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INTRODUCTION
Concrete is widely used in the construction 
industry. Due to the inherent weakness 
in the tensile properties of concrete, it is 
conventionally reinforced with steel bars. 
More recently the use of short discrete 
fibres in reinforcing concrete has increased 
significantly. However, it is still a matter of 
debate if fibres can completely replace steel 
reinforcement in concrete. The functions 
of fibres in concrete vary, depending on the 
type (steel, synthetic, etc) and size (micro 
or macro). While they mitigate shrinkage 
in some cases, their main function is in the 
control of crack opening, thereby enhancing 
residual tensile properties and durability in 
the cracked phase of cement composites.

Due to the bridging mechanism of 
fibres in cracked cementitious composites, 
significant improvement in properties, such 
as toughness (Buratti et al 2011), fatigue 
resistance (Buratti et al 2011), impact 
resistance (Mindess & Zang 2009), flexural 
strength (Hsie et al 2008; Lie & Kodur 1996) 
and reduction in plastic shrinkage cracking 
(Boshoff & Combrinck 2013) have been 
reported. The two most widely used fibres 
in civil engineering works are steel and 

synthetic fibres (Buratti et al 2011). Areas 
of application include concrete ground slabs 
(Alani & Beckett 2013; Sorelli et al 2006), 
concrete pipes (de la Fuente et al 2013), 
precast structural elements (Ferrara & Meda 
2006) and shotcreting (Bernard 2004).

Lately the development and use of larger 
monofilament synthetic macro fibres (also 
called structural fibres) have been on the 
increase, which is an indication of their 
viability as an alternative to steel fibres and 
steel reinforcing bars. They have better 
resistance to chemicals (Wang et al 1987), 
do not deteriorate with age (Hannant 
1998), and are cheaper and lighter 
(Richardson 2005). However, the mechani-
cal performance of synthetic macro fibres 
in concrete could significantly vary due 
to a number of factors, such as geometry 
(straight, flat or crimped), diameter, length, 
tensile strength, etc. The effect of tempera-
ture on the properties of synthetic fibres 
due to exposure of concrete to long periods 
of heat and sun radiation could have a sig-
nificantly adverse effect on their properties. 
The application of macro synthetic fibre is 
typically limited to shotcrete and concrete 
floor-on-grade applications, where the 
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yield-line design approach (plastic design) 
has to be followed to harness the advan-
tages of the fibres (Concrete Society 2014).

There is considerable global scepticism 
regarding the use of synthetic fibres for 
reinforcing concrete, with South Africa 
not being exempted. The scepticism is 
strengthened by the fact that synthetic 
macro fibres have low stiffness compared 
to steel fibres, and have been reported 
to creep significantly more than steel 
(Babafemi & Boshoff 2015; Pujadas et al 
2017). However, this should not discourage 
its use, but requires that certain design 
guidelines be established for its sensible 
application (Pujadas et al 2017).

In this paper, the pull-out performance 
of four locally available synthetic macro 
fibres in South Africa is evaluated at the 
single-fibre level. The main objective of 
this study is to assess the fibre-matrix 
bond characteristics of these locally 
available fibres. The fibre-matrix bond 
characteristics would give an indication of 
how best each fibre performs. This is done 
by performing single-fibre pull-out tests 
at different embedment lengths, as well as 
different embedment angles to determine 
the snubbing effect. The fibre snubbing 
effect is the increase in maximum pull-out 
force (F) when a fibre is pulled out at an 

angle (φ) as opposed to being pulled out in 
an aligned fashion, as shown in Figure 1. 
The uniqueness of this study is to par-
ticularly investigate these locally available 
macro synthetic fibres at the single-fibre 
level. Further studies are still ongoing to 
relate their response to the macro-level 
performance under flexure and shear.

