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INTRODUCTION
Motivation for this work is discussed in the 
companion paper by Maina et al (2017), (see 
pages 22–27 in this edition). Although mod-
ern era trucks transport heavier cargo, they 
are using relatively fewer tyres than their pre-
decessors, and as a result they are purported 
to be exerting much higher contact stresses 
on the road surface. A good understanding of 
tyre-road contact stresses, and the ability to 
model the macroscopic behaviour of materi-
als when subjected to varying traffic loading 
and environmental conditions, is therefore 
important for better road pavement designs 
and improved pavement performance. Tyres 
are the only part of the vehicle that are in 
contact with the road, and transmit the 
vehicle loading to the road surface through 
a very small contact area, called the “contact 
patch” or “tyre footprint”. Generally, there are 
two main types of truck tyres widely used on 
our roads – the single (or so-called wide-base 
tyre) and the conventional dual-truck tyres. 
A single wide-base tyre is a proportionately 
larger and more robust tyre that is now being 
used on trucks for heavy cargo. This type of 
tyre is expected to replace dual-tyres in the 
future, on condition of minimal damage to 
the existing road infrastructure. To be able 

to carry the same load as the dual-tyres, the 
wide-base tyre may have a much greater tyre 
inflation pressure and a larger individual 
“footprint” (but could also be smaller than 
the two combined “footprints” from stand-
ard dual-tyres). Research done by De Beer 
(2008) on tyre-pavement contact stresses has 
also shown tyre-pavement contact stresses 
to be, although dependent on the loading 
magnitude and inflation pressure, mostly rec-
tangular and occasionally circular in shape. 
Development of solutions for circular surface 
loading has already been presented in the 
companion paper published in this edition 
(Maina et al 2017).

In order to develop closed-form solutions 
for resilient responses of a pavement struc-
ture under the rectangular tyre loading, the 
Cartesian coordinate system may be conve-
nient to use. Bufler (1971) derived the theoret-
ical solution for multi-layered systems using 
the Cartesian coordinate system for isotropic 
materials, but did not provide any worked 
examples. Similarly, Ernian (1989) used both 
the cylindrical and Cartesian coordinate sys-
tems to derive solutions for both circular and 
rectangular uniformly distributed loads acting 
on the surface of a multi-layered system with 
isotropic material properties.

Numerical modelling 
of flexible pavement 
incorporating cross‑anisotropic 
material properties
Part II: Surface rectangular loading
J W Maina, F Kawana, K Matsui

In order to better understand the impact of increased loading on roads, studies on tyre-road 
interaction have gained prominence in recent years. Tyres form an essential interface between 
vehicles and road pavement surfaces. These are the only parts of the vehicle that are in contact 
with the road and transmit the vehicle loading to the road surface. The use of the Cartesian 
coordinate system is convenient in dealing with a uniform/non-uniform tyre load acting over 
a rectangular area, but few research reports are available that provide any form of theoretical 
solutions for pavement responses. This paper presents analytical solutions of responses due to 
rectangular loading acting on the surface of a multi-layered pavement system. The solutions 
developed incorporate both isotropic and cross-anisotropic material properties. The method 
followed is based on classical trigonometric integral and Fourier transformation of Navier’s 
equations. Accuracy and validity of the solutions are verified through comparisons with a 
proprietary finite element method (FEM) package. For this purpose, a pavement structure 
composed of five main layers constituted by isotropic and cross-anisotropic (also known 
as transversely isotropic) material properties is analysed. In order to vary some of the layer 
properties with depth, the main layers were sub-layered, resulting in a 17-layer pavement system.
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This paper presents the development of 
closed-form solutions for a multi-layered 
pavement system under static rectangular 
loadings, considering both isotropic and 
cross-anisotropic material properties. 
Isotropic materials have the same elastic 
properties in both the vertical and horizontal 
directions, and can be described by three 
independent elastic constants – elastic 
modulus E, Poisson’s ratio v and shear 
modulus G. In contrast, cross-anisotropy of 
an elastic material is defined by five indepen-
dent elastic constants – two elastic moduli 
in vertical and horizontal directions (Ev, Eh), 
two Poisson’s ratios in vertical and horizontal 
directions (vvh, υhh) and one shear modulus 
(Ghv), as presented by Love (1944).

