+} FDp  

If relation is SS, SF� (17)

�where FDp shows the fuzzy duration of 
the predecessor activity in question.

iv.	 Final fuzzy late finish time of an activity 
is found with fuzzy minimisation of the 
fuzzy late finish times calculated in step 
(iii).

	 FLFp = min (FLFpi)� (18)

v.	 The fuzzy number found in step (iv) is 
accepted as the preliminary fuzzy late 
finish time (PFLFp).

vi.	 FEF and PFLF are compared to find 
which of the two fuzzy numbers has a 
greater right spread. Suppose that FEFp is 
represented by (a,b,c,d) and the PFLFp is 
represented by (p,q,e,f). In this case, the 
comparison is made between (f – e) and 
(d – c) (Lorterapong & Moselhi 1996).

vii.	If (d – c) ≥ (f – e), which means that the 
right spread of FEFp is more uncertain, 
the right spread of the final fuzzy late 

finish time (FLFp) is set equal to the 
right spread of FEFp. In this case, FLFp is 
calculated by Equation 19 (Lorterapong & 
Moselhi 1996).

	 FLFp = FEFp {+} (f – d, f – d, f – d, f – d)
	 FLFp = �(a, b, c, d) {+} (f – d, f – d, f – d, 

f – d)
	 FLFp = �(a + f – d, b + f – d, c + f – d,  

d + f – d)
	 FLFp = (a + f – d, b + f – d, c + f – d, f ) 
� (19)

viii.	 If (d – c) < (f – e), which means that the 
right spread of FEFp is less uncertain, the 
right spread of FLFp is set equal to the 
right spread of PFLFp. In this case FLFp is 
calculated by Equation 20 (Lorterapong 
& Moselhi 1996).

FLFp = FEFp {+} (e – c, e – c, e – c, f – d)
FLFp = �(a, b, c, d) {+} (e – c, e – c, e – c, 

f – d)
FLFp = �(a + e – c, b + e – c, c + e – c,  

d + f – d)
FLFp = (a + e – c, b + e – c, e, f)� (20)

ix.	Fuzzy late start time (FLSp) is computed 
by substituting FLFp and fuzzy duration 
(FDp) into Equation 21 (Lorterapong & 
Moselhi 1996).

	 FLSp {+} FDp = FLFp� (21)

x.	 The procedure described up to now is 
applied to all activities starting from the 
last activity towards the start activity 
by following the paths in the backward 
direction.

The fuzzy backward pass calculation proce-
dure described above is clarified by an applica-
tion on a short example network (one activity 
with four successors) shown in Figure 4.

All of the fuzzy numbers are taken as 
trapezoidal. However, mode values b and c 
are taken equal for the purpose of modifying 
the trapezoidal fuzzy numbers to triangular 
fuzzy numbers in order to provide simplicity 
in this example. The network consists of a 
single activity whose fuzzy late start and 
fuzzy late finish times are being searched, 
and four successor activities whose depend-
ency and lag/lead times differ, as shown in 
Figure 4. Fuzzy backward pass calculations 
of this network are as follows:

■■ Successor 1 (s1) : 
FLFp1 = �FLSs1 {+} [fuzzy leads1 {–}  

fuzzy lags1]
FLFp1 = �(9,10,10,11) {+} [(0,1,1,2) {–} 

(0,0,0,0)]
FLFp1 = (9,11,11,13)

■■ Successor 2 (s2) : 
FLSs2 = �FLSs2 {+} [fuzzy leads2 {–}  

fuzzy lags2]
FLSp2 = �(10,11,11,13) {+} [(0,0,0,0) {–} 

(0,1,1,2)]
FLSp2 = (10,11,11,13) {+} (–2,–1,–1,0)
FLSp2 = (8,10,10,13)
FLFp2 = FLSP2 {+} Fuzzy Act. Dur.P (FDp)
FLFp2 = (8,10,10,13) {+} (2,4,4,6)
FLFp2 = (10,14,14,19)

■■ Successor 3 (s3) : 
FLFp3 = �FLFs3 {+} [fuzzy leads3 {–}  

fuzzy lags3]
FLFp3 = �(12,14,14,16) {+} [(0,0,0,0) {–} 

(0,1,1,2)]
FLFp3 = (12,14,14,16) {+} (–2,–1,–1,0)
FLFp3 = (10,13,13,16)

■■ Successor 4 (s4) : 
FLSp4 = �FLFs4 {+} [fuzzy leads4 {–}  

fuzzy lags4]
FLSp4 = �(12,14,14,16) {+} [(0,0,0,0) {–} 

(0,2,2,3)]

Figure 4 Four successors – one predecessor network portion

FS [lead s1
: (0, 1, 1, 2)]

SF [lags4 : (0, 2, 2, 3)]

SS [lags2: (0, 1, 1, 2)]

FF [lagp3: (0, 1, 1, 2)]

FLSs1: (9, 10, 10, 11)
FLFs1: (10, 11, 11, 13)

