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Introduction

One of the by-products of blasting in
engineering activities is the blast-produced
ground vibrations. If this product of blasting is
not controlled, it could potentially damage
surrounding structures. Controlling of the
blast-produced vibration needs to predict the
resulted vibration accurately based on effective
parameters such as the characteristics of the
blast pattern and site. Thus prediction and
control of the vibration are of great importance
in engineering activities involving blasting
projects.

In theKaroun III power plant and dam,
there are several underground excavations
which are being developed using drilling and
blasting techniques. The resultant vibrations
influence the newly constructed concrete

structures. For this reason a blast prediction
and controlling program seemed to be
essential. Therefore a series of field
observation and measurements were
conducted in the study area.

In order to estimate and analyse the blast
vibration effect and consequences, different
indicators have been proposed such as: peak
particle velocity (PPV), peak particle
acceleration (PPA), peak particle displacement
(PPD), etc. Of these indictors, the PPV has
been used frequently by different authors and
standards. For instance, the US Bureau of
Mines (USBM) has extensively studied various
aspects of ground vibration, etc. caused by
opencast blasting and damaging effects on
different types of structures. It was found that
PPV is the best index to determine the damage
criteria for structures1. In addition, PPV has
been employed as an vibration index in the
Indian Standard Institute2, German DIN
Standard 41503, Indian CMRI standards4,
Rockwell’s Energy Formula5, Crandell’s Energy
Ratio Concept6 and in different empirical PPV
predictor models such as: Duval and Petkof7,
Langfors and Kihlstrom8, Davies et al.9,
Ambrases and Hendron10, Bureau of Indian
Standard predictor11, Ghosh and Daemen12,
Pal Roy13, Duvall and Fogelson14, Lundborg15,
Smith and Heteterington16, Holmberg and
Persson17 and Gupta et al.18.

In this study PPV is also used as the
vibration index for estimating the vibration
level. In this paper three alternatives are
employed to predict PPV. First multivariate
regression analysis (MVRA) is used as a
statistical approach to predict PPV based on
some input parameters and then a few widely-
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used empirical PPV predictors are used; finally a neural
network is used to predict the PPV. Eventually the results are
interpreted and compared.

Effective parameters on peak particle velocity (PPV)

The intensity of ground vibrations depends on various
parameters. These can be broadly divided into two categories,
namely, controllable parameters and uncontrollable
parameters, as shown in Table I. Controllable parameters can
be changed by the blaster in charge, whereas uncontrollable
parameters are natural and cannot be controlled19. In this
study nine parameters that affect the intensity of ground
vibration have been taken into account, including maximum
charge per delay (W), total charge per round (Wt), distance
from blast site (D), direction of firing φ, blasthole length (h),
number of blastholes (N), total delay in millisecond (Dt),
number of delay intervals (ND), and average specific charge
(Sc). The intensity of vibration is directly proportional to W,
Wt, h, N and it is indirectly proportional to D, Dt, ND. 

In most cases, when high blast vibration is encountered,
the blasters tend to reduce the specific charge. But after a
critical amount of specific charge, the intensity of vibration
would increase abruptly20. This fact illustrated in Figure 1.

Like specific charge, it cannot be determined whether the
intensity of blasting is directly or indirectly proportional to
firing direction (angle between recording and blasting
points). There is, however, a critical angle in which the
recorded blast intensity would peak20. Figure 2 illustrates the
effect of firing direction. It shows that there is reinforcement
in the intensity of the blast-induced vibration at the direction
of blasting, whereas at the opposite direction there is no such
reinforcement.

Site description and measurement

In order to study of the effects of blast vibrations in Karoun
III excavations, data measurement operations were done with
seismographs model UVS500 made by Nitro Nobel Company.
This device includes 3 parts: the main part, geophone, and
connective cables. Device power is supplied by one 1.5 V
battery. The device has a hydrometer that will be activated if
humidity of measurement area is higher than allowed limits.
In this condition, the position of installation must be
changed. The geophone can measure particles’ velocity in
three main directions and resultant amplitude. Also the
variation graph of peak particle velocity versus time is
accessible.