In this research study, two classical math-
ematical methods, i.e. classical trigonometric 
integral and classical potential function, 
were investigated for flexibility and effi-
ciency. The former was adopted in this study 
and its use in the determination of pavement 
responses is presented in this paper. This 
work is an extension of work where solutions 
of responses due to circular loading were 
presented (Maina et al 2017). This method is 
flexible enough and can easily be extended 
to dynamic and wave propagation problems, 
although this is not the focus of the paper.

Accuracy and validity of the solutions 
are verified through comparisons of the 
computed responses to results obtained 
using a proprietary finite element package 
for a five-layer pavement structure, where 
the four upper main layers were sub-layered, 
resulting in a pavement system with 17 
layers. The pavement layers were composed 
of materials with isotropic and cross-aniso-
tropic (also known as transversely isotropic) 
properties.

THEORETICAL DEVELOPMENT

Three-dimensional linear elasticity
For 3D problems shown in Figure 1, the 
differential equilibrium equations in 

Cartesian coordinates may be expressed 
using modified Navier’s equations. However, 
the equations are cumbersome to deal 
with because of the need to solve three 
coupled partial differential equations for 
the three displacement components. The 
difficulty with finding particular solutions 
of the system of equations in terms of the 
displacements arises because each of the 
sought-after deflection functions in the 
Cartesian coordinates (x, y and z) appear in 
all three equilibrium equations.

The solutions may be simplified by 
representing displacements in terms of har-
monic potentials. It is because this approach 
decouples the equations in various different 
ways. The most common approach is to use 
the so-called Papkovich-Neuber potentials 
to represent the solution (Ozawa et al 2009; 
Borodachev & Astanin 2008). This approach 
enables the use of a well-known catalogue of 
particular solutions of the Laplace equation, 
and sometimes even reduces the problem, if 
not completely, to one of the classical prob-
lems of the theory of harmonic functions 
(theory of potential). Despite the simplifica-
tion, it is difficult to extend this approach to 
problems of dynamic or moving load analysis 
(Ozawa et al 2010).

This paper aims at presenting closed-
form solutions of pavement responses due 
to static rectangular loading in the verti-
cal direction. The solutions presented in 
this paper were derived based on a more 
flexible and efficient classical transform 
integral method. A similar approach can 
be followed to derive solutions for rectan-
gular loads acting in the longitudinal and 
transverse directions.

Theoretical development
Three different approaches may be used 
to solve problems of the theory of elastic-
ity (Borodachev 1995; 2001). In the first 
approach, the displacement vector is 
determined first, and this vector is then 
used to determine the stress and strain ten-
sors (known as problem in displacements). 

In the second approach the stress tensor is 
determined first, and then this tensor is used 
to determine the strain tensor and displace-
ment vector (known as problem in stresses). 
In the third approach the strain tensor is 
determined first, and then stress and dis-
placement tensors are determined (known 
as problem in strains). The work presented 
in this paper followed the first approach, 
namely problem in displacements.

A system of rectangular Cartesian 
coordinates (x, y, z) is used. By assuming the 
body forces to be zero, equilibrium equations 
for an infinitesimal element (Figure 2) can be 
expressed using Navier’s equations as follows 
(Filonenko-Borodich 1963):

∂σx

∂x
 + 

∂τxy

∂y
 + 

∂τxz

∂z
 = 0� (1)

∂τxy

∂x
 + 

∂σy

∂y
 + 

∂τzy

∂z
 = 0� (2)

∂τxz

∂x
 + 

∂τyz

∂y
 + 

∂σz

∂z
 = 0� (3)

Where: σx, σy, σz are normal stress and τxz, 
τyz and τxy are shear stresses acting on an 
infinitesimal element. The two subscripts 
on the symbols for shear stresses represent, 
respectively, the face and direction on which 
the shear stress is acting.

Figure 1 Uniformly distributed rectangular loads
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The strain-displacement relationship may 
be represented as follows:

εx = 
∂u

∂x
, εy = 

∂v

∂y
, εz = 

∂w

∂z
, γxy = 

∂v

∂x
 + 

∂u

∂y
,  

γxz = 
∂u

∂z
 + 

∂w

∂x
, γyz = 

∂w

∂y
 + 

∂v

∂z
� (4)

Where: u = u(x, y, z), v = v(x, y, z) and 
w = w(x, y, z) are displacements in the direc-
tions of x, y and z axes. Furthermore, εx, εy 
and εz are normal strains corresponding to 
normal stresses σx, σy and σz, whereas γxz, γyz 
and γxy are shear strains corresponding to 
shear stresses τxz, τyz and τxy.

