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INTRODUCTION
Highways were originally built with the aim 
of providing virtually unlimited mobility to 
road users. The ongoing dramatic expansion 
of car ownership and travel demand has, 
however, led to the situation where, today, 
traffic congestion is a significant problem in 
major metropolitan areas all over the world 
(Schranck et al 2012). The reason for the 
severe traffic congestion experienced around 
the world is over-utilisation of the existing 
road infrastructure which potentially leads 
to dense, stop-and-go traffic. Although traf-
fic congestion is typically associated with 
well-developed countries such as the United 
States, China or Germany, it is also a major 
problem in South Africa. According to the 
TomTom Traffic Index (TomTom 2017), a 
congestion ranking based on GPS data col-
lected from individual vehicles, Cape Town 
is the 48th most congested city in the world, 
and the most congested city in Africa. In 
order to place these statistics into perspec-
tive, Cape Town has the same congestion 
ranking as New York City according to the 
TomTom Traffic Index published at the 
end of 2016. The morning and afternoon 

peak congestion in Cape Town furthermore 
exceeds that experienced by commuters in 
New York City.

Traffic congestion levels in Cape Town 
have increased steadily since 2011, with 
a significant increase in congestion levels 
from 30% in 2015 to 35% in 2016 (TomTom 
2017). These percentages imply that a 
journey would have taken, on average, 35% 
longer in 2016 due to congestion than it 
would have taken if free-flowing traffic 
conditions had prevailed. During the morn-
ing and afternoon peaks, the levels of traffic 
congestion are naturally higher than these 
average values suggest. Travellers experience 
a 75% increase in travel time during the 
morning peak, while commuters experience 
a 67% increase in travel time during the 
afternoon peak. The result of these levels 
of traffic congestion is that the average 
Capetonian spends an additional 42 minutes 
stuck in traffic per day, which accumulate to 
approximately 163 hours stuck in traffic per 
year (TomTom 2017).

In Figure 1 it is shown that congestion 
levels in Johannesburg temporarily decreased 
from 2009 to 2012. This decrease may be 
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attributed to capacity expansion as a result of 
the Gauteng Freeway Improvement Project 
(SANRAL 2009). The subsequent rise in con-
gestion levels during the period 2012–2016, 
visible in the figure, may be attributed to the 
so-called theory of induced traffic demand, 
in which it is suggested that increases in 
highway capacity will induce additional traf-
fic demand, thus not permanently alleviating 
congestion as envisioned (Noland 2001). 
The alternative to capacity expansion aimed 
at improving traffic flow on highways is 
more effective control of the existing infra-
structure. Ramp metering (RM) is a means 
of improving highway traffic flow through 
effective regulation of the flow of vehicles 
that enter a highway traffic flow from an 
on-ramp. In this way, the mainline through-
put may be increased due to an avoidance 
of capacity loss and blockage of on-ramps 
as a result of congestion (Papageorgiou & 
Kotsialos 2000). Variable speed limits (VSLs) 
were initially employed mainly with the aim 
of improving traffic safety on highways due 
to the resulting homogenisation of traffic 
flow (Hegyi et al 2005). In more recent devel-
opments, however, VSLs have been employed 
as a traffic flow optimisation technique with 
the aim of improving traffic flow along high-
ways. This improvement may take one of two 
forms, either maintaining stable traffic flow 
by slightly reducing the speed limit in order 
to reduce the differences in speed between 
vehicles and reduce the following distance, 
resulting in improved traffic flow (Hegyi et 
al 2005), or by decreasing the speed limit to 
such an extent that an artificial bottleneck 
is created, inducing controlled congestion, 
but maintaining free-flow traffic at the true 
bottleneck location (Carlson et al 2010). RM 
and VSLs are considered to be effective high-
way traffic control measures (Papageorgiou & 

Kotsialos 2000). An empirical case is made in 
this paper for their adoption within a South 
African context. Traditionally, classical feed-
back control theory has been employed in the 
design of controllers for implementing RM 
and VSLs (Carlson et al 2014). One drawback 
of the classical feedback control approach 
is that it provides no guarantee of optimal 
control. Furthermore, feedback controllers 
are purely reactive, which may result in 
delayed response.

Reinforcement learning (RL) provides a 
promising framework addressing these issues. 
The objective in this paper is to compare, 
for the first time, the relative effectiveness of 
state-of-the-art feedback controllers from the 
literature with that of employing a decentral-
ised RL approach towards solving the RM 
and VSL problems simultaneously in the con-
text of a real-world scenario. Furthermore, 
this paper contains, to our best knowledge, 
the first application of multi-agent reinforce-
ment learning (MARL) approaches at several 
consecutive on-ramps contained within the 
same simulation model.

LITERATURE REVIEW
In this section a review of RM and VSL 
controllers from literature is provided, fol-
lowed by a brief introduction to RL.

Highway traffic control measures
Wattleworth (1967) introduced the first RM 
strategies, which were based on historical 
traffic demand at on-ramps, setting specific 
metering rates for certain time intervals in 
order to control the inflow of traffic onto 
the highway. In search of a more adaptive 
RM strategy, Papageorgiou et al (1991) 
introduced the well-known Asservissement 
Lineaire d’entrée Autoroutiere (ALINEA) 

control mechanism, which is based on 
online feedback control theory. An exten-
sion of the ALINEA control strategy, called 
PI-ALINEA, was later introduced by Wang 
et al (2014) such that bottlenecks occurring 
further downstream than the immediate 
lane merge may also be taken into account. 
Alternative existing RM solutions include 
a model predictive control (MPC) approach 
proposed by Hegyi et al (2005) and an imple-
mentation of a hierarchical control approach 
by Papamichail et al (2010). Early RM 
approaches, however, often led to the forma-
tion of long queues of vehicles building up 
on the on-ramp, which may cause conges-
tion in the arterial network. This issue was 
addressed by Smaragdis and Papageorgiou 
(2003) who designed an extension to be 
implemented in conjunction with a feedback 
controller (such as ALINEA) which, in cases 
of severe congestion, maintains a maximum 
on-ramp queue length set to some pre-
specified value. A second metering rate is 
calculated, ensuring the maximum allowable 
queue length is not exceeded, and the least 
restrictive metering rate is then applied 
(Smaragdis & Papageorgiou 2003).

An early attempt at employing RL to 
solve the RM problem with the aim of learn-
ing optimal control policies in an online 
manner is due to Davarjenad et al (2011). 
They employed the well-known Q-Learning 
RL algorithm (Watkins & Dayan 1992) in 
order to learn optimal metering rates within 
the context of a macroscopic traffic simula-
tion model developed in the well-known 
METANET traffic modelling software, 
while simultaneously considering the build-
up of on-ramp queues. Rezaee et al (2013) 
demonstrated the first application of RL for 
solving the RM problem in the context of 
a microscopic traffic simulation model, in 
which a portion of Highway 401 in Toronto, 
Canada was considered.