Fibres are randomly distributed in a 
fibre-reinforced composite. The fibres in 
the composite take different orientation 
angles and are embedded at different 
lengths across a cracked section. The 
overall performance of the composite is 
dependent on these factors, and many 
more. Therefore the aim of the study (of 
the effect of the insertion length and snub-
bing angles at the single-fibre level) is to 
assess the individual factors and their con-
tribution to the overall performance of the 
reinforced composite. This has aided the 
development of models accommodating the 
contributions of fibre embedment length 

and orientation angle in the prediction of 
the mechanical response of FRC elements. 
However, it is not the goal of this study to 
develop any model accommodating these 
factors, but to demonstrate that these fac-
tors could have an impact on the overall 
performance of FRC elements.

MATERIALS AND CONCRETE MIX

Synthetic macro fibres
Four types of synthetic polypropylene 
macro fibres, locally available in South 
Africa, were used, as shown in Figure 2. 
The fibre properties, both given by the sup-
plier and measured, are shown in Table 1.

Table 1 shows five fibre categories, as 
Fibres 1 and 2 were supposed to be the 
same, but a significant change in the meas-
ured equivalent diameters was found from 
the first batch to the second. Therefore 
their specified equivalent diameters are the 

Figure 1 Fibre snubbing angle
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Figure 2 Synthetic (polypropylene) macro fibres

Rocstay 
(30 mm)

Geotex 500 series 
(50 mm)

Geotex 600 series 
(50 mm)

Chryso structural 
(50 mm)

Table 1 Properties of synthetic macro fibres

Fibre 
classes

Commercial 
name

Cross‑sectional 
shape

Longitudinal 
geometry

lf
(mm)

de(s)
(mm)

de
(mm)

λ
σf

(MPa)

Fibre 1 Rocstay X Crimped 30 0.8 0.998 30.1 300

Fibre 2 Rocstay X Crimped 30 0.8 0.701 42.8 300

Fibre 3 Geotex 500 Series Oval Crimped 50 0.9 0.76 65.8 295

Fibre 4 Goetex 600 Series Rectangular Flat 50 0.8 0.907 55.1 275

Fibre 5 Chryso Rectangular Flat 50 0.79 0.615 81.0 336

Table 2 Concrete mix design for experimental investigation

Mix
(kg/m3) 

Water Cement w/c 
Coarse 

aggregate 
Sand 

Mix 1 240 400 0.6 782 926

Mix 2 240 480 0.5 782 859

Mix 3 240 600 0.4 782 759
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same. It is clearly indicated where Fibre 1 
or Fibre 2 was used.

The equivalent diameter (de) of each 
fibre type was calculated following the 
procedure outlined in EN 14889-2:2006 
(EN 2006) from the measured total fibre 
mass (up to 50 numbers) of each fibre type. 
Since the fibres do not have a circular 
cross-section, the de is the diameter of a 
circle having an area equal to the average 
cross-sectional area of a fibre, calculated as

de = 
400mf

RDπlf (t)
� (1)

where mf is the total mass of fibres in 
grams, lf(t) is the total length of the weighed 
fibres in mm (which is determined by mul-
tiplying the fibre length with the number of 
fibres) and RD is the relative density of the 
fibre (0.91 for polypropylene). In Table 1, lf 
is the fibre length, de(s) is the supplied de, 
λ the aspect ratio (lf/de) and σf is the sup-
plied tensile strength. It should be noted 
that for tests conducted at the single-fibre 
level, longer fibre lengths obtained from 
the suppliers have been used to be able to 
study the effect of the various embedment 
lengths on the pull-out response.

Concrete mix design
The concrete mix constituents are CEM I 
52.5N cement with a relative density (RD) 
of 3.14, fine natural sand (known locally as 
Malmesbury sand) having an RD of 2.62, 
and a crushed Greywacke coarse aggregate 
(nominal size of 6 mm) with an RD of 2.80. 
Three concrete mixes (Mix 1, Mix 2, Mix 3), 
shown in Table 2, with water-cement ratios 
(w/c) of 0.6, 0.5 and 0.4 were used. The 
slump was measured in accordance with 
SANS 5862-1:2006 (SANS 2006a), and the 
compressive strength in accordance with 
SANS 5863‑3:2006 (SANS 2006b) at an age 
of 28 days.