Generalised Hooke’s law
In linear elasticity, if the stress is sufficiently 
small, Hooke’s law is used to represent 
the material behaviour and to relate the 
unknown stresses and strains. The general 
equation for Hooke’s law is:

εij = sijkl σkl = ∑3
k=1

 ∑3
l=1

 sijkl σkl� (5)

where i, j = 1, 2, 3

In this case sijkl is a fourth-rank tensor called 
elastic compliance of the material. Each 
subscript of sijkl takes on the values from 1 to 
3, giving a total of 34 = 81 independent com-
ponents in s. However, due to the symmetry 
of both εij and σkl, the elastic compliance s 
must satisfy the relation:

sijkl = sjikl = sijlk = sjilk� (6)

It follows from Equation 5, therefore, that the 
generalised Hooke’s law in Equation 5 can be 
simplified to become:

εi = sijσj, where i, j = 1 , .., 6� (7)

This relationship reduces the number of s 
components to 36, as seen in the following 
linear relation between the pseudovector 
forms of the strain and stress:








ε1
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ε3
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





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� (8)

The s matrix in this form is also symmetric. 
It therefore contains only 21 independent 

elements. The number of independent ele-
ments is obtained by counting elements 
in the upper right triangle of the matrix, 
including the diagonal elements (i.e. 
1 + 2 + 3 + 4 + 5 + 6 = 21). Furthermore, 
if the material exhibits symmetry in its 
elastic response, the number of independent 
components in the s matrix will be reduced 
even further.

For example, in the simplest case of 
isotropic materials whose elastic moduli are 
the same in all directions, only three unique 
components (s11, s12, s44) exist, as shown in 
Equation 9. In the elastic range, these three 
coefficients of the ordinary isotropic model 
require three parameters (E, v, G) for their 
definitions as follows:

s = 








s11	 s12	 s12	  0	  0	  0
s12	 s11	 s12	  0	  0	  0
s12	 s12	 s11	  0	  0	  0

 0	  0	  0	 s44	  0	  0

 0	  0	  0	  0	 s44	  0

 0	  0	  0	  0	  0	 s44







� (9)

Where: �s11 = 
1

E
, s12 = – 

v

E
, s44 = 

1

G
,  

G = 
E

2(1 + v)

In cross-anisotropic materials, however, 
six unique components (s11, s12, s13, s33, 
s44) and s66 exist, as shown in Equation 
10. These six components of the ordinary 
cross-anisotropic model require five param-
eters (Ev, Eh, vhv, υhh, Ghv) for their defini-
tions (Love 1944).

s = 








s11	 s12	 s13	  0	  0	  0
s12	 s11	 s13	  0	  0	  0
s13	 s13	 s33	  0	  0	  0

 0 	  0	  0	 s44	  0	  0

 0	  0	  0	  0	 s44	  0

 0	  0	  0	  0	  0	 s66







� (10)

Where: �s11 = 
1

Eh

, s12 = – 
vhh

 Eh

, s13 = – 
vhv

 Ev

,  

s33 = 
1

Ev

, s44 = 
1

Ghv

, Ghv = 
Ev

2(1 + vhv)
,  

s66 = 2(s11 – s12)

Writing the stresses in terms of the strains 
would require Equation 8 to be inverted, 
yielding:

σi = cij εj� (11)

Where: cij is a fourth-rank tensor called 
elastic stiffness of the material. The stiffness 
and compliance matrices in Equation 11 are 
related in the following form:

c = s–1� (12)

Three components (c11, c12, c44) exist 
for isotropic materials, whereas, in 
cross-anisotropic materials, five unique 
components (c11, c12, c13, c33, c44, c66) exist. 
It should be noted that a special cross-
anisotropy solution exists, where Ev = Eh and 
vvh = υhh. Equation 13 shows the six compo-
nents of the elastic stiffness matrix, whereas 
Equations 14–19 define each of these six 
components:

c = 








c11	 c12	 c13	  0	  0	  0
c12	 c11	 c13	  0	  0	  0
c13	 c13	 c33	  0	  0	  0

 0 	  0	  0	 c44	  0	  0

 0	  0	  0	  0	 c44	  0

 0	  0	  0	  0	  0	 c66







� (13)

Where:

c11 = 
Eh(–Ev + Ehv2

hv)