In order to measure vibration data at one point, in the
first stage, the geophone bolt (that ias 25 cm long and 20 mm
in diameter) must be installed. For this purpose, after drilling,
the bolts would be put in the holes and the experiments could
be started after cement grouting has reached the seven-day
strength. Because any weakness will decrease the precision
of experiments, the place of bolt installation should not have
any geological weakness such as alteration, bedding or
jointing. After installation of the geophone on the bolt, the
device must be connected to the geophone by connective
cables and should be put in a safe place. Having carried out
the above stages, the device will be ready for measurement.
After turning it on, there are 12 minutes for blasting and,
after these 12 minutes, the device will be automatically

▲
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Table I

Controllable and uncontrollable parameters that affect intensity of vibration (after Mohamed, 2009)19

Controllable variables Uncontrollable variables
Geometrical parameters Explosive dependent parameters Operational parameters Others Delay time scatter

Hole diameter Explosive type Blast size Distance to object Rock conditions
Burden Total explosives Initiation point Topography
Spacing Max. charge/delay Delay sequence Geology
Bench height Explosive energy Delay intervals Rock properties
Stemming VOD Firing method Weather conditions
Hole inclination P-wave in rock Confinement
Sub-drilling

Figure 1. Effect of specific charge on vibration intensity (after Jimeno et
al. 1995)20

Figure 2—The effect of firing direction
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turned off. For this reason, if the blast is not to be executed
up to this time, the device must be turned on again. The
installation coordinates of the geophone and blast centre
must be defined by mapping and surveying precisely in
advance. The locations of 11 installed geophones in Karoun
III dam and power plant are shown in Figure 3.

For each blasting sequence, maximum charge per delay
(W), total charge per round (Wt), distance from blast (D),
direction of blasting φ, blasthole length (h), number of
blastholes (N), total delay in milliseconds (Dt), number of
delay intervals (ND), average specific charge (Sc) as input
and effective parameters and produced PPV as output have
been measured and recorded. In total, 28 records were
measured in this region. The statistical summary of input and
output parameters is given in Tables II and III, respectively.

Statistical method (multivariate regression analysis)

Multivariate regression analysis (MVRA) was used as a
statistical approach to establish a linear relationship between
output and input parameters. The MVRA was preformed by
using SPSS (15.0) in two models as following:

➤ Model including constant
PPV = 0.434 W + 0.258 Wt - 0.455 D + 0.048 – 6. 092 h
- 0.547 N + 26.811 ND + 0.060 Sc – 53.98 

[1]

The coefficient of the total delay in milliseconds (Dt) in
Equation [1] is zero.

➤ Model without constant
PPV = 0.444 W + 0.268 Wt – 0.456 D + 0.048 – 11. 149
h – 0.540 N + 14.323 ND + 0.042 SC

[2]

The coefficient of total delay in milliseconds (Dt) in
Equation [2] is zero.

Empirical PPV predictors

Over years, researchers have conducted different studies to
establish the empirical equations in order to predict the
PPV7–18. The frequently used PPV predictors are listed in
Table IV. The empirical and conventional PPV predictor
models are basically based on two important variables,
maximum charge per delay and distance from blast site. In
fact, all these models have been based on scaled distance
(SD). The scaled distance is the hybrid variable of D and W
(in all formulas W and D refer to maximum charge per delay
and distance from blast site). The general equation of scaled
distance is as follows:
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Figure 3—Situation of 11 geophones installed in Karoun III power plant and dam

Table III

Statistical summary of output parameter 

Output parameter Unit Min. Max. Mean S.dev.

Peak particle velocity (PPV) mm/s 0.3 71 21.16 28.13

Table II

Statistical summery of input parameters 

Input parameter Unit Min. Max. Mean S.dev.