Concrete specimens were cast without 
fibres in the single-fibre pull-out test, except 
for the embedded single fibres that were 
added after the moulds had been filled. 
However, the effect of synthetic macro fibres 
on the compressive strength of concrete 
was investigated using Fibre 1 (at 0.5, 0.6, 
0.7% vol), Fibre 3 (at 0.5, 0.6, 0.7% vol), Fibre 
4 (at 0.3, 0.5, 0.6, 0.7, 0.9% vol) and Fibre 5 
(at 0.6% vol). It should be noted that Fibre 1 
is representative of Fibre 2, hence Fibre 2 
was not tested for compressive strength. 
A close look at the fibre types (Table 1 
and Figure 2) shows that the fibres can be 
grouped into three surface configurations: 

X cross-section and crimped (Fibres 1 
and 2), oval cross-section and crimped 
(Fibre 3), and rectangular flat (Fibres 4 and 
5). The fibre groupings were studied at 0.5%, 
0.6% and 0.7% volume, while two additional 
boundaries of low and high volumes (0.3% & 
0.9%) were tested for the flat fibres.

EXPERIMENTAL METHODS
Single-fibre pull-out tests (SFPOT) were 
undertaken to study the pull-out behaviour 

of the fibres. Fibres 1 and 2 were tested 
at an embedment length of multiples of a 
third of its length, as well as a 40 mm fibre 
length. Fibres 1 and 2 were supplied in two 
different diameters and were thus used to 
investigate the effect of the diameter on 
the pull-out response. The effect of the 
variation in fibre diameter was only carried 
out for Mix 2 with w/c of 0.5. SFPOT for 
Fibres 3, 4 and 5 were performed at embed-
ment lengths of multiples of a quarter 
of their lengths, as presented in Table 3, 

Table 3 Fibre embedment lengths tested

Embedment length (mm) Fibres 1 & 2 Fibre 3 Fibre 4 Fibre 5

L1 10 12.5 12.5 12.5

L2 20 25.0 25.0 25.0

L3 30 37.5 37.5 37.5

L4 40 50.0 50.0 45.0

Figure 3 Schematics of single-fibre sample preparation (not to scale)
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except for Fibre 5 where the final embed-
ment length tested (L4) was 45 mm.

Furthermore, the snubbing angle effect 
of these flexible fibres on the pull-out 
load was also investigated. Here only one 
embedment length was used for all fibres 
(two-thirds of the fibre length for Fibre 1, 
which is 20 mm, and half the fibre length 
for the others, i.e. 25 mm). Snubbing angles 
investigated were 0° (i.e. perpendicular to 
the crack plane), 30° and 60°. Only Mix 2 
with a w/c of 0.5 was used to investigate 
the snubbing effect.

Test specimen preparation
For each fibre type, eight specimens, each 
measuring 100 × 100 × 40 mm3 were pre-
pared and tested in the SFPOT. These spec-
imens were obtained by dividing 100 mm 
polyvinyl chloride (PVC) cube moulds into 

two halves with wooden blocks, resulting in 
two specimens per cube mould, as shown in 
Figure 3 on page 23. The dry mix constitu-
ents without fibres were mixed for about 
three minutes before the addition of water.

After mixing, the fresh concrete was cast 
in the moulds and vibrated on a vibrating 
table. The fibres were then inserted into 
the centre of the fresh concrete up to the 
pre-marked embedment lengths. For the 
less flexural stiff fibres (Fibres 4 and 5), 
one of the flexural stiff fibres (Fibre 1) was 
initially used to create the openings before 
the less flexural stiff fibres were inserted to 
the desired embedment length. The reason 
for the difference in flexural stiffness is the 
different cross sections of the fibres. After 
the insertion, moulds were gently vibrated 
to close the voids created between the fibre 
and the concrete. The samples were allowed 
to set in a temperature-controlled chamber 
at 23°C for 24 h, and then submerged in a 
curing tank at 22°C until testing at 28 days.

For the evaluation of the snubbing 
effect, the fibres were inserted at the snub-
bing angles previously mentioned. The flat 
fibres were inserted at a specific orientation 
to ensure bending about their strong axis 
during pull-out, as shown in Figure 4.