FEFp: (8, 10, 10, 14) FLSs2: (10, 11, 11, 13)
FLFs2: (11, 12, 12, 14)

FLSs3: (11, 12, 12, 14)
FLFs3: (12, 14, 14, 16)

FLSs4: (12, 14, 14, 16)
FLFs4: (14, 16, 16, 18)

FDp: (2, 4, 4, 6)

P

S1

S2

S3

S4
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Table 2 Results of example application
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Start (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) 0.00 0.00 0.00 0.00 0.00 0.00 Critical

A (2,3,3,4) (0,0,0,0) (2,3,3,4) (0,3,3,11) (0,0,0,0) (2,3,3,4) 3.00 0.00 3.00 3.00 0.00 0.00 Critical

B (5,7,7,10) (0,0,0,0) (5,7,7,10) (4,9,9,20) (2,2,2,10) (7,9,9,20) 7.33 4.66 12.00 7.33 –4.66 ➝ 0.00 4.67 Uncritical

C (6,8,8,10) (2,4,4,6) (8,12,12,16) (6,12,12,21) (2,4,4,11) (8,12,12,21) 12.00 5.66 13.67 8.00 –1.66 ➝ 0.00 1.67 Critical

D (3,4,4,5) (6,11,11,15) (9,15,15,20) (9,17,17,26) (8,13,13,21) (11,17,17,26) 14.67 14.00 18.00 4.00 –3.33 ➝ 0.00 3.33 Uncritical

E (7,8,8,10) (6,11,11,16) (13,19,19,26) (10,19,19,29) (6,11,11,19) (13,19,19,29) 19.33 12.00 20.33 8.33 –1.00 ➝ 0.00 1.00 Critical

Finish (0,0,0,0) (0,0,0,0) (7,13,13,20) (7,13,13,20) (7,13,13,20) (7,13,13,20) 13.33 13.33 13.33 0.00 0.00 0.00 Critical

FLSp4 = (12,14,14,16) {+} (–3,–2,–2,0)
FLSp4 = (9,12,12,16)
FLFp4 = FLSP4 {+} Fuzzy Act. Dur.P (FDp)
FLFp4 = (9,12,12,16) {+} (2,4,4,6)
FLFp4 = (11,16,16,22)

■■ PFLFp :
PFLFp = mĩn (FLFp1, FLFp2, FLFp3, FLFp4)
PFLFp = �mĩn [(9,11,11,13), (10,14,14,19), 

(10,13,13,16), (11,16,16,22) ]
PFLFp = (9,11,11,13)

■■ FLFp :
PFLFp = (9,11,11,13) and 
FEFp = (6,8,8,11) (11 – 8) > (13 – 11) then,
FLFp = FEFp {+} (f – d, f – d, f – d, f – d)
FLFp = �(6,8,8,11) {+} (13 – 11, 13 – 11,  

13 – 11, 13 – 11)
FLFp = (8,10,10,13)

■■ FLSp :
FLSp {+} Fuzzy Act. Dur.P (FDp) = FLFp
FLSp {+} (2,4,4,6) = (8,10,10,13)
FLSp = (6,6,6,7)

Fuzzy backward pass calculation may some-
times produce negative values, especially for 
the lower and mode fuzzy values (a,b,c) or it 
may produce zero for the mode fuzzy values 
(b,c) of the activities at the beginning of the 
network. In the former case, negative values 
are converted to zero and in the latter case all 
the fuzzy values (a,b,c,d) are accepted as zero.

AN EXAMPLE APPLICATION
This section introduces an example applica-
tion of the proposed fuzzy set CPM-based 
methodology on a hypothetic activity net-
work. Network information and the results 
of the application are given in Tables 1 and 
2, respectively. The network is a short and 
simple one, but it contains all types of net-
work dependencies, i.e. FS, FF, SS, SF with lag 
and lead times. Therefore, it stands as a good 
example for showing the application of all of 
the features of CPM with fuzzy sets.

The results given in Table 2 reveal that the 
total float times of activities were calculated 

by using geometric centres of fuzzy early and 
fuzzy late times of the activities, and critical 
and uncritical activities have been determined 
with respect to the total float times. The 
calculation procedure of total float times (TF) 
by using the geometric centres of the fuzzy 
numbers is given by Equations 22 and 23 as 
follows (Lorterapong and Moselhi 1996):

TFx Î X = CLFx – CEFx � (22)

where the C designation denotes the geomet-
ric centre of the early and late times, xÎX 
(the set of activities), and CEF and CLF show 
geometric centres of fuzzy early finish and 
fuzzy late finish times respectively.

The geometric centre of a trapezoidal fuzzy 
set is calculated by Equation 23.