(1 + vhh)(–Ev + Evvhh + 2Ehv2
hv)

� (14)

c12 = – 
Eh(Evvhh + Ehv2

hv)

(1 + vhh)(–Ev + Evvhh + 2Ehv2
hv)

� (15)

c13 = – 
EhEvvhv

–Ev + Evvhh + 2Ehv2
hv

� (16)

c33 = 
E2

v (–1 + vhh)

–Ev + Evvhh + 2Ehv2
hv

� (17)

c44 = G = 
Ev

2(1 + vhv)
� (18)

c66 = 
Ev

2(1 + vhv)
 = 

(c11 – c12)

2
� (19)

Substituting Equation 13 in 11 yields:








σx
σy
σz
τyz
τxz
τxy





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






c11	 c12	 c13	  0	  0	  0
c12	 c11	 c13	  0	  0	  0
c13	 c13	 c33	  0	  0	  0

 0 	  0	  0	 c44	  0	  0

 0	  0	  0	  0	 c44	  0

 0	  0	  0	  0	  0	 c66






 








εx
εy
εz
γyz
γxz
γxy







� (20) 

Derivation of the solutions
It is convenient to use the three-dimen-
sional Cartesian coordinate system and 
make an assumption that displacement 
functions u(x, y, z), v(x, y, z) and w(x, y, z) in 
the x, y and z directions, respectively, may 
be represented using double trigonometric 
functions, as detailed below. With this 
approach, the x and y dependencies of the 
displacement functions u(x, y, z), v(x, y, z) 
and w(x, y, z) are accommodated by means 
of analytical double integral Fourier trans-
form, with the z dependence approximated 
by using closed-form solutions.

The Fourier transform of the displace-
ments employs transform pairs that are 
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defined in terms of the Fourier parameters in 
the x and y directions (ξx and ξy) as follows:

ũ(ξx, ξy, z) = �∫∞

–∞ 
∫∞

–∞
u(z) sin(ξx x)  

cos(ξy y)dξx dξy� (21)

ṽ (ξx, ξy, z) = �∫∞

–∞ 
∫∞

–∞
v(z) cos(ξx x)  

sin(ξy y)dξx dξy� (22)

w̃(ξx, ξy, z) = �∫∞

–∞ 
∫∞

–∞
w(z) cos(ξx x)  

cos(ξy y)dξx dξy� (23)

Where: ũ(ξx, ξy, z), ṽ (ξx, ξy, z) and w̃(ξx, ξy, z) 
are the Fourier transforms of displacement 
functions about the coordinate z (Sneddon 
1951). The procedure that follows is to 
expand Equation 20 and to express strains 
in terms of elastic displacements based on 
Equation 4. After that the Fourier trans-
forms of the displacements using Equations 
21, 22 and 23 are applied. Then the result-
ing functions are substituted into Equations 
1–3 to yield their Fourier transforms 
as follows:

– ũ(ξx, ξy, z)(ξy
2(c11 – c12) + 2c11ξx

2) +

ξxξy(c11 + c12) ṽ (ξx, ξy, z) + 2ξx(c13 + c44) 

∂w̃(ξx, ξy, z)

∂z  
 – 2c44 

∂2ũ(ξx, ξy, z)

∂z2
 = 0� (24)

– ξx, ξy(c11 + c12)ũ(ξx, ξy, z) + ṽ (ξx, ξy, z) 

(ξx
2(c11 – c12) 2c11ξy

2) + 2ξy(c13 + c44) 

∂w̃(ξx, ξy, z)

∂z
 – 2c44 

∂2ṽ (ξx, ξy, z)

∂z2
 = 0� (25)

(c13 + c44) ξx 
∂ũ(ξx, ξy, z)

∂z
 + ξy 

∂ṽ(ξx, ξy, z)

∂z

+ c33 
∂2w̃(ξx, ξy, z)

∂z2
 – c44w̃(ξx, ξy, z)

(ξx
2 + ξy

2

 
= 0� (26)

Equations 24–26 can be simplified further 
by representing a differential function with 

respect to z as λ = 
∂

∂z
 as well as making the 

following substitutions:

a = 
c11 – c12

2c44

, b = 
c11 + c12

2c44

, c = 
c13 + c44

c44

,  

d = 
c44

c33

,  f = 
c13 + c44

c33

� (27) 

and

ξ = ξx
2 + ξy

2� (28)

Using Equations 27 and 28 it becomes con-
venient to eliminate ũ(ξx, ξy, z) and ṽ(ξx, ξy, z) 
from Equations 24–26, then simplify 
to obtain:

(λ4 – t1ξ2λ2 + t2ξ4)w̃ = 0� (29)

The roots of Equation 29 are determined as:

λ = ±ξ 
t1 ± t2

1 – 4t2
2

� (30)

Where: t1 = (b + (a + d) – c f ), t2 = a d + b d 
from Equation 27.