Test setup for SFPOT
The SFPOT setup is shown in Figure 5. 
The tests were performed in a Zwick Z250 
Universal Testing Machine. Hydraulic 
clamps held the bottom part of the con-
crete specimen. The fibre clamp gripped 
the fibre protruding from the concrete, as 
close as possible to the concrete surface 
to minimise the effect of fibre elongation. 
Two 50 mm HBM linear variable differ-
ential transformers (LVDTs) were used to 
measure pull-out displacement. The HBM 
load cell used has a capacity of 250 kg. The 
pull-out tests were performed at a constant 
crosshead displacement rate of 0.2 mm/s.

A drill chuck shown in Figure 5 was 
used as a fibre clamp for the non-flat 
Fibres 1 and 2. The drill chuck was unable 
to grip the flat Fibres 4 and 5 without slip-
page, hence a separate clamp was manufac-
tured for gripping these fibres.

This clamp consisted of two flat metal 
parts clamping the fibre as shown in 
Figure 6. A permanent marker was used 
to mark the fibres at the clamp-fibre 
interface to help identify fibre slippage. 
If fibre slippage was observed at the 
clamped section, the results of such tests 
were discarded.

Strong 
axis 
bending

Weak axis bending

Figure 4 �Cross-section of a flat rectangular 
fibre showing strong and weak axes

Figure 5 Single-fibre pull-out test setup

Load cell

Hydraulic clamp

Specimen

Drill chuck

LVDT

Figure 6 �Clamp developed and used for flat 
fibres

Table 4 Average compressive strength and slump values

Mix w/c
Compressive

strength
(MPa)

CoV
(%)

Slump
(mm)

Mix 1 0.4 59.0 4 70

Mix 2 0.5 52.2 3 150

Mix 3 0.6 43.1 7 200
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RESULTS AND DISCUSSION

Compressive strength
The results of the compressive strength 
and slump tests of mixes without fibres are 
presented in Table 4, with the coefficient 
of variation (CoV) of the compressive 
strength shown.

As expected, the compressive strength 
of the mixes increases as the w/c decreases, 
whereas the slump increases as the w/c 
increases. The effect of adding fibres on the 
compressive strength of Mix 3 is shown for 
the four different fibres in Figure 7. Only 
Fibre 4 was tested at 0.3 and 0.9% dosages, 
while Fibre 5 was only tested at 0.6% dos-
age. Figure 7 reveals that the addition of 
the fibres has a negative effect on the com-
pressive strength of the concrete at the dos-
ages investigated. This is consistent with 
several works on the effect of synthetic 
fibres on the compressive strength of ordi-
nary concrete (Hsie et al 2008; Babafemi & 
Boshoff 2015).

The crimped fibre (Fibre 3) shows an 
increase in compressive strength from the 
0.5 to 0.7% dosages, even attaining the 
strength of the control at 0.7% fibre dosage. 
For the slightly crimped (Fibre 1) and the 
flat (Fibre 4) no particular trend is apparent. 
At 0.6% fibre dosage, all fibres resulted in 
a lower compressive strength compared to 
the control, with Fibre 1 showing the most 
severe reduction. The reduction in compres-
sive strength of concrete due to the addition 
of fibres is attributed to the increased 
voids created during mixing and the non-
homogeneity in the microstructure due to 
the distribution of fibres within the matrix.

Pull-out behaviour of synthetic  
macro fibres
All results presented here are the average 
of the maximum pull-out load for each set 
of fibre type and embedment length. This 
value is typically at the onset of pull-out 
and gradually drops until complete pull-out 
is achieved. A typical pull-out response for 
each fibre type is shown in Figure 8.

Fibres 1 and 2
The average maximum pull-out loads of 
Fibre 1 at different embedment lengths and 
w/c are shown in Figure 9. Also shown is 
the response of Fibre 2, which is the same 
as Fibre 1 except for a smaller equivalent 
diameter at different embedment lengths, 
and a w/c of 0.5.