Smulders (1990) demonstrated one 
of the first applications of VSLs as an 
optimisation technique. In his formulation 
of the VSL control problem as an optimal 
control problem, which was based on a 
macroscopic traffic simulation model, the 
aim was to determine speed limits such that 
the expected time until traffic congestion 
occurs is maximised. Alessandri et al (1998, 
1999) later on extended and refined this 
original optimal control approach. Carlson 
et al (2011) subsequently proposed an online 
feedback controller. The controller receives 
real-time traffic flow and density measure-
ments as input, which are subsequently 
used to calculate appropriate speed limit 
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Figure 1 �Variation in traffic congestion levels in two major South African metropolitan areas, 
Cape Town and Johannesburg, during the period 2009–2016 (TomTom 2017)
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values with the aim of maintaining stable 
traffic flows that are close to pre-specified 
reference values. In this manner, increased 
throughput may be achieved for various sce-
narios of traffic demand. A simpler version 
of such an online feedback controller was 
later introduced by Müller et al (2015).

Zhu and Ukkusuri (2014), as well as 
Walraven et al (2016), have shown that 
the VSL problem may be solved using RL 
techniques. Zhu and Ukkusuri (2014) dem-
onstrated an application of the R-Markov 
Average Reward Technique (R-MART) RL 
algorithm for solving the VSL control prob-
lem within the context of a macroscopic 
link-based dynamic network loading model. 
Walraven et al (2016), on the other hand, 
employed Q-Learning in conjunction with 
a neural network for function. In both the 
studies mentioned above, the VSL problem 
was addressed within a macroscopic traffic 
modelling paradigm. This paradigm may, 
however, be limiting as it is often difficult 
to replicate some of the important, realistic 
characteristics of traffic flow, including 
shockwave propagation, or the spill-back 
effect which may occur due to heavy con-
gestion (Zhu & Ukkusuri 2014).

Carlson et al (2014) proposed an inte-
grated feedback controller for simultaneous-
ly performing both RM and enforcing VSLs. 
This controller comprises two individual 
feedback controllers. The RM controller 
operates according to the PI-ALINEA 
feedback controller with the addition of the 
queue limitation as defined by Smaragdis 
and Papageorgiou (2003). RM is then applied 
by itself until the on-ramp queue limit is 
reached, at which point a VSL controller, 
such as that of Carlson et al (2011) or Müller 
et al (2015), is employed in order to provide 
supplementary highway traffic flow control.

In the RL implementations for RM and 
VSLs mentioned above, the RL approaches 
were typically able to outperform the corre-
sponding feedback controllers (Rezaee et al 
2013; Walraven et al 2016). RL has, however, 
not been employed for solving the RM and 
VSL control problems simultaneously within 
the context of a real-world case study. It is 
envisioned that a MARL approach for simul-
taneously employing RM and VSLs may lead 
to further improvements in the travel times 
experienced by motorists. RL followed by 
its implementations in this paper, working 
towards the MARL approach, is outlined in 
the following sections.

Reinforcement learning
RL is the concept of learning an optimal con-
trol policy by trial and error (Sutton & Barto 
1998). A learning agent receives information 
about the current state of the environment 
in which it operates at each time step. This 
state of the environment is typically defined 
by one or a number of descriptive state vari-
ables. Based on this state information, the 
agent performs an action that subsequently 
transforms the environment in which it finds 
itself into a new state. An agent’s behaviour 
is defined by its policy, which is the mapping 
according to which the agent chooses its 
action based on the current state informa-
tion. The agent receives feedback in the form 
of a scalar reward so as to provide it with an 
indication of the quality of the action chosen. 
This reward is typically determined based on 
the new state of the environment, according 
to a specific reward function. The aim of 
an RL agent is to learn a policy according 
to which the accumulated reward that it 
receives over time is maximised (i.e. finding 
a policy that results in the agent choosing 
the best action in each state with respect to 

the long-term cumulative reward achieved) 
(Szepesvari 2010).

REINFORCEMENT LEARNING 
IMPLEMENTATIONS

Reinforcement learning for RM
Davarjenad et al (2011) and Rezaee et al 
(2013) demonstrated that RL techniques 
may be employed for solving the RM prob-
lem. RM is typically enforced by a traffic 
signal located at an on-ramp, employing 
a one-vehicle-per-green-phase metering 
protocol (Hegyi et al (2005). The traffic 
signal is thus given a fixed green phase time 
of three seconds, allowing a single vehicle to 
pass during every green phase, while the RL 
agent controls the red phase times, thereby 
regulating the flow of vehicles allowed to 
join the highway traffic flow. An RL agent is 
thus required to control the traffic light at 
each on-ramp where RM is enforced.

The state space
As may be seen in Figure 2, the state space 
of the RM agent comprises three variables. 
The first of these is the density ρds meas-
ured directly downstream of the on-ramp. 
It is expected that this variable will provide 
the agent with explicit feedback in respect of 
the quality of the previous action, because 
the merge of the on-ramp and highway 
traffic flows is expected to be the source of 
congestion. Therefore, the downstream den-
sity is expected to be the earliest indicator 
of impending congestion. The density ρus 
measured upstream of the on-ramp is the 
second state variable. The upstream density 
is included in the state space, because it 
provides information on the propagation of 
congestion backwards along the highway. 

ρus ρds

ω

Figure 2 The state space for the RM agents
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The on-ramp queue length w is the third 
state variable, which was included to provide 
the learning agent with an indication of the 
on-ramp demand.

The action space
Based on the current state of traffic flow on 
the highway, the learning agent may select 
a suitable action. In this study, direct action 
selection (i.e. directly choosing a red phase 
duration from a set of pre-specified red 
times) is applied. As in the implementation 
of Rezaee et al (2013), the agent may choose 
an action a ∈ {0, 2, 3, 4, 6, 8, 10, 13}, where 
each action represents a corresponding red 
phase duration in seconds. Assuming a 
fixed green phase duration of three seconds, 
as stated above, these red phase durations 
result in on-ramp flows of qOR ∈ {1650, 720, 
600, 514, 400, 327, 277, 225} vehicles per 
hour, given sufficient on-ramp demand.