Putting back the differential function in 
Equation 29 yields:

∂4

∂z4
 – t1ξ2 

∂2

∂z2
 + t2ξ4 w̃ = 0� (31)

With reference to the roots in Equation 30, 
the solution form of Equation 31 depends on 
the sign of the coefficient t2

1 – 4t2.
Furthermore, and this is very important, 

depending on the numerical integration 
methods used, it may be necessary to modify 
the solution for w̃ to obtain stable and accu-
rate responses of the pavement structure. 
The solutions presented hereunder were 
based on the numerical methods used in this 
research.

1. Solution 1: t2
1 – 4t2 > 0, where Eh > Ev

w̃ = w̃ (ξx, ξy, z) = �C1(ξ)e λ1z + C2(ξ)e –λ1z  
+ C3(ξ)e λ2z + C4(ξ)e –λ2z�(32)

Where:

λ1 = ξ 
t1 + t2

1 – 4t2
2

, λ2 = ξ 
t1 – t2

1 – 4t2
2

, 

and C1(ξ), C2(ξ), C3(ξ), and C4(ξ) are 
coefficients of integration determined, as 
described later, by using boundary loading 
conditions.

In order to obtain stable and accurate results 
of pavement responses, Equation 32 was 
modified to:

w̃ (ξx, ξy, z) = �C1(ξ) cosh(r2z) e r1z  
+ C2(ξ) cosh(r2z) e –r1z  
– C3(ξ) sinh(r2z) e r1z  
– C4(ξ) sinh(r2z) e –r1z� (33)

Where:

r1 = ξ  
t1 – t2

1 – 4t2 + t1 + t2
1 – 4t2

2 2
, and 

r2 = ξ  
t1 + t2

1 – 4t2 – t1 – t2
1 – 4t2

2 2

2. Solution 2: t2
1 – 4t2 = 0, where Eh = Ev

w̃ (ξx, ξy, z) = �eξz –C1(ξ)
ξy

ξ
 – C3(ξ)

ξ

ξx

  

+ C5(ξ)
3c11 – c12

ξx(c11 + c12)
 – 

zξ

ξx  

+ e–ξz C2(ξ)
ξy

ξ
 + C4(ξ)

ξ

ξx

  

+ C6(ξ)
3c11 – c12

ξx(c11 + c12)
 + 

zξ

ξx

� (34)

3. Solution 3: t2
1 – 4t2 < 0, where Eh < Ev

w̃ (ξx, ξy, z) = �C1(ξ)e λ1z + C2(ξ)e –λ1z  
+ C3(ξ)e λ2z + C4(ξ)e –λ2z� (35)

Where:

λ1 = ξ  t1 + t2
1 – 4t2

2
, and 

λ2 = ξ  t1 – t2
1 – 4t2

2

For stable and accurate results of pavement 
responses, Equation 35 was modified to:

w̃ (ξx, ξy, z) = �C1(ξ) cos(r2z) e r1z  
+ C2(ξ) cos(r2z) e –r1z  
– C3(ξ) sin(r2z) e r1z  
– C4(ξ) sin(r2z) e –r1z� (36)

Where:

r1 = ξ 
t1

2  and r2 = ξ 
t2
1 – 4t2

2

Solutions for the remaining Fourier 
transformed displacements
Substituting Equations 33, 34 and 36 into 
Equations 24 and 25, the solutions for 
ũ(ξx, ξy, z) and ṽ(ξx, ξy, z) are derived.

