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INTRODUCTION
Landslides are considered one of the most 
destructive natural hazards in the world, 
accounting for approximately 9% of the 
natural disasters that occurred worldwide 
during the 1990s (Yilmaz 2009), caus-
ing large numbers of casualties and huge 
economic losses in the mountainous areas 
of the world (Dai et al 2002). Landslides 
are very common in northern Algeria, 

where they are triggered by a combination 
of several factors linked to the site geology, 
land morphology, hydrology and climate, as 
well as antropic activities (Bahar & Djerbal 
2016). Studies have revealed that several 
landslides occurred in many regions, such as 
Constantine (Benaissa et al 1989; Lafifi et al 
2009; Bougdal et al 2013), Medea (Medjnoun 
2014), and Kabylie (Machane et al 2009; 
Bouaziz & Melbouci 2015; Meziani et al 
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2018). Algiers is one of the cities affected by 
this geological hazard which causes severe 
damage to structures and infrastructure. 
After the independence of Algeria (in 
1962), rapid urbanisation took place, which 
extended to marginal lands southwest of 
the Sahel (coast) of Algiers once the areas 
became more favourable for construction. 
El-Achour, Daly-Brahim, Ouled-Fayet and 
Sidi-Abdellah are among the new urbanisa-
tion areas which are affected by landslides.

The superficial or deep instability pro-
cesses (rotational or complex) were mainly 
observed in the Plaisancian marls and sandy 
clays providing the transition between 
the Plaisancian and molassic Astien facies 
(Aymé 1965). Some studies showed that the 
landslide triggers in most cases were linked 
to rainfall or to antropic actions which 
cause modification of the soil stress state 
(Bahar & Djerbal 2016). The study of Bièvre 
et al (2016), on the other hand, purported 
that the variations in the soil strength 
parameters due to weathering may also be 
one of the important causes of instability.

This study focused on the Plaisancian 
marls that outcrop in a large area of urban 
expansion in the southwest Algiers Sahel 
(coast) where an important deterioration 
of the mechanical properties of the marls 
is one of the main causes of the slope 
instability processes. This study analysed 
the results of laboratory tests (grain-size 

distribution, index properties, direct shear, 
and compressibility tests) obtained from 
inspections of an existing database of soil 
laboratories and companies. In order to 
conduct a deep investigation, the study 
examined several samples from the subsoil 
of El-Achour (site A), Daly-Brahim (site B) 
and Ouled-Fayet (site C). Other tests were 
also carried out to evaluate both the residual 
strength parameters and the susceptibility 
to progressive failure. Finally, a back-analysis 
based on limit equilibrium methods (LEM) 
was performed to examine the role of soil 
mechanical deterioration due to weathering, 
and the role of pore water pressures on the 
slope stability of the study area.

Study area
The study area is located on thick deposits 
of Plaisancian marls in the southwest of the 
Algiers Sahel (coast) (Figure 1). The geo-
logical formation of the Plaisancian marls 
outcropping in the Algiers Sahel, with a 
thickness of more than 200 m, is a homo-
geneous massive deposit of sedimentary 
rocks resulting from organic and mineral 
sediments in a shallow marine environ-
ment (Bouteldja et al 1997). The marls are 
covered by an Astien series of sandy clay 
and sandstone, which form the plateaus 
(a high plain or tableland) of El-Achour 
and Ouled-Fayet to the northeast that 
have been subjected to intense erosion 

(Meghraoui 1988). The Sahel is a succes-
sion of hills formed by Plaisancian marls 
with a slope inclination varying from 5% 
to 30% (Derriche & Cheikh-Lounis 2004). 
The topography resulted from the post-
Astien tectonics, which caused the uplift 
of the Atlas Mountains and the formation 
of the Sahel anticline and the depression 
of Mitidja (Royer et al 1961; Aymé 1956). It 
should be noted that the landslides, char-
acterised by wavy morphology (Bougdal 
2007), occur in the weathered marl hori-
zons of which the thickness varies with the 
degree of weathering, reaching about 8 m 
in depth, even at a slope inclination greater 
than 10%. The degree of weathering affects 
the strength parameters and therefore the 
slope stability of the Plaisancian marls.