The reward function
When designing a traffic control system, 
the typical objective is to minimise the total 
travel time spent in the system by all trans-
portation users. From the fundamental the-
ory of traffic flow it follows that maximum 
throughput occurs at the critical density of 
a specific highway section (Papageorgiou & 
Kotsialos 2000). Therefore, an RM agent typi-
cally aims to control the density on the high-
way. This is the case in ALINEA, the most 
celebrated RM technique (Rezaee et al 2013). 
The reward function employed in this paper 
was inspired by the ALINEA control law. 
According to the ALINEA control strategy, 
the metering rate employed at an on-ramp is 

adjusted based on the difference between a 
desired downstream density and the meas-
ured downstream density (Papageorgiou et 
al 1991). Furthermore, an additional punish-
ment is included in the reward function to 
refrain the agent from enforcing metering 
rates which lead to the build-up of long 
on-ramp queues. The reward of the RM RL 
agents is therefore calculated as:

r(t) = ⎧
⎨
⎩

–(ρ* – ρds(t))2

–(ρ* – ρds(t))2 – 100 000
 

if w < w*
if w ≥ w*

� (1)

where ρ* denotes the desired downstream 
density that the RL agent aims to achieve, 
while ρds(t) denotes the actual downstream 
density measured during the last control 
interval, t, w denotes the current measured 
on-ramp queue length, and w* denotes the 
maximum allowable on-ramp queue length. 
In order to provide amplified negative feed-
back to the agent for actions that result in 
large deviations from the target density, this 
difference is squared. Both the Q-Learning 
(Watkins & Dayan 1992) and kNN-TD 
learning (Martin et al 2011) algorithms are 
implemented for RM in this paper.

Reinforcement learning for VSLs
Zhu and Ukkusuri (2014) and Walraven 
et al (2016) have demonstrated formula-
tions of the VSL problem as RL problems, 
and subsequently solved these using RL 
algorithms. We apply VSLs in the vicin-
ity of each of the on-ramps. The VSLs 
determined by the RL agent are typically 
enforced by displaying the current speed 
limit on a roadside variable message sign.

The state space
Similarly to the RM implementations, the 
state space for the VSL implementations 
comprises three variables, as shown in 
Figure 3. The first of these state variables 
is, as for the RM implementations, the 
density ρds directly downstream of the on-
ramp. This variable is again chosen so as 
to provide the VSL agent with information 
on the state of traffic flow at the bottleneck 
location. The density directly upstream 
of the bottleneck location, denoted by 
ρapp, is the second state variable. This is 
the key focus area where a VSL is applied. 
It is expected that the most immediate 
response to an action will be reflected on 
this section of a highway. Therefore, this 
variable should provide the agent with an 
indication of the effectiveness of the chosen 
action. Finally, the third state variable 
is the density measured on the highway 
section further upstream from that com-
prising the area considered for the second 
state variable, denoted by ρus. This variable 
is chosen primarily to provide a predictive 
component in terms of highway demand. 
Furthermore, this variable is expected to 
provide the agent with an indication of the 
severity of the congestion in cases where 
it has spilled back beyond the application 
area of ρapp.

The action space
Similarly to the RM implementation, direct 
action selection is employed in the VSL 
implementation. We applied the VSL:

VSLapp = 90 + 10a� (2)

Figure 3 The state space for the VSL agents

ρus ρapp ρds

VSLus VSLapp 120
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where a ∈ {0,1,2,3} applies. As a result, 
minimum and maximum variable speed 
limits of 90 km/h and 120 km/h respective-
ly may be applied at the application area. 
The lower limit, as well as the increment 
of 10 km/h, was empirically determined to 
achieve the best performance. In order to 
reduce the difference in speed limit from 
120 km/h to VSLapp, the speed limit at the 
upstream section is adjusted according to:

VSLus = max[(VSLapp + δ), 120]� (3)

It is envisioned that this more gradual reduc-
tion in the speed limit will reduce the prob-
ability of shock-waves which may be a result 
of sharp, sudden reductions in the speed limit 
propagating backwards along the highway.

The reward function
The VSL agent also aims to minimise the 
total time spent in the system by all trans-
portation users, by maximising the system 
throughput. Therefore, the VSL agent is 
rewarded according to the flow rate out of 
the bottleneck location, measured in veh/h. 
Similarly to the RM implementations, 
Q-Learning (Watkins & Dayan 1992) and 
kNN-TD learning (Martin et al 2011) are 
implemented for VSLs.

Multi-agent reinforcement learning 
for combined RM and VSLs
We also consider three approaches towards 
simultaneously solving the RM and VSL 
problems by means of multi-agent reinforce-
ment learning (MARL) (Busoniu et al 2008). 
Employing independent learners (El Tantaway 
et al 2013) is the first and the simplest of 
these approaches, where both the RM and 
VSL agents learn independently, without any 
form of communication between them, as 
they both aim simply to maximise their own, 
local rewards. In the second approach, hence-
forth referred to as the hierarchical MARL 
approach, a hierarchy of learning agents is 
established. Action selection is performed 
according to the order in this hierarchy (i.e. 
the agent assigned the highest rank may 
choose first, followed by the second-highest 
ranked agent, and so forth) (Busoniu et al 
2008). Once the highest ranked agent has 
chosen its action, this action is communi-
cated to the second-highest ranked agent. The 
second-highest ranked agent can then take 
this action into account and select its own 
action accordingly. As a result of this commu-
nication, the state-action space of the second 
agent grows by a factor equal to the number 
of actions available to the first agent. These 

rankings may be determined empirically, or 
in the order of performance of the individual 
agents. The maximax MARL approach, 
which is the third and most sophisticated 
MARL approach, is based on the principle of 
locality of interaction among agents (Nair et 
al 2005). According to this principle, an esti-
mate of the utility of a local neighbourhood 
maps the effect of an agent’s actions to the 
global value function (only the neighbouring 
agents are considered) (El Tantawy et al 2013). 
The implementation works as follows:
1.	 Each agent i chooses an action which 

is subsequently communicated to its 
neighbouring agent j.

2.	 Each agent i finds an action ai
(t+1) that 

maximises the joint gain in rewards.
3.	 This joint gain is calculated for each 

agent i as if it were the only agent 
allowed to change its action, while its 
neighbour’s action remains unchanged.

4.	 The agent able to achieve the largest joint 
gain changes its action, while the action 
of the neighbour remains unchanged. 
The process is repeated from Step 2 until 
no action by either agent results in an 
increase in the joint gain.

5.	 The entire process is repeated during 
each learning iteration.

Due to this two-way communication, the 
state-action space of each agent increases by 
a factor equal to the number of actions avail-
able to its neighbour in the maximax MARL 
approach. The following section is devoted to 
a discussion of the highway traffic simulation 
model in which these control measures and 
algorithms were implemented.