As an example, solutions for ũ(ξx, ξy, z) 
and ṽ(ξx, ξy, z) for the case where Eh = Ev 
(solution 2) are obtained as follows:

ũ(ξx, ξy, z) = �C2(ξ)e ξz + C4(ξ)e –ξz 

 + �C5(ξ)zeξz + C6(ξ)ze–ξz� (37)

ṽ(ξx, ξy, z) = �eξz
 C1(ξ) + C3(ξ)

ξy

ξx

 + C5(ξ)
ξy

ξx 
z   

+ e–ξz
 C2(ξ) + C4(ξ)

ξy

ξx

  

+ C6(ξ)
ξy

ξx  

z � (38)

Solutions for ũ(ξx, ξy, z), ṽ(ξx, ξy, z) and 
w̃(ξx, ξy, z) are then substituted into 
Equations 4 and 20 to determine the 
Fourier transforms of normal and shear 
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stresses σ̃x(ξx, ξy, z), σ̃y(ξx, ξy, z), σ̃z(ξx, ξy, z), 
τ̃xz(ξx, ξy, z), τ̃yz(ξx, ξy, z), and τ̃xy(ξx, ξy, z).

Boundary condition –  
surface rectangular vertical loading
For the loading case shown in Figure 3, there is 
only a single uniformly distributed surface rec-
tangular vertical load, P, whose sides are 2 × a 
and 2 × b in dimensions. Boundary conditions 
for rectangular loads acting on a surface of a 
semi-infinite medium shown in in Figure 3 may 
be represented by taking into consideration 
the equilibrium between external and internal 
vertical and shear stresses, as shown below:

When x ≤ |a| and y ≤ |b| then:





σ̃ 1
z(ξx, ξy, z = 0)

τ̃1
xz(ξx, ξy, z = 0)

τ̃1
yz(ξx, ξy, z = 0)





 = – 




p̃z(ξx, ξy, z = 0)
0
0





� (39)

Where:

p̃z(ξx, ξy) �= ∫a

–a ∫
b

–b
 – 

pz cos(ξx x) cos(ξy y)

2π
d(ξy)d(ξx) 

= – 
2pz sin(ξx x) sin(ξy y)

ξxξyπ
 and

pz = 
P

(2 × a)(2 × b)

In addition, when x > |a| and y > |b| then:





σ̃ 1
z(ξx, ξy, z = 0)

τ̃1
xz(ξx, ξy, z = 0)

τ̃1
yz(ξx, ξy, z = 0)





 = 




0
0
0





� (40)

Pavement responses
By applying Fourier inverse transformation 
of all the Fourier transformed solutions, it is 
possible to determine solutions for pavement 
responses at any point in a pavement structure.

u(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
ũ(kx, ky, z) sin(ξx x)  

cos(ξy y)dξxdξy� (41)

v(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
ṽ(ξx, ξy, z) cos(ξx x)  

sin(ξy y)dξxdξy� (42)

Figure 3 �Surface rectangular vertical load 
(pz(x, y, z) = 0)

y

x
2a

2b

pz (x, y, 0) 

z

Table 1 Profile of the hypothetical pavement structure

Layer 
type

Layer 
number

E-Modulus 
vert (MPa)

E-Modulus 
horiz (MPa)

P-Ratio  
vert

P-Ratio  
horiz

Thickness 
(mm)

Slip  
rate

AC 1 20 281 18 618 0.14 0.13 10 0

AC 2 19 781 19 767 0.15 0.15 10 0

AC 3 19 303 19 282 0.15 0.15 10 0

AC 4 18 846 15 583 0.12 0.11 10 0

G1 5 450 450 0.35 0.35 37.5 0

G1 6 450 450 0.35 0.35 37.5 0

G1 7 450 450 0.35 0.35 37.5 0

G1 8 450 450 0.35 0.35 37.5 0

C3 9 250 250 0.35 0.35 75 0

C3 10 250 250 0.35 0.35 75 0

C3 11 250 250 0.35 0.35 75 0

C3 12 250 250 0.35 0.35 75 0

G7 13 50 50 0.45 0.45 37.5 0

G7 14 50 50 0.45 0.45 37.5 0

G7 15 50 50 0.45 0.45 37.5 0

G7 16 50 50 0.45 0.45 37.5 0

SG 17 239 239 0.4 0.4 Semi-infinite

Figure 4 Hypothetical pavement structure

Applied load/stresses
P/σ

Stress 
rotation

Pavement 
response

Stresses  
and  

strains

Contact 
stresses

Surfacing: h1, E1v, E1h, v1v, v1h

Base layer:  
h2, E2v, E2h, v2v, v2h

Sub-base layer:  
h3, E3v, E3h, v3v, v3h

Selected layer:  
h4, E4v, E4h, v4v, v4h

Sub-grade:  
h5, E5v, E5h, v5v, v5h
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w(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
w̃(ξx, ξy, z) cos(ξx x)  

sin(ξy y)dξxdξy� (43)