METHODOLOGY
The methodological approach adopted by 
the study included the different phases as 
summarised below.

In the first phase, several technical 
reports were collected from different public 
administrations, soil laboratories and 
companies. These reports were analysed 
to obtain physical and mechanical data on 
the soil of El-Achour (site A), Daly-Brahim 
(site B), and Ouled-Fayet (site C) (Figure 2).

In the second phase, the landslide area 
was selected in Daly Brahim (site B) to 

Figure 1 Geological map of study sites (Royer et al 1961)
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support the collected data. In this area, 
some samples were extracted for further 
laboratory investigation conducted essen-
tially to evaluate the grain-size distribu-
tion, the Atterberg limits, compressibility, 
and the residual strength parameters.

In the final stage, slope stability analy-
ses were performed for site B to evaluate 
the effect of both strength parameters 
and pore water pressure on the slope 
safety factor.

Data collection method
Data for the study was collected from 
the technical reports obtained from the 
archives of local authorities, soil laborato-
ries and companies. Thus, 80 reports and 
additional field data were analysed. This 

data provided 156 laboratory test results 
including grain-size distribution, index 
proprieties, shear-strength parameters, 
compressibility and swelling properties.

During this study, some samples from 
Daly Brahim were extracted and nine 
laboratory tests were performed to support 
collected data, by providing additional 
information on grain-size distribution, 
Atterberg limits, compressibility, and 
shear-strength parameters.

Laboratory tests
Laboratory tests were performed on 11 soil 
samples from site B. Eight disturbed 
samples were taken on the scarp of shallow 
landslides between 0.5 m and 1 m depths 
and three undisturbed soil samples were 

taken at depths of about 5, 12 and 27 m. 
Laboratory tests were performed accord-
ing to the AFNOR standards (French 
Standardization Association). Grain-size 
distribution was evaluated by mixed 
sieve-sedimentation analysis, as described 
in NFP 94-056 and NFP 94-057, and the 
Atterberg limits were measured using the 
procedure described in NFP 94-051.

The volume-change behaviour was 
evaluated by oedometer tests on the mate-
rial taken from different depths according 
to XP P94-090-1. The shear test results 
collected from reports were carried out 
according to NF P-071-1, at a shear rate 
of 0.016 mm/min, which is lower than 
the maximum shear rate suggested by 
the standard (vmax = 125/t100 mm/min, 
with t100 = end of consolidation time) for 
all the considered samples. All tests were 
performed on the samples at three different 
levels of normal stress.

Slope stability analysis
The slope stability analyses were per-
formed for site B to examine the effect 
of both strength parameters and pore 
water pressures on the slope safety fac-
tor. The analyses were performed using 
the computer programme SLOPE/W (by 
Geoslope International Ltd) based on LEM. 
Moreover, the Morgenstern-Price method 
(1965) was used and a slip surface reaching 
the base of the weathered soil was ana-
lysed. Pore-water pressure distribution at 
the basis of stability analysis was evaluated 
by the SEEP/W programme (by Geoslope 
International Ltd) and different hydraulic 
boundary conditions were considered.

RESULTS AND DISCUSSION
The stratigraphy of the three investigated 
sites was reconstructed on the basis of the 
material extracted from 22 boreholes (loca-
tions indicated in Figure 2). The analysis 
shows that the weathered marls close to 
the ground surface are greenish-yellow 
mottled. The weathered horizon thickness 
reaches to about 8 m; beneath this depth, 
the undisturbed marls are generally very 
consistent and hard. Figure 3 shows a 
scheme of the typical soil stratigraphy.