THE MICROSCOPIC TRAFFIC 
SIMULATION MODEL
In this section, a description of the micro-
scopic traffic simulation model, which 
is used as the algorithmic test bed, is 
provided, illustrating the modelling tools 
employed, as well as the model calibration 
based on input data, and the techniques for 
analysis of the output data.

Modelling tools employed 
and case study area
A simulation model was developed as 
algorithmic test bed within the AnyLogic 
7.3.5 University Edition (AnyLogic 2017) 
software suite, making specific use of its 
built-in Road Traffic and Process Modelling 
Libraries. The road traffic library allows for 
microscopic traffic modelling, where each 
vehicle is simulated individually.

The highway section modelled is a stretch 
of the N1 national highway outbound from 
Cape Town in South Africa’s Western Cape 
Province, from just before the R300 off-ramp 
(denoted by O1) up to a section after the 
on-ramp at the Okavango Road interchange 
(denoted by D3), as shown in Figure 4. Five 
on- and off-ramps fall within this study 
area, namely the off-ramp at the R300 inter-
change (denoted by D1), the on-ramp at the 
Brackenfell Boulevard interchange (denoted 
by O3), the off-ramp at the Okavango Road 
interchange (denoted by D2), and the on-ramp 
at the Okavango Road interchange (denoted 
by O4). This stretch of highway experiences 
significant congestion problems, especially 
during the afternoon peak, when large traffic 

Figure 4 �The stretch of highway considered in this paper, indicating the locations of the 
Wavetronix® smart sensor devices, as well as a CCTV camera
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volumes enter the N1 from the R300 and 
leave the N1 at the Okavango Road off-ramp.

Model input data
Model input data was required for 
calibration and validation of the simulation 
model. This data was obtained from two 
major sources. The primary sources were 
Wavetronix® (Wavetronix 2017) smart sen-
sor devices installed at various locations 
along the major highways throughout the 
study area, as may be seen in Figure 4. Such 
a sensor employs two radar beams in order 
to detect individual vehicles as they pass the 
sensor. Vehicles are classified by the sensor 
into three major classes, based on their 
respective lengths (Committee of Transport 
Officials 2013). These classes are (1) pas-
senger vehicles, (2) light delivery vehicles 
and (3) trucks. The secondary sources of 
vehicle demand data were video recordings 
from a CCTV camera installed at a major 
intersection. The CCTV footage was used 
to estimate on- and off-ramp flows at inter-
sections in cases where these flows could 
not be derived from the sensor data. These 
flows were estimated by human interpreta-
tion with data tagging. The sensor data was 
aggregated into 10-minute intervals, provid-
ing numeric values for vehicle class counts, 
as well as average vehicle speed data for each 
10-minute interval. The sensor data was 
received for the entire month of March 2017, 
while video recordings of the afternoon 
peak from 15:30 to 18:30 were received for 
the first three Fridays of March 2017.

General specifications of 
the simulation model
In the simulation model, vehicle arrivals 
follow a Poisson distribution with an input 
mean equal to a predetermined desired traf-
fic volume (measured in veh/h), based on the 
real-world volumes. It was found that traffic 

demand could be replicated accurately when 
these desired traffic volumes are adjusted in 
the simulation model in 30-minute intervals.

As part of the calibration of the simulation 
model, the vehicle properties were adjusted, as 
these parameters have an influence on vehicle 
behaviour which, in turn, affects the vehicle 
throughput. Passenger vehicle lengths were 
fixed at 5 m, while light delivery vehicles were 
taken as 10 m, and trucks were assumed to 
be 15 m in length. These vehicle lengths are 
in line with the data collection standards set 
out in the Committee of Transport Officials 
(2013). The initial speeds for passenger 
vehicles entering the network at O1 and O2 
were set to 100 km/h, while the correspond-
ing initial speeds at O3 and O4 were set to 
60 km/h. Similarly, light delivery vehicles 
entering the network at O1 or O2 were 
assumed to have an initial speed of 100 km/h, 
while light delivery vehicles entering the 
network at O3 or O4 were given an initial 
speed of 60 km/h. Finally, the initial speed of 
trucks entering the network at O1 or O2 was 
taken as 80 km/h, with trucks entering the 
network at a speed of 60 km/h at O3 and O4. 
In order to account for different driving styles 
and variation in driver aggressiveness, the 
preferred speeds of passenger vehicles were 
distributed uniformly between 110 km/h and 
130 km/h, while the preferred speeds of light 
delivery vehicles were uniformly distributed 
between 90 km/h and 110 km/h. Finally, the 
preferred speeds of trucks were distributed 
uniformly between 70 km/h and 90 km/h. 
The maximum acceleration and deceleration 
values for passenger vehicles were taken as 
2.7 m/s2 and –4.4 m/s2, respectively. For 
light delivery vehicles these values were set 
to 1.5 m/s2 and –3.1 m/s2, respectively, while 
for trucks these values were set at 1.5 m/s2 
and –2.8 m/‌s2, respectively. Throughout the 
process of adjusting these values empirically, 
care was taken to stay within the reasonable 

bounds of 1.5 m/s2 to 4 m/s2 for the maxi-
mum acceleration and –1 m/s2 to –6 m/s2 for 
the maximum deceleration, respectively, as 
suggested by Amirjamshidi and Roorda (2017) 
in their multi-objective approach to traffic 
microsimulation model calibration.

Model validation
The simulation model was executed for 
validation purposes over a period of three 
hours and forty minutes, so as to include a 
40-minute warm-up period, before starting 
to record vehicle counts over the subsequent 
three hours. The length of the warm-up 
period was determined according to the 
method outlined by Law and Kelton (2000), 
ensuring that a stable number of vehicles is 
present in the simulation model before data 
recording commences. This process was 
replicated thirty times with different seed 
values. The measured outputs at the sensor 
locations were then compared with the 
real-world values of the corresponding time 
period from 15:30 to 18:30. The results of 
this comparison are shown in Figure 5.

As may be seen in Figure 5, the simu-
lated outputs, indicated in red, resemble the 
real-world measurements, indicated in blue. 
Note that neither the measured data nor 
the simulated output resembles the classical 
fundamental diagram. This may be due 
to the fact that only data from a specific, 
congestion-plagued period of time is shown. 
Based on the central limit theorem, one may 
assume that this data is normally distributed 
due to the large number of recorded values. 
Hypothesis tests were performed in order to 
ensure that the means of the simulated out-
put and the real-world values do not differ 
statistically at a 5% level of significance.