One significant factor that influences 
the average maximum pull-out loads, as 
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Figure 8 Typical pull-out responses of each fibre type
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can be seen in Figure 9, is the fibre diam-
eter. With a 40 mm embedment length, a 
significant drop in the average maximum 
pull-out load is observed. It should be men-
tioned that the fibres with 40 mm embed-
ment lengths had an equivalent diameter 
similar to Fibre 2 which is less than Fibre 1, 
which explains the drop in the average 
maximum pull-out load at this embedment 
length. Similarly, Fibre 2 with the lesser 
equivalent diameter showed a significantly 
lower maximum pull-out load compared 
to Fibre 1 at embedment lengths of 20 mm 
and 30 mm. This indicates that the average 
maximum pull-out load is a function of the 
equivalent diameter of the fibre. However, 
the effect of the equivalent diameter for 
the flat fibres still needs to be researched. 
The w/c showed no effect on the pull-out 
response. Figure 9 did show some effect of 
the w/c, but this is not significant as the 
highest and lowest w/c showed almost the 

same behaviour, which is not expected if 
the w/c did have a significant effect.

The results indicate that with the 
increase in the fibre embedment length, the 
higher the average maximum pull-out load 
will be at various w/c. The increase in the 
average maximum pull-out load as the fibre 
length increases for this type of fibre has 
also been reported elsewhere (Babafemi & 
Boshoff 2017).

Fibre 3
The effect of embedment length and w/c 
on the average maximum pull-out load of 
Fibre 3 is shown in Figure 10. Fibre 3 shows 
that the pull-out performance is not a 
function of the w/c, as all performed simi-
larly at different w/c. In addition, the aver-
age maximum pull-out load also increases 
with increasing embedment length.

In Figure 10, beyond an embedment 
length of 37.5 mm, a drop in the average 

maximum pull-out load can be observed. 
It should be mentioned that, from a physi-
cal observation of the 50 mm fibres, they 
showed a less pronounced crimped config-
uration (lower amplitude) compared to the 
shorter fibres. It is believed that the drop 
in the average maximum pull-out load at 
this embedment length is due to the lower 
amplitude of the fibre. Bentur et al (1997) 
and Won et al (2006) also showed that the 
amplitude of a polymeric fibre has an effect 
on the average maximum pull-out load. All 
lengths of Fibre 3 have the same equivalent 
diameter, hence the effect of equivalent 
fibre diameter plays no role in the observed 
drop at 50 mm as explained for Fibre 1.

Fibre 4
The pull-out performance of Fibre 4, which 
has a flat longitudinal geometry, is also not 
influenced by the w/c, while the average 
maximum pull-out load also increases with 
an increase in embedment length, as shown 
in Figure 11. The average maximum pull-
out load is much lower than for Fibres 1, 2 
and 3. This suggests that the fibre geometry 
is an important factor in the pull-out 
performance of synthetic macro fibre when 
used in concrete. However, increase in the 
average maximum pull-out load can be 
observed up to a fibre embedment length of 
50 mm. The near linear average maximum 
pull-out load to embedment length relation-
ship observed for Fibre 4 indicates that the 
critical fibre length was not embedded in 
the matrix as only a few specimens experi-
enced fracture. The critical fibre length is 
the length for which a shorter length would 
result in no fibre rupture and a larger length 
would result in significant fibre rupture 
during mechanical testing. The critical fibre 
length is double the critical embedment 
length, as determined using single-fibre 
pull-out tests. Using the critical length for 
fibres will result in the optimal behaviour.

Fibre 5
The average maximum pull-out load of 
Fibre 5, as with all other synthetic macro 
fibres, is dependent on the embedment 
length, with no visible effect of w/c, as 
shown in Figure 12. It can be concluded 
that the average maximum pull-out load 
of synthetic macro fibres is not dependent 
on w/c ranging from 0.4 to 0.6. The average 
maximum pull-out load for Fibre 5 is 111 N, 
which is similar to the pull-out performance 
of Fibre 4 that also has a flat geometry.

A near linear increase in average 
maximum pull-out load with increasing 
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embedment length occurred up to around 
37.5 mm, where fibres fractured. At embed-
ment lengths of 45 mm, all but two of the 
fibres fractured across all w/c investigated. 
The average maximum pull-out loads 
appears to plateau at around 110 N.