σx(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
σ̃ x(ξx, ξy, z) cos(ξx x)  

cos(ξy y)dξxdξy� (44)

σy(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
σ̃ y(ξx, ξy, z) cos(ξx x)  

cos(ξy y)dξxdξy� (45)

σz(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
σ̃ z(ξx, ξy, z) cos(ξx x)  

cos(ξy y)dξxdξy� (46)

τxz(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
τ̃xz(ξx, ξy, z) sin(ξx x)  

cos(ξy y)dξxdξy� (47)

τyz(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
τ̃yz(ξx, ξy, z) cos(ξx x)  

sin(ξy y)dξxdξy� (48)

τxy(x, y, z) = �
1

2π
 ∫∞

–∞ 
∫∞

–∞
τ̃xy(ξx, ξy, z) sin(ξx x)  

sin(ξy y)dξxdξy� (49)

worked examples
Solutions developed in this study were used 
to compute responses at different positions 
within a pavement structure. The pave-
ment structure for which the simulation 

Figure 5 Stress distribution under the centre of the load with depth between this study and proprietary FEM package
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results are presented here is shown in 
Figure 4. Based on historical tyre loading on 
South African roads, a tyre vertical load of 
21.5 kN on a rectangular patch of 231 mm 
by 238 mm resulting in a 390 kPa contact 
stress was used in the analysis (De Beer 
2008). All layers, except the asphalt layer, 
were modelled with isotropic, linear-elastic 
properties. The asphalt layer was modelled 
with cross-anisotropic, linear elastic 
properties. Information on all the layers, 
including sub-layers, is shown in Table 1. 
The sub-layering of the upper four main 
layers into four layers each resulted in a total 
of 17 layers, as shown in Table 1.

The vertical stiffness in the asphalt sub-
layers shows a marginal increase close to the 
surface that may be attributed to binder age-
ing, but more probably to a slight reduction 
in the temperature conditions. The top and 
bottom asphalt sub-layers show significant 
reduction in the effective horizontal stiffness 
resulting from cracking initiating from both 
the top and bottom of the main asphalt layer.

Discussion of results
Figures 5 and 6 show comparisons between 
the numerical method developed in this 
study and a proprietary FEM package for 
stresses (Szz) and (Sxx) as well as strains 
(Ezz) and (Exx) distributions with depth, 
z-direction, under the centre of a rectangular 
surface load of magnitude 21.5 kN (390 kPa 
contact stress). From these results it is clear 
that the closed-form solutions developed in 

this study have achieved a very good level of 
accuracy, as their results compare well with 
results from a proprietary FEM package.

It is also important to mention here 
that the software developed from this 
work has become the analysis engine for 
the new SAPDM (South African Pavement 
Design Method).

What is also evident in the strains plots 
is that, as the FEM increases the size of 
the elements at points far from where the 
load is acting, the accuracy is reduced a 
little bit and the results start moving away 
from the results of this study. However, all 
in all, the agreement of the two methods, 
i.e. approximation by FEM and closed-
form solution developed in this paper, is 
very good.

CONCLUSIONs
1.	 A numerical tool for analysis of an elastic 

multilayer system under the action of 
a surface rectangular load, considering 
both cross-anisotropic and isotropic 
material properties, has successfully 
been developed.

2.	 The numerical tool developed in this 
study is capable of performing analyses 
for an unlimited number of points in an 
elastic multi-layered pavement system 
with an unlimited number of layers, 
and on the surface where an unlim-
ited number of uniformly distributed 
rectangular loads act.
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3.	 The results shown in this paper confirm 
the accuracy and reliability of the closed-
form theoretical solutions developed.

4.	 A very good match of the stress results 
was obtained between the numerical tool 
developed in this study and a proprietary 
FEM package.

5.	 Differences in the strain results at points 
far from where the load acts, were 
observed. The differences seem to be 
emanating from the FEM, which is a pro-
prietary package. In conventional FEM, 
stress computations come after strain 
computations, and the trends should 
have been similar. The reason for the 
differences is not clear, but the results, as 
measured, are nevertheless reported here.

6.	 The numerical tools developed can be 
used to improve the design, evaluation 
and analysis of multi-layered road/runway 
pavement systems.
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Figure 6 Strain distribution under the centre of the load with depth between this study (closed-form) and proprietary FEM package
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