Furthermore, the average output results 
of these thirty replications were compared 
against the real-world measurements for 
all sensor and estimated locations from the 
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first three Fridays of March 2017, and the 
absolute errors were recorded, as shown 
in Tables 1 and 2. As may be seen in the 
tables, the errors in respect of the flow 
of passenger vehicles, abbreviated in the 
tables as PV, never exceeded 2% during 

the simulated three-hour period. In terms 
of the light delivery vehicles, abbreviated 
in the tables as LDV, the maximum error 
during the three simulation hours rose 
to 4.90%. The reason for this is that the 
number of light delivery vehicles travelling 

through the system was significantly 
smaller than that of passenger vehicles, 
resulting in the phenomenon where even 
a small deviation in terms of the number 
of vehicles is reflected as a relatively large 
error when expressed as a percentage. 

Table 1 Validation of simulated traffic flow at Sensors 1 and 2 as well as the Brackenfell Boulevard on-ramp

Time 
period

Sensor 1 Sensor 2 Brackenfell Boulevard

PV LDV T PV LDV T PV LDV T

15:30–15:40 2.01% 8.86% 1.37% 4.52% 22.08% 31.90% 12.54% 43.33% 26.67%

15:40–15:50 3.48% 2.83% 16.79% 1.36% 17.33% 8.13% 3.87% 3.33% 11.67%

15:50–16:00 1.57% 1.30% 0.95% 0.04% 0.77% 2.27% 3.42% 8.33% 5.56%

16:00–16:10 0.37% 3.01% 5.47% 0.01% 4.93% 0.61% 1.99% 15.41% 27.78%

16:10–16:20 0.69% 0.01% 3.78% 1.27% 3.87% 5.97% 1.63% 9.26% 15.83%

16:20-16:30 1.27% 1.25% 4.15% 1.71% 6.61% 3.39% 1.37% 2.67% 7.33%

16:30–16:40 0.36% 2.03% 3.26% 1.50% 6.29% 0.14% 1.94% 6.94% 8.33%

16:40–16:50 0.21% 0.78% 0.12% 1.24% 2.34% 2.66% 1.98% 9.05% 4.29%

16:50–17:00 0.14% 0.13% 0.68% 0.51% 4.11% 0.64% 1.16% 4.89% 0.42%

17:00–17:10 0.49% 0.80% 0.82% 0.25% 7.16% 0.10% 0.18% 7.29% 7.67%

17:10–17:20 0.60% 0.44% 0.67% 0.11% 5.28% 0.59% 0.09% 9.01% 1.21%

17:20–17:30 1.28% 0.23% 1.24% 0.12% 6.12% 1.60% 0.09% 5.09% 2.22%

17:30–17:40 1.31% 0.25% 2.76% 0.50% 4.17% 1.77% 1.22% 4.90% 3.06%

17:40–17:50 0.80% 1.01% 2.84% 0.40% 3.07% 1.16% 1.56% 4.90% 3.06%

17:50–18:00 0.78% 0.40% 1.10% 0.65% 2.89% 2.83% 1.29% 4.90% 3.06%

18:00–18:10 0.65% 0.04% 1.13% 0.58% 1.74% 2.70% 1.30% 4.90% 3.08%

18:10–18:20 0.52% 0.31% 0.52% 1.03% 3.85% 1.67% 1.49% 4.90% 1.28%

18:20–18:30 0.33% 0.66% 2.05% 1.15% 2.29% 2.81% 1.68% 4.90% 1.03%

Total     0.24%     1.23%     1.54%

Table 2	 Validation of simulated traffic flow at the Okavango Road off-ramp, on the N1 after the Okavango Road off-ramp and at Sensor 3

Time 
period

Okavango Road off-ramp N1 after Okavango Road off-ramp Sensor 3

PV LDV T PV LDV T PV LDV T

15:30–15:40 11.78% 40.41% 30.67% 13.88% 4.28% 18.75% 13.43% 0.39% 10.26%

15:40–15:50 14.50% 41.78% 32.33% 10.60% 4.44% 13.98% 8.72% 6.90% 1.17%

15:50–16:00 10.29% 36.98% 24.76% 8.12% 0.76% 11.74% 7.57% 5.07% 2.85%

16:00–16:10 7.16% 31.48% 17.45% 7.46% 1.00% 12.06% 7.00% 9.86% 0.41%

16:10–16:20 5.42% 24.38% 11.33% 7.30% 0.28% 8.86% 6.69% 4.36% 4.40%

16:20–16:30 5.01% 15.04% 8.84% 7.40% 3.23% 7.94% 6.51% 2.99% 2.88%

16:30–16:40 5.38% 17.14% 11.31% 3.54% 6.48% 6.45% 4.92% 4.97% 1.75%

16:40–16:50 5.09% 18.15% 13.33% 3.06% 7.89% 8.47% 3.14% 5.07% 0.56%

16:50–17:00 3.62% 16.40% 10.67% 2.27% 5.73% 8.18% 1.84% 4.47% 0.70%

17:00–17:10 3.26% 13.27% 13.08% 1.73% 4.67% 5.73% 1.18% 3.10% 2.20%

17:10–17:20 2.05% 11.39% 10.68% 0.73% 2.97% 6.45% 0.45% 3.86% 1.74%

17:20–17:30 1.15% 9.37% 4.86% 0.97% 0.19% 5.65% 0.27% 2.86% 1.52%

17:30–17:40 1.07% 7.70% 5.36% 1.03% 2.50% 4.80% 0.13% 2.65% 1.00%

17:40–17:50 0.68% 6.81% 6.90% 0.40% 0.84% 3.48% 0.53% 2.95% 0.68%

17:50–18:00 0.18% 7.78% 8.91% 0.57% 0.14% 2.74% 0.24% 3.05% 0.05%

18:00–18:10 0.05% 5.15% 9.55% 0.49% 1.54% 2.23% 0.28% 2.06% 0.24%

18:10–18:20 0.24% 3.59% 7.58% 0.34% 0.13% 1.97% 0.86% 1.88% 1.20%

18:20–18:30 0.20% 3.25% 2.86% 0.90% 2.97% 0.36% 1.48% 1.68% 1.04%

Total     0.44%     0.71%     1.47%
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Finally, the largest error during the simu-
lated three-hour period in terms of trucks 
travelling through the system, abbreviated 
in the tables as T, was 2.86%. As in the case 
of light delivery vehicles, however, relatively 
few trucks travelled through the system, 
and as a result a small error in terms of 
number is reflected as a relatively large 
error when expressed as a percentage. Due 
to the fact that the total error in respect of 
the number of vehicles that passed any of 
the six counting stations never exceeded 
2%, the simulation model was deemed to be 
a sufficiently accurate representation of the 
underlying real-world system.