Figure 13 shows the percentage of fibres 
that fractured for all fibres tested at different 
embedment length. During the pull-out 
test of Fibre 1, complete fibre pull-out was 
recorded up to an embedment length of 
30 mm. It should be noted that Fibre 1 (with 
the greater de) was only tested up to 30 mm 
embedment length as previously described, 
as the 40 mm embedment length had a 
smaller de. However, the 40 mm embedded 
fibres of Fibre 1 with a smaller de showed 
a fracture of 50% (Figure 12). Meanwhile, 
complete pull-out was only recorded at an 
embedment length of 10 mm for Fibre 2 
(with the lesser de). At 20 mm embedment 
length for Fibre 2, fracture was about 17%, 
while at 40 mm embedment lengths, about 
54% fractured during pull-out. The result 
of the percentage fracture at an embedment 
length of 40 mm for the fibres with lesser 
de grouped with Fibre 1, agrees much better 
with similar fibres classified as Fibre 2 at 
the same embedment length. These results 
indicate that the critical fibre length (length 
at which fracture occurs) is a function of the 
equivalent fibre diameter for the crimped 
fibres tested. Thus, if a significant portion 
of fibre fractures at a particular embedment 
length, i.e more than 10%, it indicates that 
the critical embedment length was reached 
between the previous embedment length 
and the current embedment length.

Less than 40% fracture occurred for 
Fibre 3 at 37.5 and 50 mm, while less 
than 10% occurred at 37.5 and 50 mm for 
Fibre 4, and about 90% at 37.5 and 45 mm 
for Fibre 5. It can be inferred that the 
embedment lengths at which the peak per-
centage of fractures occur is an indication 
of the critical fibre length. Fibre pull-out 
is the preferred failure mechanism rather 
than fibre rupture, as pull-out results in 
a ductile failure, with the fibre pull-out 
process absorbing more energy than a 
fibre rupture. The critical fibre length is 
twice the critical embedment length, as the 
shortest embedment length is dominant 
when a fibre crosses a crack plane in 
concrete. It is important to note that the 
fibre fracture did not occur at the fibre’s 
clamping point. For samples where fracture 
occurred at the clamp, the results were dis-
carded. Evidently, the fibres that pulled out 
completely show that the pull-out stress did 

not exceed the fibre’s stress. On the other 
hand, the fracture fibres show that the fibre 
stress is exceeded during pull-out.

It is common knowledge that the w/c 
influences the compressive strength of 
concrete. The lower the w/c, the higher 
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the compressive strength. This, how-
ever, does not influence the fibre/matrix 
interface, and is believed to be due to the 
hydrophobic nature of the polypropylene 
fibres. The poor bonding is enhanced by 
the fibre geometry rather than the concrete 
strength, which is dependent on the w/c. 
In fact, the maximum fibre/matrix bond 
strength has been reported to be attained 
just within the first two days (Singh et al 
2004), unlike the compressive strength that 
continues to increase with age. Therefore 
the w/c does not influence the maximum 
bond load, rather, the maximum bond load 
is a function of the properties of the fibre.

Effect of snubbing angle 
on pull-out load
The orientation of fibres influence the pull-
out performance of cement composites. 
Figure 14 shows the normalised plot of the 
average maximum pull-out load against 
the snubbing angles of all fibres tested. 
All the fibres had an embedment length of 
25 mm, except Fibre 1 which was embed-
ded at 20 mm. The purpose of these tests 
is to evaluate the effect of snubbing for 
different fibres, therefore this small change 
in embedment length for the one fibre is 
believed to be insignificant.

As the results were normalised to the 
pull-out resistance of each fibre type at 0°, 
they all start at 1.0. At 30° and 60° differen
ces can be seen for the various fibres, indi-
cating increased frictional effect at these 
angles. Fibre 4 experienced a 39% and 70% 
increase in the average maximum pull-out 
loads at 30° and 60° respectively. As men-
tioned, the bending of the fibre was about 
its strong axis, as shown in Figure 3. If the 
fibre is considered as a beam subjected to 
flexural bending, bending the fibre about 
its strong axis requires a larger force than 
for bending it to the same rotation about 
the weak axis. This could subsequently lead 
to a larger friction over a constant area for 
strong axis bending as opposed to weak 
axis bending. In addition, strong axis bend-
ing is exerted over a smaller area, which 
is believed will lead to a larger frictional 
stress. As the increase in the snubbing 
angle causes an increase in the frictional 
force over a constant surface area, a larger 
increase in the overall pull-out load contri-
bution is believed to occur.