C = c
2 + d2 – a2 – b2 + c·d – a·b

3· (d + c – a – b)
� (23)

It should be mentioned that the activities 
with total float times close to zero, and 
with early and late times very close to one 
another, have been considered as critical 
in this study for the sake of detecting the 
critical path. For example, total float time, 
fuzzy early finish and fuzzy late finish 
times of activity C have been found as 1.67, 
(8,12,12,16) and (8,12,12,21), respectively 
(refer to Table 2). Therefore, activity C has 
been considered as a critical activity.

Another float type examined in Table 2 is 
the independent float. While the total float 
time is the amount of time that an activity 
can be delayed without delaying the project 
completion time, the independent float time 
is the amount of time that an activity can be 
delayed without delaying the start of any of 
its successor activities (Newitt 2008). In other 
words, independent float is the delay possible 

Table 1 Network information of example application

Activity Predecessor
Fuzzy 

duration
(day)

Dependency
Fuzzy lag 

time
(day)

Fuzzy lead 
time
(day)

Start - (0,0,0,0) FS

A Start (2,3,3,4) FS

B Start (5,7,7,10) FS

C
A

(6,8,8,10)
FS (0,1,1,2)

B SS (1,2,2,3)

D C (3,4,4,5) FF (1,3,3,4)

E C (7,8,8,10) FS (0,1,1,2)

Finish
D

(0,0,0,0)
FF (2,4,4,6)

E SF (1,2,2,4)
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for an activity if all preceding activities start 
as late as possible and all subsequent activities 
start at their earliest time. The independent 
float times (IF) given in Table 2 have been 
calculated through Equations 23 and 24.

IFxÎ+X = CEFx – CLSx – CFDx � (24)

where the C designation denotes the geomet-
ric centre of the early and late times; xÎX 
(the set of activities); CEF, CLS, and CFD 
show geometric centres of fuzzy early finish 
time, fuzzy late start time, and fuzzy activity 
duration respectively (refer to Equation 23). If 
IF is calculated below zero, then it is accepted 
equal to zero as in the case of the activity 
network examined in the example applica-
tion (refer to Table 2). Otherwise, it would be 
meaningless to have a negative time value.

CONCLUSIONS AND FUTURE WORK
Construction activities are performed under 
uncertain conditions. Various risks cause 
variation in activity duration, and in turn the 
values found by CPM, such as the activity 
early/late times, become uncertain. In this 
context, activity durations are represented by 
fuzzy sets and the CPM network calculations 
are performed by fuzzy operations through a 
new method developed in this study. In this 
method, fuzzy sets are utilised to model the 
uncertainty in activity durations, activity 
early/late times and project completion time. 
An example CPM application with fuzzy sets 
was also presented. The findings show that 
CPM is applicable with fuzzy sets, and the 
developed method operates well for modelling 
the uncertainty in CPM network calculations.

The representation of activity durations by 
fuzzy sets enables modelling the uncertainty 
effect. In construction projects, it is not possi-
ble to predict the duration of an activity with 
certainty. Predictions such as “this activity 
can be completed most probably between 
seven and ten days, but perhaps it takes 15 
days maximum and 5 days minimum depend-
ing on the conditions” are frequently made. 
Fuzzy sets are suitable to model these kinds of 
linguistic propositions mathematically. Since 
the activity durations are represented by fuzzy 
sets and the network calculations are per-
formed by fuzzy operations, the activity early/
late start/finish times and the project comple-
tion time or the project duration are calcu-
lated as fuzzy sets through this new method. 
In other words, the effect of uncertainty on 
the results of CPM is modelled. Furthermore, 
the evaluation of activity/path criticalness is 
realised by using the geometric centres of the 
activity early/late times.

Execution of CPM by using fuzzy sets 
and fuzzy operations through the proposed 

method possesses some advantages over the 
traditional use of PERT, such as the following:

■■ While PERT takes only the critical path 
into account by ignoring the other activ-
ity paths, the proposed method evaluates 
the uncertainty in all of the activities, and 
accordingly on all of the activity paths.

■■ While PERT applies a simplification 
process to the estimated minimum, maxi-
mum and most likely durations in order 
to calculate the expected activity dura-
tions and variances, the proposed method 
does not require any simplifications, 
because the activities are represented 
by fuzzy sets, and CPM calculations are 
performed by using these fuzzy sets as a 
whole.

■■ While PERT assumes that project com-
pletion time follows normal probability 
distribution represented by the mean and 
variance parameters found by adding the 
expected durations and variances of the 
activities on the critical path, the pro-
posed method computes the project com-
pletion time as a fuzzy set through fuzzy 
forward and backward CPM calculations 
performed by using the fuzzy durations 
of all of the activities, both on the critical 
and uncritical paths.

The new method for the CPM network 
calculations with fuzzy sets, as proposed in 
this study, can also be compared with the 
other uncertainty analysis methods such as 
the Monte Carlo simulation-based models. 
Furthermore, it can be used for developing 
a fuzzy schedule risk analysis model operat-
ing with simulation, on which the authors 
currently focus their studies. It can also be 
computerised easily by utilising table proces-
sor software or computer programming 
languages. These issues are proposed as 
future work.
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