Model output data
The relative performances of the RL 
algorithms are measured according to the 
following performance measures (all meas-
ured in vehicle hours):
1.	 The total time spent in the system by all 

vehicles (TTS)
2.	 The total time spent in the system by 

vehicles entering the system from the N1 
(TTSN1)

3.	 The total time spent in the system by 
vehicles entering the system from the 
R300 (TTSR300)

4.	 The total time spent in the system 
by vehicles entering the system from 
the Brackenfell Boulevard on-ramp 
(TTSBB), and

5.	 The total time spent in the system by 
vehicles entering the system from the 
Okavango Road on-ramp (TTSO).

The reason for breaking the TTS perfor-
mance measure indicator down into the 
four further performance measures is that 
increases in the travel times of vehicles 
joining the highway from on-ramps at 
which RM is applied may not be captured 
sufficiently if only a single TTS perfor-
mance measure were to be adopted. Now 
that the data inputs and outputs have been 
outlined, the focus of the discussion shifts 
to the calibration and validation of the 
simulation model.

NUMERICAL EXPERIMENTATION
The process followed throughout the 
numerical results evaluation is as fol-
lows. An Analysis of Variance (ANOVA) 
(Montgomery & Runger 2011) is per-
formed in order to ascertain whether the 
simulation outputs from the different 
implementations differ statistically. 
Thereafter, Levene’s Test (Schultz 1985) is 
performed in order to determine whether 

the variances of the output data sets are 
homogenous or not. If these variances 
are in fact homogenous, the Fischer LSD 
(Williams & Abdi 2010) post hoc test is 
employed in order to determine between 
which pairs of algorithmic output the 
differences occur. If, however, these vari-
ances are not homogenous, the Games-
Howell (Games & Howell 1976) post hoc 
test is performed for this purpose.

Ramp metering
RM may be applied at all three on-ramps of 
the stretch of the N1 highway in Figure 4, 
namely the R300 on-ramp at O2, the 
Brackenfell Boulevard on-ramp at O3 and 
the Okavango Road on-ramp at O4, as may 
be seen in Figure 6. As a benchmark for 
measuring the relative algorithmic perfor-
mances in respect of RM, the ALINEA RM 
control strategy, which is often hailed as the 
benchmark RM control strategy (Rezaee et 
al 2013), is also implemented. In ALINEA, 
the metering rate is adjusted based on the 
difference in measured and target densities 
directly downstream of the on-ramp. In the 
ALINEA control law, a metering rate

r(t) = r(t – 1) + Kr[ρ* – ρds(t)]� (4)

measured in veh/h is assumed, where ρ* 
denotes the target density and ρds(t) denotes 
the measured downstream density during 
time period t. Furthermore, PI-ALINEA is 
also implemented for additional comparative 
purposes. The metering rate to be applied 
following the PI-ALINEA control rule is

r(t) = �r(t – 1) + Kp[ρds(t) – ρds(t – 1)]  
+ Kr[ρ* – ρds(t)]� (5)

Finally the metering rate, taking into 
account the on-ramp queue consideration 
limit, may be calculated as

r’(t) = – 
1

T
 [w* – w(t)] + d(t – 1),� (6)

where T denotes the length of each control 
interval t, w(t) denotes the measured on-
ramp queue length, w* denotes the maxi-
mum allowable on-ramp queue length, and 
d(t – 1) denotes the on-ramp demand during 
the previous time period t – 1. The final 
metering rate to be applied is then given by

r’’(t) = max[r(t), r’(t)]� (7)

for both ALINEA and PI-ALINEA. The red 
phase time to be applied in the microscopic 
traffic simulation model is then determined 
from the metering rate as

R(t) = max 
⎡
⎢
⎣
0, 

⎧
⎪
⎩

3600

r’’(t)
⎧
⎪
⎩
 – G(t)

⎡
⎢
⎣
,� (8)

where G(t) denotes the fixed green phase 
duration applied at the on-ramp.

We consider five cases in which only 
RM is applied. In the first case, to serve as 
a benchmark, no control is applied, while in 
the second case, RM is enforced according 
to the modified ALINEA control law in (4). 
In the third case, the PI-ALINEA control 
law is adopted, while Q-Learning agents are 

Figure 6 �The locations at which RM is applied (denoted by traffic lights) and where VSLs are 
applied (indicated by the speed limit signs)
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employed to control the RM in the fourth 
case, and kNN-TD learning agents are 
employed for this purpose in the fifth case.

The R300 RM agent receives information 
on the downstream density ρds at the sec-
tion of highway directly downstream of the 
on-ramp where vehicles joining the highway 
from the on-ramp enter the highway traffic 
flow. The upstream density ρus is measured 
on the section of highway between the R300 
off-ramp at D1 and the R300 on-ramp at O2, 
while the queue length w is the number of 
vehicles present in the R300 on-ramp queue.

The downstream density for the 
Brackenfell Boulevard RM agent is again 
measured at the section directly down-
stream of the on-ramp where the traffic 
flows from the on-ramp and the highway 
merge. The upstream density is measured on 
the section of highway between the R300 on-
ramp at O2 and the Brackenfell Boulevard 
on-ramp at O3. Finally, the queue length is 
again the number of vehicles present in the 
on-ramp queue.

Similarly, for the Okavango Road RM 
agent, the downstream density is measured at 
the section where the on-ramp and highway 
traffic flows merge, while the upstream den-
sity is measured on the section of highway 
between the Okavango Road off-ramp at 
D2 and the Okavango Road on-ramp at O4. 
Finally, as was the case for both the other 

RM agents, the queue length is the number of 
vehicles present in the on-ramp queue.

An empirical parameter evaluation was 
performed to find the best-performing com-
bination of on-ramps at which to employ RM 
in the case study area, as well as to determine 
the best-performing target densities for the 
RM agents at each on-ramp. In the case 
of ALINEA, PI-ALINEA and Q-Learning, 
having only one RM agent at the Okavango 
Road on-ramp, with a target density of 
31.2 veh/‌km, 28.8 veh/‌km and 31.6 veh/km 
respectively, yielded the best performance. 
Furthermore, setting the value of KR in (4) 
to 40 yielded the most favourable results 
for ALINEA. The controller parameters Kp 
and Kr in the PI-ALINEA implementation 
were set to 60 and 40 respectively, as these 
values yielded the best performance. For 
kNN-TD RM, having an RM agent at both 
the R300 on-ramp and the Okavango Road 

on-ramp, with target densities of 28.0 veh/‌km 
and 35.5 veh/km respectively, resulted in 
the best performance. Finally, the maximum 
allowable queue length was set to 50 vehicles 
at each of the on-ramps. A more detailed pre-
sentation of the parameter evaluations and 
algorithmic implementations may be found 
in Schmidt-Dumont (2018).