Fibre 5 experienced a 7% and 10% pull-
out load increase at 30° and 60°, respectively. 
This plateau can be attributed to the fibres 
rupturing when the tensile strength of the 
fibres is exceeded due to the additional 
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resisting force offered by the frictional 
snubbing resistance. This is confirmed 
by six of the eight fibres fracturing at the 
cement-matrix surface at the 60° snubbing 
angle. While the crimped Fibre 3 showed a 
25% increase at 60° snubbing angle, Fibre 1 
showed an increase of 11% at 60°. At 30°, 
Fibre 1 showed a decrease in pull-out load 
of 13% before increasing again at 60°. This is 
likely due to inconsistent orientation of the 

cross-sectional axis which the fibre was bent 
about. Overall, the flat fibres performed bet-
ter than the crimped fibres at the snubbing 
angles considered.

SEM photos of pulled out fibres
Scanning Electron Microscope (SEM) 
images were taken for each type of fibre to 
study the effect of friction during the pull-
out testing. Fibre 1 showed pronounced 

surface damage that can be attributed to its 
X-shaped cross section, hence enhancing 
bonding between the fibre and matrix. 
Fibre fracture of Fibre 1 appears to be a 
combination of clean breakage and tearing, 
as shown in Figure 15.

Fibre 3 shows severe fibre damage 
caused by the scraping of the cement 
matrix against the fibre during pull-out, 
as shown in Figure 16. Variable damage 
can be observed at different portions of 
the fibre. Significantly less damage at the 
cement matrix interface or surface can be 
observed as opposed to the images at the 
middle of the fibre and at the embedded 
ends. The increased damage is due to the 
embedded end having to travel further to 
exit the cement matrix, resulting in more 
scrapings. The fracture mode for Fibre 3 
appears to be fibre splitting.

Fibre 4, which showed the lowest aver-
age maximum pull-out load, also showed 
minimal surface damage, as shown in 
Figure 17. This is due to the flat geometry 
of the fibre.

Severe scrapings after pull-out were also 
observed for Fibre 5 as shown in Figure 18. 
However, the damage is more than 
observed for Fibre 4, indicating better bond 
than Fibre 4. This is also reflected by the 
average maximum pull-out load obtained 
in the single-fibre pull-out tests. Fibre 5 
also tends to fibrillate after pull-out.

CONCLUSIONS
The pull-out performance of four locally 
available synthetic macro fibres was deter-
mined using single-fibre pull-out tests. The 
effect of these fibres on the compressive 
strength was also tested. The following 
conclusions can be drawn from this study:

■■ Synthetic macro fibres do not contribute 
to the compressive strength of concrete.

■■ The pull-out performance of synthetic 
macro fibres in a single pull-out test is 
not a function of w/c.

■■ The fibre diameter does influence the 
average maximum pull-out load. Fibres 
with greater equivalent diameter show 
higher pull-out loads for the fibres test-
ed. More work is required to determine 
similar trends for other types of fibres.

■■ The average maximum pull-out load of 
synthetic macro fibres increases as the 
embedment length increases, while fibre 
geometry has a significant influence.

■■ The average maximum pull-out load of 
synthetic macro fibres is positively influ-
enced with an increase in the snubbing 
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angle, where in addition flat fibres per-
form better than crimped fibres.

■■ Fibre 1 performed optimally in terms 
of the average maximum pull-out load 
attained. This is due to its crimped sur-
face configuration and X-shaped cross 
section, which enhanced mechanical 
interlocking with the matrix.

■■ The Scanning Electron Microscope 
images of fibres taken after pull-out 
show that fibre geometry has an effect 
on the maximum pull-out load. The 
more irregular the fibre geometry, the 
more the frictional effect during pull-
out leading to higher pull-out load.
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