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Synopsis

Risk analysis is an important step in the design of rock slopes in
open pit mining. Risk is defined as the product of the probability of
slope failure and the consequences of the failure, and is generally
evaluated in terms of safety and economic risk. Most of the risk
analysis done at present is based on the use of limit equilibrium
(LE) techniques in evaluating the probability of failure (POF) of the
slopes. The approach typically makes use of full Monte Carlo
simulations of the limit equilibrium models, with all uncertain
variables randomly varied. The number of required simulations is
generally over a thousand, at times as high as 20 000, in order to
produce statistically valid results of the POF. Such an approach is
clearly not practical when using numerical modelling programs due
to the high computational effort required. This paper explores the
impact of using numerical modelling instead of the traditional LE
techniques in evaluating the probability of slope failure. The
difference in the overall assessed risk, in terms of economic impact,
for the mining operation is then evaluated. With numerical models,
approximate methods are used in the calculation of the probability
of failure instead of full Monte Carlo simulations. This paper will
use a method called the response surface methodology (RSM) for
estimating the POF from numerical analyses. Simple slope models
were used to verify the accuracy of the RSM method by comparing
the results with those obtained from full Monte Carlo simulations. It
is shown that there is good agreement between the POF values
computed using full Monte Carlo simulation and those obtained
using the RSM method. Finally, the use of numerical modelling in
the assessment of risk is shown to bring a significant difference in
the result compared with that from LE methods. One of the reasons
for the difference is that LE models tend to underestimate the
failure volumes and hence the consequences of slope failure.
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Introduction
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The determination of acceptable slope angles is
a very important business planning parameter
in open pit mining. However, uncertainties
associated with the slope geometry, rock mass
properties, loading conditions and model
reliability complicate the process of choosing
appropriate slope angles. Traditionally,
assessments of the performance of open pit
mine slopes have been made on the basis of
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the allowable factor of safety (FOS), which is
the ratio of the nominal capacity and demand
of the system. By definition, limiting
equilibrium is attained when the FOS is equal
to unity with lower FOS values signifying
failure and higher values signifying stability.
The uncertainties alluded to earlier are
typically taken into consideration by adopting
FOS values greater than unity as the accept-
ability criterion. However, the main
disadvantage of the FOS approach for slope
design is that the acceptability criterion is
based on case studies and combines the effect
of many factors that make it difficult to judge
its applicability in a specific geomechanical
environment. In other words, the acceptability
criterion is empirical and might not be
applicable to a geomechanical setting that is
different from the ones used as case studies
forming the basis of the criterion, Tapia et al.
(2007).

An alternative to the FOS approach to slope
design is the probabilistic method which is
based on the calculation of the probability of
failure (POF) of the slope. In this case the
input parameters are described as probability
distributions rather than point estimates of the
mean values. By combining these distributions
within the deterministic model used to
calculate the FOS, the probability of failure of
the slope can be estimated. Figure 1 shows the
definition of POF and its relationship with FOS
according to uncertainty magnitude. The
illustration depicts two slopes with mean FOS
values of 1.35 and 1.50, with the slope having
the higher FOS ‘unexpectedly’ also having a
higher POF as well. This simple illustration
reveals the inadequacy of the FOS as a
measure of stability due to its inability to take

* School of Mining Engineering, University of the
Witwatersrand, Johannesburg, South Africa.

© The Southern Affican Institute of Mining and
Metallurgy, 2010. SA ISSN 0038-223X/3.00 +
0.00. Paper received Jul. 2010; revised paper
received Sep. 2010.

REFEREED PAPER OCTOBER 2010 571 <4

T
r
a
n
s
a
c
t
i
o
n




A comparison of limit equilibrium and numerical modelling approaches to risk analysis
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Figure 1—Definition of POF and its relationship with FOS according to
uncertainty magnitude (after Tapia et al., 2007)

FREQUENCY

POF corresponds
to relative area beneath
curve to the left
of FOS = 1.0 line

uncertainty into consideration. The greatest attraction of the
POF approach is the explicit representation of the
uncertainties in the stability assessment. However, as with
the FOS approach, difficulties arise when it comes to defining
adequate acceptability criteria for design. As a result very few
authors have attempted to define acceptable levels of POF for
various engineering structures. Some of the notable conti-
butions in this regard can be found in Priest and Brown
(1983), Kirsten (1983), and Read and Stacey (2009).

A slope design approach that alleviates the shortcomings
of both the FOS and POF approaches is the risk approach in
which the consequences of the failure are taken into account.
The risk associated with a slope failure is generally described
as the product of the POF and the consequences of the slope
failure. The risks associated with a major slope failure can be
broadly categorized by the following consequences: injury to
personnel, damage to equipment, economic impact on
production, force majeure (a major economic impact),
industrial action, and public relations (such as stakeholder
resistance). Commercial risks quantified must be acceptable
to the mine owners, and are related to the probability of
failure. Hence the acceptability criterion for economic risk is
set by mine management. Safety risks are usually regarded
as being beyond management discretion with most
companies seeking compliance with industry norms or other
indicators of societal tolerance. In other words, the risk
approach suggests that the stability of the slope is not the
end objective, but rather that safety is not to be compromised
as the economic impact of the chosen slope angles is
optimized (Read and Stacey, 2009).