Summaries of the performances of the 
resulting algorithmic implementations 
are provided in Figure 7 and Table 3. The 
values of the aforementioned performance 
measures were calculated as the average 
values recorded after 30 independent 
simulation runs with varying seeds. For 
the purpose of comparison, however, the 
same 30 seed values were employed in each 
of the cases employing different RM agents.

As may be seen in Table 3, all the RM 
implementations are able to improve on 
the no-control case in respect of the TTS. 

Table 3 Algorithmic performance results for RM

PMI
Algorithm

No control ALINEA PI-ALINEA Q-Learning kNN-TD

TTS 1 960.01 98.37% 94.45% 93.00% 89.30%

TTSN1 844.11 106.99% 110.21% 107.12% 72.81%

TTSR300 992.19 93.19% 81.79% 82.99% 106.44%

TTSBB 69.71 96.56% 104.30% 105.52% 87.16%

TTSO 14.00 228.64% 255.57% 148.57% 125.86%

Figure 7 �Performance measure indicator results for the no-control case (NC), the ALINEA and PI-ALINEA control strategies, Q-Learning (Q-L) and the 
kNN-TD learning algorithm in the case of RM
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Interestingly, kNN-TD RM is the only imple-
mentation that resulted in a reduction of the 
TTSN1. This may be explained by the fact 
that the highway flow is more protected as 
a result of RM at two of the three on-ramps, 
while vehicles experience congestion at the 
R300 on-ramp in all other implementations. 
As may have been expected, kNN-TD RM 
resulted in an increase in the TTSR300, as 
the flow of vehicles from the R300 is metered 
only in the kNN-TD RM implementation. 
The expected increases in the TTSO, due 
to RM at the Okavango Road on-ramp, are 
reflected by all RM implementations. Seeing 
that kNN-TD RM achieved the largest reduc-
tion in the TTS, it is considered to be the 
best-performing RM implementation.

Variable speed limits
VSL agents are implemented at each of the 
three interchanges in the case study area, 
as shown in Figure 6. As may be seen in the 
figure, two VSLs, namely VSLR1

 and VSLR, 
are applied before the bottleneck at the 
R300 on-ramp. VSLR1

 (which corresponds to 
VSLus in Figure 3) is applied from the start 
of the simulated area at O1 up to directly 
after the R300 off-ramp, which leads to D1. 
Thereafter, VSLR (which corresponds to 
VSLapp in Figure 3) is applied until the R300 
on-ramp. As there is only a single, relatively 
short section of highway between the R300 
on-ramp and the Brackenfell Boulevard 
on-ramp, only a single VSL, namely VSLB 
(which also corresponds to VSLapp in 
Figure 3), is applied on this section ahead of 

the expected bottleneck at the Brackenfell 
Boulevard on-ramp. This agent does, 
however, still receive information about 
the upstream density, measured on the 
section before the R300 on-ramp. After the 
Brackenfell Boulevard on-ramp, the first of 
the VSLs corresponding to the agent located 
at the Okavango Road on-ramp, namely 
VSLO1

 (which again corresponds to VSLus 
in Figure 3), is applied. This speed limit is 
enforced until directly after the Okavango 
Road off-ramp which leads to D2. After the 
off-ramp at the Okavango Road interchange, 
VSLO (which corresponds to VSLapp in 
Figure 3) is applied up to the section directly 
after the Okavango Road on-ramp, at which 
point the normal speed limit of 120 km/h 
is restored.

Similarly to the RM implementations, a 
feedback controller was implemented as a 
performance benchmark for the RL imple-
mentations. The chosen feedback controller 
is the so-called mainline traffic flow control-
ler (MTFC) by Müller et al (2015). The 
control structure of this controller is similar 
to that of ALINEA, as a VSL metering rate

b(t) = b(t – 1) + KI[ρ* – ρds(t)]� (9)

is assumed, where KI denotes the controller 
parameter, and ρ* and ρds again denote the 
target and measured downstream density, 
respectively. The VSL to be applied at the 
section VSLapp in Figure 3 is then given by

VSL = 20 + 100b(t)� (10)

rounded to the nearest 10 km/h, resulting 
in speed limits

VSL ∈ �{20, 30, 40, 50, 60, 70, 80, 90, 100, 
110, 120}.

As for the RM implementations, a para
meter evaluation was performed for VSLs 
in order to determine the best-performing 
combination of VSL agents in the case study 
area, as well as the best-performing KI-value 
in (9) and δ-value in (3) for updating VSLR1

 
and VSLO1

 respectively. This parameter 
evaluation revealed that the best perfor-
mance is achieved with an MTFC controller 
at the Okavango Road interchange with 
a KI-value set to 0.005 and target density 
set to 37 veh/km. The best performance 
for Q-Learning was achieved having a 
VSL agent at the R300 interchange with 
δ = 10, and a VSL agent at the Brackenfell 
Boulevard interchange. For kNN-TD VSL 
the best performance is achieved for a VSL 
agent with δ = 20 at the R300 interchange, 
and a VSL agent at the Okavango Road 
interchange with δ = 10. Summaries of the 
resulting algorithmic performances are 
provided in Figure 8 and Table 4.

As may be seen in the Table 4, all three 
VSL implementations were able to achieve 
reductions in the TTS. In the case of the 
RL implementations, these reductions are 
a result of reduced travel times for vehicles 
travelling along the N1 and entering the N1 
from the R300 on-ramp. This may have been 
expected as these are the vehicles that spend 

Figure 8 �Performance measure indicator results for the no-control case (NC), the MTFC control strategy, Q-Learning (Q-L) and the kNN-TD algorithm 
in the case of VSLs
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the longest time on the N1, where VSLs 
have the largest effect. The reduction in the 
TTSR300 furthermore suggests that effective 
applications of VSLs may improve the process 
whereby vehicles from the R300 join the N1 
highway. Finally, the reduced variances, as 
may be seen in Figure 8(b), suggest that there 
may be successful homogenisation of traffic 
flow on the N1 due to VSLs. The improve-
ments in respect of the MTFC controller were 
achieved mainly by those vehicles joining the 
N1 from the R300, as these vehicles experi-
enced the benefit of VSLs at the Okavango 
Road interchange, while the effectiveness for 
vehicles travelling along the N1 only was lim-
ited, due to these vehicles still experiencing 
congestion at the R300 on-ramp merge.