Physical characteristics 
and index properties
The grain-size distribution curves 
(Figure 4) show that the considered soils 
are fine-grained in all three sites, with 
more than 70% dry weight composed of 

Borehole 0.001 0.005 0 0.01 Dd

Figure 2 �The geographical layout of the study area indicating the boreholes from where the 
examined soils were extracted

El Achour Dély Brahim Ouled Fayet

0–3 m

0–8 mOrganic soil

Weathered marls

Compact marls

Figure 3 Typical soil stratigraphy
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particles smaller than 80 µm. The clay 
fraction is important and can reach about 
59%. Derriche and Cheikh-Lounis (2004) 
observed that the shallow weathered 
marls can contain a grain-size component 
coarser than those of the deep marls. 
They claim that such coarser components 
fill the deep shrinkage cracks formed 
through the weathered marls. The curves 
in Figure 4 show that particles coarser than 
0.8 – 1 mm were found also in the deeper 
unweathered soil. The origin of such par-
ticles was not investigated in this work.

Figure 5 depicts the results of the varia-
tion in dry unit weight (γd), water content 
(w), saturation degree (Sr), liquid limit (LL), 

plasticity index (PI), and calcium carbonate 
content (CaCO3) with depth. As Figure 5 
depicts, the dry unit weight of the weath-
ered layer of sites A and B increases from 
about 14 kN/m3 close to the ground surface 
to about 19 kN/m3 at a depth of about 8 m, 
below which, in the underlying undisturbed 
formation, it is almost constant. It is worth 
noting that some samples were extracted 
in May, and others between October and 
March of the following year. Irrespective 
of the month of sampling, the weathered 
marls were saturated (Sr = 100%) or almost 
saturated at the investigated depths. This 
result has important consequences for the 
response of pore water to rain, as shown in 

the section of slope stability analysis. The 
water content decreases from about 30% 
close the ground surface to an average of 
about 15% in the undisturbed formation. 
Site C, in contrast, has a dry unit weight 
and water content almost constant along 
the verticals, and close to the minimum 
and maximum values, respectively, of the 
corresponding parameters of the other 
two sites. The higher water content and 
lower dry unit weight of site C are probably 
due to the presence of more expansive 
clay minerals. In fact, the Atterberg liquid 
limits of site C are generally higher than 
the other two sites (Figures 5 and 6), 
whereas the clay fractions are similar. This 
site is actually known for its high swelling 
potential (Medjnoun 2014), associated with 
the predominance of illite-montmorillonite 
minerals (Bougdal 2007).

The experimental results indicate that 
a high clay fraction is dominant in all three 
sites. The clay soils, weathered from the 
parent rock mass, contribute to landslide 
occurrence due to their chemical and phys-
ical properties (Yalcin 2007). The intense 
rainfall in the region probably causes 
osmotic phenomena of water adsorption 
which leads to the mechanical deteriora-
tion of the shallow layers of weathered 
marls (Picarelli & Di Maio 2010), with 
important implications for the stability of 
the considered slopes (Di Maio et al 2015; 
Di Maio et al 2017).

Compressibility
Figure 7 shows the e-logσ’n curves 
obtained for undisturbed samples, which 
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were extracted from both the weathered 
and unweathered formations of site A 
(Figure 7a), site B (Figure 7b) and Figure 7d), 
and site C (Figure 7c). It should be noted 
that the volume change behaviour was 
evaluated by oedometer tests on the mate-
rial sampled from several different depths. 
The profiles of compression index (Cc), 
swelling index (Cs), and over-consolidation 
stress (σ’c) are reported in Figure 8. The 
comparison between σ’c and the effective 
vertical field stress (σ’v) of the corresponding 
sample showed that the considered soils are 
over-consolidated. The over-consolidation is 
mainly due to the erosion of an overburden 
constituted by more than 100 m thick 
deposit of sandstones and Astien sands 
(Bougdal 2007). Most of the considered 
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samples show a loss of the over-consolida-
tion effects, whereas the deeper samples 
(e.g. those in Figure 7(d)) still maintain it. 
Figure 7(d) compares both the oedometer 
loading and unloading curves of the undis-
turbed soils (sampled from a depth of about 
27 m at site B) and the curves of the same 
soils reconstituted at the LL.