Before carrying out the risk analysis, the POF of the slope
has to be evaluated. Most of the methods used to compute
POF values for slopes cannot be used efficiently with
numerical modelling codes; hence limit equilibrium (LE)
programs have been the tool of choice in risk analysis work.
Due to their much greater ability to handle problems with
complex failure mechanisms, complex geometry and geology,
and in situ stress conditions, numerical models have found
increased usage among slope designers. Therefore it would
be desirable to be able to practically incorporate numerical
analysis into the risk analysis process. This paper will
describe a method that can be used to incorporate numerical
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models in probabilistic analysis, the response surface
methodology (RSM), and also compare the risk assessed
using numerical tools with that obtained from LE analysis. It
is, however, worthwhile to first give a brief overview of the
methods currently used to compute POF values, before
describing the RSM.

Methods of calculating probability of failure

The most common tool used in probabilistic analyses is
Monte Carlo simulation. In this method the analyst creates a
large number of sets of randomly generated values for the
uncertain parameters and computes the performance function
(FOS for instance) for each set. A simulation can typically
involve over 20 000 evaluations of the model. By using
random inputs, the deterministic model is essentially turned
into a stochastic model. Some advantages of the Monte Carlo
method are its simplicity, its flexibility in incorporating a
wide variety of probability distributions without much
approximation, and its ability to readily model correlations
among variables (Hammah and Yacoub, 2009). Most limit
equilibrium slope stability analysis packages use Monte Carlo
simulation to compute probabilities of failure. Examples are
SLIDE, RocPlane, and SWEDGE (RocScience Inc.). However,
although straightforward, Monte Carlo simulation can be very
expensive computationally, especially when multiple runs are
required to calculate sensitivities and/or when low
probabilities are needed (Baker and Cornell, 2003; Baecher
and Christian, 2003). As a result, it has not been practically
feasible to use Monte Carlo simulation to calculate POF values
from numerical models due to the extensive runtimes
required in numerical modelling.

An alternative method that has been widely used in civil
engineering applications is the first order second moment
method (FOSM). The FOSM is an approximate probabilistic
method that is based on a Taylor series expansion of the
performance function. All terms in the Taylor series that are
of a higher order than one are assumed negligibly small and
then discarded (Baecher and Christian, 2003). From the
remaining first order terms, the probability that the
performance function is less than any given value can be
calculated. One of the great advantages of the FOSM method
is that it reveals the relative contribution of each variable in a
clear and easily tabulated manner (Morgan and Henrion,
1990; Baecher and Christian, 2003). This is very useful in
deciding what factors need more investigation and also in
revealing a factor whose contribution cannot be reduced by
any realistic procedure. Many of the other reliability analysis
methods do not provide this information. Kinzelbach and
Siegfried (2002) used the FOSM method to quantify the
uncertainty in groundwater modelling and the results
compared well with Monte Carlo simulation results. However,
since FOSM is based on a Taylor series expansion, the
evaluation of partial derivatives or their numerical approxi-
mations is critical to the use of the method (Harr, 1987). The
attainment of these partial derivates is generally very difficult
and is impossible in some cases such as when the
performance function is given implicitly in the form of design
charts. This is the greatest limitation of the FOSM method.
Another shortcoming of the FOSM approach is that the
results depend on the particular values of the variables at
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which the partial derivatives are calculated (Christian, 2004).
At present, no slope stability analysis program uses the
FOSM method to calculate POF values. An extension of the
FOSM called first order reliability method (FORM), also called
the ‘Hasofer-Lind’ approach, has been used to overcome
some of the weaknesses of FOSM. However, as in FOSM, the
requirement to evaluate partial derivates makes the FORM
approach impossible to use in some cases where the
performance function is not explicitly given, (Baecher and
Christian, 2003).