MARL for RM and VSLs
As a benchmark for the MARL implementa-
tions, the integrated feedback controller of 

Carlson et al (2014) is implemented. RM 
occurs according to the PI-ALINEA control 
law with the addition of a queue limit as in 
(5), while the MTFC controller of Müller et 
al (2015) is employed for the control of VSLs. 
Due to the finding that both PI-ALINEA and 
MTFC were most effective at the Okavango 
Road interchange, only one integrated con-
troller is implemented at this interchange.

Due to the fact that the kNN-TD 
learning algorithm achieved the largest 
reductions in the TTS in both the single 
agent implementations, only the kNN-TD 
algorithm is implemented in the three 
MARL approaches. For both the RM and 
VSL implementations, the best results were 
achieved by having two RM or VSL kNN-
TD RL agents in the case study area. The 
first of these is at the R300 interchange, 
while the second is at the Okavango Road 
interchange. As a result, only these two 

locations are considered for the MARL 
implementations. The first MARL 
implementation corresponds to the R300 
interchange and consists of the ramp meter 
placed at the R300 on-ramp, denoted by O2, 
and the speed limits VSLR and VSLR1

. The 
target density of the agents in this MARL 
implementation is set to 28 veh/km, which 
was determined to be the best-performing 
target density in the RM parameter evalua-
tion at the R300 on-ramp. VSLR is updated 
with δ = 20, which was found to yield the 
best results in the VSL parameter evaluation 
conducted for VSLs at the R300 interchange.

The second MARL implementation 
controls the ramp meter placed at the 
Okavango Road on-ramp, denoted by O4, 
and the speed limits VSLO and VSLO1

. 
The target density of the agents in the 
second MARL implementation is set to 
35.5 veh/km, which was determined to be 
the best-performing target density in the 
RM parameter evaluation. Finally, VSLO1

 
is updated with δ  = 10, which was found 
to yield the best performance in the VSL 
parameter evaluation. Summaries of the 
results achieved by the MARL implementa-
tions are provided in Figure 9 and Table 5.

As may be seen in Table 5, employ-
ing MARL in order to solve the RM and 
VSL problems simultaneously may lead 
to further reductions in respect of the 

Table 4 Algorithmic performance results for VSLs

PMI
Algorithm 

No control MTFC Q-Learning kNN-TD

TTS 1 960.01 95.09% 93.55% 93.92%

TTSN1 844.11 111.58% 97.04% 103.91%

TTSR300 992.19 84.62% 93.99% 81.61%

TTSBB 69.71 96.30% 96.90% 100.63%

TTSO 14.00 102.50% 101.86% 102.57%

Figure 9 �Performance measure indicator results for the no-control case (NC), the integrated feedback controller (Feed.), independent MARL (Indep.), 
hierarchical MARL (Hier.) and maximax MARL (Maxi.)
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TTS, when compared with the single-
agent implementations. Furthermore, the 
combination of RM and VSLs may lead to 
improved homogenisation of traffic flow, 
as may be deduced from the smaller vari-
ances of the box plots corresponding to 
the MARL approaches in Figure 9. Finally, 
the MARL implementations were again 
able to outperform the integrated feedback 
controller, providing an illustration of the 
effectiveness of the MARL approach when 
compared with the current uncontrolled 
situation, as well as with the state-of-the-
art feedback controller.

CONCLUSIONS
The results obtained from the RM imple-
mentations demonstrate that RM may effec-
tively be employed to reduce the total travel 
time spent by vehicles in the system by up 
to 10.70% when compared with the no-
control case in the context of the case study. 
Furthermore, the RL approaches to RM out-
performed ALINEA and PI-ALINEA, which 
achieved reductions of only 1.63% and 5.55% 
respectively. Furthermore, kNN-TD learning 
was able to find the best trade-off between 
balancing the length of the on-ramp queue 
and protecting the highway flow. kNN-TD 
RM was also the only implementation able 
to reduce the TTS when an RM agent is 
present at the R300 on-ramp.

Although they were not quite as effec-
tive as RM in reducing the TTS, the VSL 
implementations resulted in significant 
reductions in the TTS of 6.45% and 6.08% by 
Q-Learning and kNN-TD VSL respectively, 
while the MTFC controller achieved a 
reduction of 4.91% when compared with the 
no-control case. One reason for this may be 
homogenisation of traffic flow, as the traffic 
flow becomes more stable at lower speeds, 
while the results suggest that the process by 
which vehicles join the N1 from the R300 
on-ramp also occurs more smoothly if VSLs 
are employed in an effective manner.

Finally, employing a MARL approach 
to solving the RM and VSL problems 

simultaneously has shown that further 
reductions in the TTS are possible when 
these control measures are employed 
together, as independent MARL, hierarchi-
cal MARL and maximax MARL achieved 
reductions in the TTS of 10.13%, 12.70% 
and 10.39% respectively over the no-control 
case. The integrated feedback controller, on 
the other hand, was only capable of achiev-
ing an improvement of 3.36%. Notably, 
the hierarchical MARL and maximax 
MARL approaches were able to find the 
most effective balance between managing 
the on-ramp queue at the Okavango Road 
on-ramp and protecting the highway traf-
fic flow, as both of these implementations 
did not result in statistically significant 
increases in respect of the TTSO. Based on 
these results, we believe there is a strong 
case to be made in respect of considering 
the adoption of hierarchical MARL for 
RM and VSLs on South African highways 
within urban areas, as significant reduc-
tions in the travel times experienced by 
motorists may be expected.
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LIST OF ACRONYMS
	 ALINEA	 –	� Asservissement Lineaire 

d’entrée Autorotiere
	 ANOVA	 –	� Analysis of Variance
	 kNN-TD	 –	� k-Nearest Neighbour 

Temporal Difference
	 LDV	 –	� Light Delivery Vehicle
	 MARL	 –	� Multi-agent Reinforcement 

Learning
	 MPC	 –	� Model Predictive Control
	 MTFC	 –	� Mainline Traffic Flow Control
	 PV	 –	� Passenger Vehicle

	 RM	 –	� Ramp Metering
	R-MART	 –	� R-Markov Average Reward 

Technique
	 RL	 –	� Reinforcement Learning
	 TTS	 –	� Total Time Spent in the 

System by all Vehicles
	 TTSN1	 –	� Total Time Spent in the 

System by Vehicles entering 
from the N1

	TTSR300	 –	� Total Time Spent in the 
System by Vehicles entering 
from the R300

	 TTSBB	 –	� Total Time Spent in the 
System by Vehicles entering 
from Brackenfell Boulevard

	 TTSO	 –	� Total Time Spent in the 
System by Vehicles entering 
from Okavango Road

	 VSL	 –	� Variable Speed Limit
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