Figure 7 indicates that the undisturbed 
soil is strongly over-consolidated, and its 
curves have an average slope very close to 
that of the unloading curve of the recon-
stituted soil. The Cc values ranging from 
0.08 to 0.2 indicate that the soils have low 
to medium compressibility known to be 
a characteristic of marls and weathered 
marls, respectively (Carter & Bentley 2016).

Shear strength parameters
Figure 9 illustrates the results for Daly-
Brahim subsoil. The shear tests were carried 
out on samples of weathered marls, consti-
tuted by 60% – 70% silt and 40% – 30% clay, 
i.e. on the fine-grained samples of Figure 4. 
The tests provided average values of cohe-
sion c’ and friction angle φ’ of about 20 kPa 
and 14°, respectively. However, beyond this 
depth (more than 8 m), both the average c’ 
and φ’ increase up to about 45 kPa and 16°, 
respectively. Figure 9 refers to undisturbed 
materials, thus the shear behaviour depends 
not only on the grain-size distribution and 
plasticity but also on the soil fabric and on 
the soil stress-strain history. The obtained 
failure curves, with low friction angles and 
relatively high cohesion intercepts, are typical 
of over-consolidated materials. The mechani-
cal deterioration of the shear parameters 
in weathered marls is probably due to the 
phenomenon of weathering. On the one 
hand, the weathering of the marls involves 
physical and chemical processes which lead 
to strength degradation (Eberhardt et al 
2005; Picarelli & Di Maio 2010), the effects 
of which can be evaluated by laboratory tests 
on intact soil samples. In the field, however, 
other weathering effects can occur. Shunchao 
and Vanapalli (2015) reported that drying and 
wetting cycles can induce the development of 
fissures and cracks, which modify the original 
structure of the clay, thereby decreasing the 
stress level and increasing both water inflow 
and porosity.

Besides the collected results, other 
experimental results were obtained from the 
laboratory tests conducted within the scope 
of this study. The shear behaviour from peak 
to residual shear strength was evaluated on 
two samples (S01 and S04) extracted from a 
depth of 5 m in weathered marls (S01) and 

from about 12 m (S04) in unweathered marls, 
respectively. Sample S01 was consolidated 
under a normal stress of 197 kPa, and was 
then sheared (Figure 10). The first two cycles 
were performed at low displacement rates 
(v = 5 µm/min). The following cycles were 
performed faster in order to obtain a com-
plete alignment of the clay particles within a 
few days. At a displacement of about 40 mm, 
the rate was lowered to 5 µm/min again, after 
which additional cycles were performed to 
obtain the drained residual shear strength 
parameters, residual friction angle φ’r and 
residual cohesion c’r (Figure 12). The same 

specimen was subsequently consolidated 
under a higher normal stress at 297 kPa and 
sheared again to the residual conditions. 
Figure 11 presents the results obtained for 
a specimen of sample S04 extracted from 
the unweathered formation. The specimen 
was consolidated and then sheared to the 
residual conditions at a rate of 5 µm/min. 
Figure 12 shows that the residual friction 
angle of weathered marls is φ’r =11°. Under the 
reasonable hypothesis that c’r is null, φ’r of the 
sample of unweathered marls is 13°, a little 
bit higher, probably because of the difference 
in grain size distribution and c.f. (Figure 4). 
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Both values are consistent with the presence 
of important percentages of clay minerals 
(Lupini et al 1981). The comparison between 
the peak strength lines and the residual ones 
shows the dramatic drop in strength from 
peak to residual, indicating the susceptibility 
of the soil to progressive failure.

Slope stability analysis
The stability analyses were performed for a 
slope from Daly Brahim (site B), where the 
instability problems mainly occur in the 
upper weathered marl horizons (Figure 13).