Another method that has enjoyed widespread use among
the geotechnical community is the point estimate method
(PEM) developed by Rosenblueth (Rosenblueth, 1975;
Rosenblueth, 1981). The PEM uses a series of point-by-point
evaluations (called point estimates) of the performance
function at selected values (known as weighting points) of
the input random variables to compute the statistical
moments of the response variable. The method applies
appropriate weights to each of the point estimates of the
response variable to compute moments. Hoek (2006) noted
that, while the PEM technique does not provide a full distri-
bution of the output variable, as does the Monte Carlo
method, it is very simple to use for problems with relatively
few random variables and is useful when general trends are
being investigated. When the probability distribution function
for the output variable is known, for example, from previous
Monte Carlo analyses, the mean and standard deviation
values can be used to calculate the complete output distri-
bution. Hammah and Yacoub (2009), quoting Christian and
Baecher (2002), stated that, ‘Although the method is very
simple, it can be very accurate’. Harr (1987) also stated, ‘The
method is straightforward, is easy to use, and requires little
knowledge of probability theory.” However, a great limitation
of the original PEM for multiple variables is that it requires
calculations at 2 points, where A is the number of uncertain
variables. When & is greater than 5 or 6, the number of
evaluations becomes too large for practical purposes,
(Baecher and Christian, 2003). Two relatively simple
methods for reducing the number of points in the general
case to 2V or 2V + 1 have been proposed (Harr 1987; Hong
1996, 1998). Unfortunately, these methods for reducing the
number of points move weighing points further from mean
values as the number of variables increases, and can lead to
input values that extend beyond valid domains (Hammah
and Yacoub, 2009). Since the number of uncertain
parameters in slope stability analyses can be large, the PEM
approach does not present a practical way of computing POF
values with numerical methods.

A method that has been gaining attention in geotechnical
engineering is the response surface methodology (RSM)
which will be described in the next section.

Description of response surface methodology (RSM)

The RSM consists of three separate steps which are
summarized in Figure 2. The first step involves the use of the
stability model (for example SLIDE, Phase2, UDEC, etc.) to
compute the FOS at various combinations of the input
variables and then uses regression techniques to create a
curve (or a surface in multi-dimensional space) that gives the
response of the FOS to changes in the inputs. This curve is
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what is called the response surface. In the second step Monte
Carlo Simulation is carried out, using the response surface
instead of the stability model, in a spreadsheet package such
as Microsoft Excel. The third step involves the statistical
analysis of the distribution of FOS values generated by the
Monte Carlo simulation in step 2. From this distribution the
POF can then be calculated as the number of trials that gave a
FOS less than one divided by the total number of trials. Since
the Monte Carlo simulation is carried out in Excel making use
of regression equations, the task takes very little time
compared with traditional Monte Carlo simulation that uses
the stability model. As an example, 50 000 trials will typically
take between five and ten seconds on a 1GHz processor. This
means that the only time that is needed in RSM analyses is
the running of the stability models needed to create the
response surface.

Several methods for selecting the small sample of
scenarios to run and consequently create the response
surface are in use. The most common method involves
perturbing one input at a time, keeping the rest at their
nominal values. Though this sampling approach is not very
efficient computationally (Morgan and Henrion, 1990), it
enjoys the benefit that it is simple and easy to implement in
practice. Using this sampling approach the number of
required runs is given by 2V + 1, where &V is the number of
uncertain variables. The linear form of this relation means
that the number of runs required remain within reasonable
limits even for large numbers of variables e.g. a slope with 3
variables requires only 7 runs whereas 10 variables require
21 runs. As a result the RSM allows computationally
expensive modelling tools to be incorporated into
probabilistic analyses.

The basic mathematical theory behind the RSM method is
outlined below, as adapted from Tapia et al. (2007). In the
response surface method, with & uncertain variables
contributing to the distribution of FOS, this distribution of
FOS could be viewed as being represented by a function
given in Equation [1]. In N-dimensional space, defined by
variables x;- xy, values of R can be viewed as a surface
(called the response surface). The response surface method
assumes that the effects of each variable x; on the FOS are
independent of the other variables. Inaccuracies arise because
this assumption is not true in general (Tapia et al., 2007).
However, these inaccuracies are minimized by calculating the
best-estimate of FOS first using the best-estimates for each of
the uncertainties x’;, x2’...,x’y using Equation [2]. FOSp is
the best-estimate (mean) value and is referred to as the base
case.

ResponseSurface
Generation

FREQUENCY

Figure 2—Diagrammatic representation of the response surface
methodology
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FOS = R(x,,x,,....x ) [1]

FOS,, = R(x],x},....xy) [2]

The sensitivity of the FOS to the various inputs is
investigated by varying each variable while keeping the rest
constant at their best estimate values as shown in Figure 3. A
new FOS is then calculated using this new set of input
variables with the aid of the relevant stability analysis tool
e.g. SLIDE, Phase2, or FLAC. This sensitivity is quantified by
a parameter termed the sensitivity parameter, p, defined as:

ﬁ(x,__x;)=R(x,.,x;,...,x;V) 3]
FOS,,

The sensitivity parameter, p, is defined twice for each
variable, one point on each side of the best estimate (referred
to as the ‘-’and ‘+’ case). f is plotted against the normalized
variable and regression techniques used to fit a 2nd order
polynomial that gives the value of p for any given value of
the normalized variable. These regression lines can also be
defined using piece-wise linear functions.

The points at which the ‘-” and ‘+’ case are evaluated can
be located anywhere in the region of interest. For most
problems, points located at ‘-’ and ‘+’ one standard deviation
give good results. When modelling a system with N variables,
N 2nd order equations relating p to the variable are formed.
For any random combination of the input variables, a value
of the factor of safety (FOS;) is obtained by:

FOS; = FOS, XX, X.. Xy, [4]

Multiple Monte Carlo simulations (numbering up to
50 000) in a spreadsheet package such as Microsoft Excel,
using the various probability distributions of the
uncertainties, results in a distribution of FOS from which the
POF can be calculated as:

POF =P(FOS <1) [5]

Figure 4 illustrates the definition of the probability of
failure from Monte Carlo simulations. In essence, the RSM
approach seeks to replace the slope stability analysis tool
with a model constructed using only a few runs of the
stability model and regression techniques. Full Monte Carlo
simulations are then executed by randomly sampling the
input variables and estimating the FOS from the RSM model
and not from the actual stability model.

Using the RSM, it has been possible to use very sophis-
ticated numerical modelling programs in evaluating
probabilities of failure for complex geomechanical scenarios.
For example, Tapia et al. (2007) describe an approach which
uses Monte Carlo simulation together with the RSM to carry
out a risk analysis for an open pit mine using the programs
FLAC3D (Itasca Inc.), SLIDE and SWEDGE. The same
approach was used by Contreras et al. (2006) in a risk
analysis for Cerrejon mine. Mollon ef al. (2009) used the
RSM together with the FORM to carry out probabilistic
analysis of a circular tunnel using the 3D numerical
modelling code FLAC3D. The most extensive applications of
RSM are in the particular situations where several input
variables potentially influence some performance measure
(factor of safety, for instance) or quality characteristic of the
process (Carley et al., 2004). Morgan and Henrion (1990)
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recommend the use of RSM for large computationally
expensive models. One advantage of RSM is their flexibility
in that they can handle any probability distribution as well as
performance functions that are not given in explicit forms, for
example, in design charts. Since no work has been carried out
in attempting to validate the results from RSM computations
in slope stability analyses, the following sections will give a
more detailed description of the RSM, as well as some
validation examples of the method in slope stability analyses.

Verification of RSM for slope stability analysis

The verification of the RSM formulation involved carrying out
full Monte Carlo simulation in SLIDE (simply called SLIDE
Monte Carlo in this section) and comparing the results with
the RSM approximation. In other words, the first approach
involved running 10 000 SLIDE models with randomly
sampled strength parameters. The POF was then defined as
the number of models that resulted in a FOS of less than one
divided by the total number of models, which were 10 000 in
this case. The RSM approximation involved running only a
few SLIDE runs (5 or 13, depending on the slope geometry as
described below) and using the results to create the response
surface as explained in the previous section. Monte Carlo
simulations were then carried out in an Excel spreadsheet to

Sensitivity of FOS to friction angle
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Figure 3—Sensitivity of FOS to friction angle showing the locations of
the ‘-’case, the ‘+’ case, and the base case
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Figure 4—Graph showing the distribution of FOS from Monte Carlo
simulations and definition of the probability of failure
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determine the POF. The POF values obtained using the two
different approaches were compared. Two different models
were used for the analyses: a homogeneous slope and a slope
consisting of 3 materials as shown in Figure 5. In the model
with more than one rock type, the slope limits in the SLIDE
analysis were located so as to force the slip surface to pass
through all rock units. For the analyses, only the cohesion
and friction angle were regarded as uncertain parameters.

Since some parameters used in slope stability analysis are
known to be correlated in some way (e.g. cohesion and
friction angle), the ability of the RSM formulation to handle
correlated variables was investigated. To achieve this,
correlation coefficients (CC) between the friction angle and
the cohesion of 0.5, 0, and -0.5 were specified so as to cover
conditions of positive correlation, independent variables, and
negative correlation respectively. In addition to the CC,
another parameter that was varied during the analyses is the
coefficient of variation (CV). The CV is simply the ratio of the
standard deviation to the mean and is a measure of the
spread of the distribution. A low CV implies a distribution
with the data points concentrated around the mean, whereas
a high CV implies wide scatter among the data.

The normal distribution is an open distribution which
allows the variable to assume negative variables. However,
most of the input parameters in geotechnical analyses, such
as cohesion and friction angle, cannot take on negative
values and are better modelled using lognormal or beta
distributions (Baecher and Christian, 2003). The ability of
the RSM in handling non-normal variables was therefore
studied by assuming lognormal distributions to the cohesion
and friction angle in some of the homogeneous models.
Table I gives a summary of the mean values of the cohesion
and friction angle of the materials used in the RSM verifi-
cation models. The material named ‘homogeneous’ refers to
the material constituting the homogeneous model. Materials
A to C refer to the materials making up the heterogeneous
slope consisting of three materials as shown in Figure 5.
Three different distributions were created by varying the CV
from 0.1 to 0.3, keeping the mean values constant in all
models. Since the normal distribution is an open distribution,
the sampling was carried out in the region encompassing 3
standard deviations both sides of the mean (99.7% of the
data in a normal distribution lie within + three standard
deviations from the mean).