The calculations were performed with 
reference to the section A-A’ (Figure 14a). 
The pore-water pressure distributions for 
the analyses in 2D and drained conditions 
were evaluated by the code SEEP/W for the 
domain represented in Figure 14b. Since 
the soils have high values of the degree of 
saturation and the water level recorded in 
some piezometers ranges from 0.3 m to 
10 m depths, the soil was always studied 
saturated so that three different hydraulic 
boundary conditions were considered:
1.	 hydraulic head equal to the elevation of 

the ground points on the two vertical 
boundaries AB and CD, and water pres-
sure u = 0 on the ground surface

2.	 hydraulic head 5 m lower than in the first 
case on the two vertical boundaries and 
null unit flux (q = 0) on the ground

3.	 hydraulic head 10 m lower than in the 
first case on the two vertical boundaries 
and null unit flux on the ground.

The first condition on the ground (u = 0) 
corresponds to continuous rain with inten-
sity higher than the soil hydraulic conduc-
tivity, while the second condition (q = 0) 
corresponds to dry weather. The results 
of the stability analyses performed using 
SLOPE/W for the worst slip surface are 
illustrated in Figure 15a, and for the three 
water pressure distributions are shown 
in Figure 15b in terms of c’ – φ’ couples 
which provide a safety factor SF = 1. The 
figure shows that the strength parameters 
characterising the peak strength of the 
undisturbed, not weathered, formation are 
much higher than those corresponding to 
failure along the considered slip surface, 
even in the case of u = 0. In contrast, the 
parameters of the weathered formation are 
closer to those corresponding to failure, 
for the case of u = 0 on the ground surface 
(condition 1) corresponding to continuous 
rain with intensity higher than the vertical 
permeability. The values of residual friction 
angle φ’r (11°–13°) are equal to or even lower 
than the parameter that brings the slope to 
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failure under the third hydraulic condition. 
It is thus reasonable to hypothesise that 
the real available strength parameters are 
intermediate between the peak and the 
residual ones.

As a matter of fact, the considered 
landslide located in site B occurred after 
considerable rainfall in 2011. In most cases, 
the infiltration of precipitation into the slide 

surface triggers a landslide (Eberhardt et al 
2005). The investigated part of the shallow 
marls shows a decrease in mechanical inter-
lock parameters. The weathering and addi-
tional water infiltration can further reduce 
the shear-strength parameters. The increase 
in pore water pressures decreases the shear 
strength, thus reducing the factor of safety 
(Bahar & Djerbal 2016; Liu & Li 2015).

CONCLUSIONS
The purpose of this study was to report 
the results of geotechnical investigation 
and landslide analyses in marl deposits. 
The Plaisancian marls that outcrop in the 
urban expansion areas in the southwest of 
the Algiers Sahel (coast) are often affected 
by slope instability processes. In order to 
evaluate the impact of weathering and 
climate on the safety factor of the slopes, 
back-analyses of a landslide that occurred 
at one of the sites were also performed. 
The results of the study reveal that the soils 
of the unstable slopes considered at EL 
Achour, Daly Brahim, and Ouled Fayet are 
fine-grained and exhibit medium to high 
plasticity; and the Atterberg liquid limits of 
Ouled Fayet soil are generally higher than 
those of the other two sites. The upper 
greenish-yellow mottled soils are weathered 
and generally present significantly higher 
water content than the undisturbed sample 
below. The latter is generally very consistent 
and hard. The thickness of the weathered 
horizon reaches about 8 m and the insta-
bility processes generally occur in the 
weathered marls. A comparison of strength 
parameters obtained by the laboratory tests 
and strength parameters obtained by back 
analyses shows that the most critical condi-
tions are reached in the weathered marls 
during long rain periods, and the available 
strength parameters are intermediate 
between the peak and the residual ones. It is 
worth noting that the considered pore water 
pressure distributions were obtained consid-
ering steady-state hydraulic conditions. The 
time required to reach these conditions can 

Figure 13 Landslide area at Daly Brahim (Site B)
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be strongly influenced by the presence of 
cracks and fissures which act as paths of fast 
water flow or pressure propagation.
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