The RSM was implemented using an Excel spreadsheet,
together with a commercial add-in, Crystal Ball (Oracle Inc.).
In all cases, the model was evaluated at two points placed at
+1 standard deviation from the mean, as described earlier. A
piecewise linear interpolation/extrapolation scheme was used

Yy
. ‘// Material C

&/
(I

Material A e &

Figure 5—The slope geometries used for validating the RSM approach
to probabilistic slope design: (a) homogeneous slope (b) heterogeneous
slope
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in the RSM. Monte Carlo simulation on the response surface
was carried out using 50 000 trials, with a Latin Hypercube
sampling scheme. Figure 6 shows the results of the analyses

Table |

Strength parameters used for the SLIDE RSM
verification models

Rock type c (kPa) ¢ (°) y (kN/m3)
Homogeneous 500 30 27
Material A 35 22 27
Material B 85 27 27
Material C 120 25 27
RSM vs MC
Homogeneous Slope (Normal)
40%
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e MC: £C=05
—d— RSM OC=0
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o MC CC205
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Figure 6—Comparison of POF values from Monte Carlo Simulation in
SLIDE (MC) and the RSM method for different levels of correlation
between c and ¢, (a) Homogeneous slope, normally distributed
variables (b) Homogeneous slope, lognormally distributed variables
(c) Heterogeneous slope
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for the homogeneous and heterogeneous slopes. In the
graphs, the dotted curves marked MC represent the results of
the full Monte Carlo simulations in SLIDE (10 000 SLIDE
runs) and the solid curves marked RSM show the results of
using the RSM approach to compute the POF (5 SLIDE runs
for the homogeneous slope and 13 SLIDE runs for the hetero-
geneous slope). The results show good agreement between
the SLIDE Monte Carlo simulation and the RSM formulation.
The RSM results compared well with Monte Carlo simulations
for both normal and non-normal variables as well as for the
correlated and uncorrelated variables. From these results it
can be concluded that the RSM can be used with confidence
in probabilistic slope stability analysis. These results
highlight the computational efficiency of the RSM approach, a
feature that makes it particularly well suited for use with
computationally expensive analysis tools such as numerical
models.

POF comparison of LE and numerical models

The POF from LE models (computed using SLIDE) was
compared with the POF from numerical models (computed
using PHASE 2) for various geomechanical parameters. A
homogeneous 600 m high slope, having a slope angle of 45°
was used for the analyses, Figure 7. The POF values for all
the analyses were calculated using the response surface
methodology as described earlier.

The analyses made use of three different sets of strength
parameters shown as model-1, model-2, and model-3 in
Table II. As can be seen in the table, the cohesion and friction
angle had the same mean values in all the three models while
the dilation angle, k ratio, and locked in stresses (LIS) were
different. Therefore, since LE analyses do not take into
account the k ratio, dilation angle and LIS, only one SLIDE
model was run. On the other hand, three PHASE 2 models
were run using the different strength parameters given in
Table II. The values in the table represent the mean values of
the given parameters, with the variability represented by
assuming a normal distribution and a coefficient of variation
(CV) of 0.3 for each variable. The CV is simply the ratio of the
standard deviation to the mean.

Only the friction angle and cohesion were considered as
uncertain inputs while the rest of the strength parameters
were considered deterministic. The results of the analyses are
shown in Figure 8. The SLIDE result is similar to the Phase2
result for model-1 but significantly different from model-2
and model-3. Increasing the k ratio, dilation angle, and

|

y

&
L

Figure 7—Slope geometry used for the comparison of SLIDE and
Phase2 POF computations
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locked in stresses in model 2, had the effect of improving the
stability of the slope. Consequently the POF values for model-
2 are lower than the SLIDE result. Further increases in the
dilation angle, k ratio, and LIS resulted in even lower POF
values for model-3. Regardless of the correlation coefficient
between the input parameters, the results show that
parameters like the k ratio, the dilation angle, and the locked
in stresses do have a substantial influence on the calculated
probability of failure of a slope. Since these parameters are
not included in an LE analysis, the consequence is that the
LE and numerical modelling POF values for the same slope
can differ significantly as indicated by Figure 8. An analysis
of the FOS distributions showed that the mean FOS changes
significantly from model-1 to model-3. It is this change in the
mean FOS that results in the lower POF for model-2 and
model-3.

Sensitivity analysis

In the previous results the only variable inputs were the
cohesion and friction angle. Two more scenarios were
considered to investigate the major contributors to the
uncertainty in slope stability. In the first scenario, the dilation
angle was added as a third variable and in the second
scenario the k ratio was added as a fourth variable. A
coefficient of variation of 0.3 was assumed for all input
variables. The results for the analysis, using ‘model-3’, are
shown in Figure 9.

The graph shows that increasing the number of variables
has little effect on the POF. It is important to note that the
contribution to the POF of an input parameter depends on

Table Il

Uncertain input parameters for models used to
compare POF values

Parameter Model-1 Model-2 Model-3
Cohesion (kPa) 640 640 640
Friction angle (°) 30 30 30
Dilation angle (°) 0 7 15
Kk ratio 1 2 3
Locked-in stress (MPa) 0 1 3
POF from LE and Numerical Models
50%
=== model 1
=e—model 2

40% - & del3
/A —o—SLIDE
30% 4 b
3
20% -
4
4

10% -

POF(%)

0% T

-1.0 -0.5 0.0 0.5 1.0
Correlation Coefficient

Figure 8—A comparison of the POF determined from SLIDE and three
Phase2 models for different levels of correlation between the cohesion
and friction angle
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T
the expected failure volume in the risk analysis. A r
30% comparison of the failure volumes for the three Phase2 a
e "'z models and the SLIDE models is shown in Figure 11.
e In general, the failure volumes predicted by the LE n
20% - e models are lower than those from the numerical models. S
T Figure 12 shows a typical comparison of the failure surfaces a
2 { predicted by the two modelling approaches. The higher c
10% volumes from the numerical models are due to the fact the
5% - predicted failure surface extends further behind the crest in t
numerical models than in LE models. i
0% ; ;
o
-1.0 -0.5 0.0 0.5 1.0
Correlation Coefficient n
LE vs. NM POF
Figure 9—The effect on POF of increasing the number of uncertain Overall Trends
variables from two to four 50% i P
40% - pe > © —+—phase2 a
two things; the variability of the parameter (measured by the _ 30% - p
coefficient of variation) and the influence the parameter has % -
on the stability of the slope. Results from a sensitivity & 20% | r
analysis for the models show that the strength parameters,
cohesion and friction angle, have a greater influence on the £l
POF than the other variables such as k ratio and dilation
angle. This then explains the fact that including the k ratio o : '
Model 1 Model 2 Model 3

and dilation angle as uncertain variables does not signifi-
cantly change the computed POF, (Figure 9). Increasing the
variance of the other parameters like dilation angle will
certainly increase their relative contribution to the POF, but
the relative influence will still be small compared to the
strength parameters like cohesion and friction angle. The

Figure 10—SLIDE and Phase2 POF results for models with 2
independent input variables

implications of these results is that, when carrying out a AL A
probabilistic analysis with numerical models, the number of - (Determinstic Models)
uncertain variables can be reduced by ignoring the variability i
in parameters like the k ratio and dilation angle. This means 200 - > —
that fewer runs of the numerical models will be needed to m —Phase
create the response surface from which the POF is g 150 1
determined. It should be noted, however, that this conclusion ﬁ ~ ~ ~
is valid for cases in which shear failure of the rock is the = SR
failure mechanism at play. Assuming a different failure il
mechanism may result in different dominant parameters in
the probabilistic analysis. 0 , .
The plot in Figure 10 summarizes the findings from the Model 1 Model 2 Model 3
comparison of the POF determined with LE and Phase2
models. The graph is for models assuming only two uncertain Figure 11—Failure volumes from SLIDE and Phase2 for scenarios
inputs, cohesion and friction angle, and complete where all inputs are at their mean values

independence between those inputs. When parameters not
included in an LE analysis (like dilation angle) are set at

values that eliminate their effect e.g. by setting dilation angle /

at zero (coinciding with model 1 in Table II), the POF from //
the Phase2 and SLIDE models will be the same. However, if /

these parameters take up other values, the POF from Phase2 } /

SLIDE failure surface|

will deviate significantly from the SLIDE result as shown in
the case of model-2 and model-3 in Figure 10. These
differences can be significant, as the result for model-3
shows a 40% POF from SLIDE compared with 20% from
Phase2.

Failure volumes Figure 12—Phase2 result showing contours of maximum shear strain
The failure volumes that resulted when all input parameters which depict the failure surface. The SLIDE failure surface has been
were at their mean values were taken to be representative of superimposed onto the image

The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 110 REFEREED PAPER OCTOBER 2010 577 4 """"""""""""



A comparison of limit equilibrium and numerical modelling approaches to risk analysis

Risk analysis comparison of LE and numerical
models

The simplified event tree in Figure 13 was used to carry out
the risk analysis. The probabilities associated with each
branch of the event tree are given in Table IIl. These were
hypothetical values adopted arbitrarily for the analyses in
this paper. The probability of overall slope failure was taken
from the results shown in Figure 10. Other sources of
variability not accounted for in the stability analysis were
ignored, e.g. mining methods, geology, etc. Of the three
possible economic consequences in Figure 13, only the loss of
profit was considered in this paper. The reason for this was to
keep the work simple and tractable since the aim is to
investigate trends rather than determining actual quantitative
risk figures.

The risk analysis carried out considered only the
economic impact of the slope failures, assuming that the
probability of loss of profit is representative of all the
economic consequences of the slope failure. For the purposes
of the current investigation, the total loss of profit was
assumed to be made up of two components: the cost of
cleaning up after a failure and the cost due to production
delays. The assumption is that the slope being modelled is
just above an access ramp which happens to be the only
access into the pit. Therefore, any slope failure will result in
delays to production until the failed volume has been cleared.
This was a hypothetical scenario in order to compare the risk
determined from the two stability analysis methods without
confusing the analysis with financial calculations that would
cloud the main issue under investigation. Other contributors
to loss of profits such as damage to equipment were not
included in the analysis. The cost of clearing was assumed to
be R500/m3 and the cost of lost production was assumed to
be R100 000/h. It is important to note that the choice of these
costs has no bearing on the final comparison between the
risk assessed using LE methods and that from numerical
methods. However, the values have been chosen to reflect
typical costs associated with open pit mining operations. The

rate of clearing of the failed material was assumed to be
5000 t/h.

The probabilities at each stage of the event tree in
Figure 13 are accumulated to give the probability of total loss
of profit, after the third stage. Once the total loss of profit was
determined for any model, it was multiplied with the
probability of loss of profits to come up with a risk quantity.
It is this quantity which was used to compare the risk
assessed by the different modelling tools. Technically
speaking, this risk quantity is the expected loss of profits.

Risk = P(Loss of profit)x Loss of profit

This risk quantity was considered to be representative of
the economic risk associated with the mining operation.

Results

The POF results obtained in the models described above and
reported in Figure 10 were input into the event tree of

Figure 13 so as to determine the probability of incurring loss
of profits. Since a slope failure can generally result in three
different economic consequences (normal operating
conditions, loss of profits, and force majeure), the probability
of loss of profit is always less than or equal to the probability
of overall slope failure. Figure 14 shows a comparison of the

Table Il

Probability values used in the event tree used to
determine probabilities of occurrence of various
economic consequences

Likely event Probability

Yes No
Production affected? 0.7 0.3
Can contracts be met? 0.5 0.5
Additional costs? 0.2 0.8
Is cost prohibitive? 0.2 0.8
Production replaced by spot? 0.9 0.1

1scost | YES
PROHIBITIVE
—>1 ? (Production | |
sHected) | WO
YES
~ LOSS OF
= - cAN S BE MET?
NO
OVERALL b prooucrion | "%
SLOPE | POF = '—3 REPLACED
FAILURE AT BY SPOT?
NO [T
scoar | YES
| PROHIBITIVE
? (Production
LEGEND not afected) | NO
NEGATIVE IMPACT
NO IMPACT
LOSS OF
YES PROFIT
— cosTs?
NO
NORMAL
OPERATING

Figure 13—The event tree used for the evaluation of economic impact of slope failures (Steffen et al., 2008)
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45%

e SLIDE (PCF)

40% -
35% -

=t Phase2 (POF)
===« SLIDE:P(LOP)

=== Phase2:P(LOP)

30%
25%
20% -
15% A
10% -
5% -
0%

Probability

Model 1 Model 2 Model 3

Figure 14—Adjustment of the probability of overall slope failure (POF)
to the probability of loss of profit, P(LOP), for the SLIDE and Phase2
models

probability of overall slope failure and probability of loss of
profits for the SLIDE and Phase2 models while Figure 15
shows the comparison of the assessed risk levels for the
Phase2 and SLIDE models. The assessed risk from the Phase
2 analyses is larger than from SLIDE in model-1 and model-
2, whereas in model-3, Phase2 gives a risk assessment
slightly less than the SLIDE result. The observed trends in
Figure 15 can best be described by comparing the SLIDE
model with the three Phase2 models one by one.

Phase2 model-1 gave a POF value almost identical to the
SLIDE model (Figure 10) but the failure volume predicted by
the Phase 2 model is approximately double that predicted by
the SLIDE model (Figure 11). As a result, the risk assessed
using the SLIDE model is approximately half that predicted
using the Phase 2 model, Figure 15. Thus, using a LE tool to
assess the risk for this particular combination of strength
parameters would result in a very optimistic value for the risk
i.e. the expected loss of profits. For model-2, the assessed
risk is almost the same with SLIDE and Phase2 models.
However, it must be emphasized that this is simply a
coincidence brought about by the fact that the POF from the
Phase2 model-2 is much smaller than that from the SLIDE
model whereas the failure volume from the Phase2 model is
much higher. For model-3, the POF from the Phase2 analysis
is sufficiently lower than the SLIDE POF to give risk levels
slightly lower than the SLIDE estimates.

Summary of results

Response surface methodology verification

The calibration of the response surface methodology was
carried out by comparing its results with those obtained from
Monte Carlo simulations within the program SLIDE. The
results showed very remarkable agreement, validating the
use of RSM in probabilistic slope stability analysis. The main
advantage of the method is the requirement for only a few
model runs compared to the traditional Monte Carlo methods
that require thousands of model runs. For example, in
determining the POF for a homogeneous slope with two
uncertain inputs, five SLIDE runs were used to create a
response surface. The POF was then determined by carrying
out Monte Carlo simulation using the response surface
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instead of the SLIDE model. This gave the same POF as

10 000 Monte Carlo SLIDE runs produced within the SLIDE
program. This outstanding efficiency makes the RSM a very
practical method of incorporating numerical models directly
into probabilistic analysis. Other interesting conclusions from
the calibration were that the RSM formulation can be used
with correlated or independent variables, as well as with non-
normally distributed variables.

Comparison of FOS from LE and numerical models

There are parameters not included in a limit equilibrium
analysis which do have an effect on slope stability. Examples
of these are the dilation angle, the horizontal to vertical
stress ratio (k ratio), and the locked-in horizontal stresses.
Generally these parameters have the tendency of improving
the stability of the slope, thus making LE analyses somewhat
conservative. Another interesting result was that the
numerical models almost always predict greater failure
volumes than the LE models. The failure surface indicated by
Phase2 is always flatter at the top than the SLIDE surface.
The reason for this result is probably that the limit
equilibrium solution identifies only the onset of failure,
whereas the numerical solution includes the effect of stress
redistribution and progressive failure after movement has
been initiated. Thus, numerical models are better tools for
determining the failure surfaces/volumes for slope failures.

Comparison of POF from LE and numerical models

Those parameters, such as dilation angle, not accounted for
in LE analyses tend to lower the probability of failure of
slopes. This means that the probabilities of failure reported
by LE programs are generally on the conservative side.
However, the chief contributors to variance in the FOS results
remain the strength parameters (¢ and ¢ in the Mohr
Coulomb failure criterion; UCS, m, s, a in the Hoek-Brown
failure criterion, etc.) and the other parameters (dilation
angle, &, ratio etc.) contribute little uncertainty in the FOS. It
is the effect of the ‘other’ parameters on the mean FOS that
lowers the POF, not their variance. The implication of this
observation is that the probabilistic analysis can be carried
out with fewer variable parameters, by assuming inputs such
as dilation angle and the k ratio to be constant, thereby
reducing the number of runs required in the RSM implemen-
tation.

600

~—&—SLIDE

—4— Phase2

500 -

400 -

300 - * +

Risk (MZAR)

200 -

100 -

Model 1 Model 2 Model 3

Figure 15—Overall risk associated with the slope determined using

SLIDE and Phase2 stability models
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Comparison of assessed risk from LE and numerical
models

The assessed risk for a LE analysis is generally different from
that obtained using numerical tools. The results show that for
some models the risk from numerical models is greater than
that from LE analyses whereas for other models the risk
determined from numerical models is less than that from LE
methods. The question of which method, LE or numerical, is
more conservative in terms of risk assessment does not have
a universal answer. Chiwaye (2010) also carried out risk
analysis on a diamond open pit mine case study using LE and
numerical modelling approaches, and reached similar
conclusions.

Conclusions

The research described in this paper has demonstrated a
practical way in which numerical analyses, and thus the
benefits they add, can be easily incorporated into probability
of failure determinations for rock slopes. The major
conclusion from the analyses carried out in this paper is that
using numerical models, instead of LE models, in carrying
out risk analyses results in significant differences in the
assessed risk. In some cases the LE models give a lower
estimate of the risk than numerical models whereas in other
cases they give higher estimates of the risk. These differences
in the assessed risk are mainly due to two reasons:

» LE methods are simplistic in their approach and ignore
some very important complex mechanisms of rock
mass failure. Parameters such as the dilation angle and
the horizontal to vertical stress ratio (k ratio), to name
a few, are not included in an LE analysis, and yet they
can have an effect on slope stability. The effect of these
parameters tends to indicate greater stability than that
given by a LE analysis. This means that, generally
speaking, LE methods are conservative in terms of their
stability (both FOS and POF) estimates. For some
models the POF values from LE models were higher
than those from numerical models by a factor of up to
2.

» The failure volumes (and hence the consequences of
failure) predicted by LE models are almost always less
than those from numerical models. Limit equilibrium
solutions only identify the onset of failure, whereas
numerical solutions include the effect of stress redistri-
bution and progressive failure after movement has
been initiated. Thus the failure surfaces from numerical
models extend further behind the crest than in LE
models.

For the above reasons, the risk assessed using numerical
analyses is considered to be a more reliable estimate of the
risk associated with a rock slope. Therefore, it is
recommended that numerical modelling be incorporated into
risk analyses in addition to LE models, possibly replacing
them when more confidence has been gained. When such
confidence has been gained, the outputs may allow steeper
slopes to be designed for the same risk level, with
corresponding economic benefits.
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