Max. charge per delay (W) kg 22.5 72.25 42.39 13.06
Total charge per round (Wt) kg 140.5 420 266.65 56.25
Distance from blast (D) m 32.18 173.9 95.63 46.60
Direction of blasting (φ) Degree 0 159 65.36 47.77
Blast hole length (h) m 3 6 3.56 0.62
No. of blast holes (N) - 15 248 116.8 43.01
Total delay in millisecond (Dt) ms 875 1375 1266.66 173.00
No. of delay intervals (ND) - 7 11 10.13 1.38
Average specific charge (Sc) (kg/ m3) 0.65 1.98 1.32 0.32
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[3]

where k1 and k2 are predefined for each particular predictor.
For parameter estimation in these predictors, simple

regression analysis was used, except for the general predictor
and Ghosh–Daemen models. In order to establish linear
equations, their equations were changed as following: 

➤ General predictor

[4]

[5]

[6]

➤ Ghosh – Daemen predictor

[7]

[8]

[9]

Then, by using multinomial linear regression analysis,
the constant parameters were estimated using SPSS (15.0)
software.

The parameter estimation and goodness-of-fit results for
the predictors are given in Table V. Figures 4(a), (b), (c), (d)
and (e) show the obtained curves of two-dimensional PPV
predictor models.

Two important indexes showing the accuracy and
reliability of each model have been listed in Table V, the
indexes are the correlation index (i.e. R2) and the index of
error estimation, i.e. MSE (mean squared error). The MSE
error function is calculated as below:

[10]

where e is the error between ith observed data and predicted
one. n is the number of observed data.

To compare the indexes of the predictors, Figures 5 and 6
illustrate the correlation and MSE error for each model
graphically; these indexes determine the reliability and
prediction precision of any predictors. For instance, the
general predictor has the highest correlation or R2 but the
CMRI predictor has the least MSE error or the error of
estimation. Although the correlation of the general predictor
is 0.01 more than that of the CMRI predictor, the MSE error of
CMRI predictor is 47.84 less than that of the general
predictor. Thus, both of these indexes should be simulta-
neously (not separately) used to select the best predictor.

Artificial neural network (ANN)

An artificial neural network (ANN) is a collection of nodes
and links among these nodes. It is massive parallel network
of nodes. The weights given to different links play a major
role in processing inputs and outputs. The way of intercon-
nection among the processing elements determines the
network architecture21.

▲
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Table IV

Frequently used conventional PPV predictors

Predictor Year Equation Ref.

USBM 1959 [7]

Langfors–Kihlstrom 1963 [8]

General predictor 1964 [9]

Ambrases-Hendron 1968 [10]

Bureau of Indian Standard 1973 [11]

Ghosh–Daemen 1983 [12]

CMRI 1993 [13]

Table V

Parameter estimation and goodness-of-fit for the predictors

Predictor K B A n Correlation (R2) MSE (mean squared error)

USBM 3621.8 2.6551 - - 0.90 60.89

Langfors–Kihlstrom 0.3192 6.7393 - - 0.88 206.30

General predictor 91.83 2.57 2.22 - 0.92 108.28

Ambrases-Hendron 18484 2.6529 - - 0.88 72.89

Bureau of Indian Standard 0.3192 3.3697 - - 0.88 196.35

Ghosh–Daemen 2.22 3.55 - 0.012 - 0.91 1147.69

CMRI 373.39 - - - -17.921 0.91 60.44



Over years neural models have been used in different
fields to solve the complicated problems when conventional
alternatives weren’t capable of solving. The application of
ANN models in different fields of mining and civil
engineering and especially in the blast-produced vibration
prediction have been listed in Tables VI and VII, respectively.

All these applications emphasize the fact that ANN
models are such powerful and adaptive approaches to model
the different problems when the conventional approaches are
unable. In this study a neural network is also employed as an
alternative to predict the PPV based on nine input
parameters.

Network architecture

To select the proper architecture, it is almost impossible to
find the best-fit network types by trying all network type.
This is because each network type has particular properties
that can be used to solve a particular problem, but there is no
general rule to determine which is the best-fit network. It is
also time consuming to try all. The alternative is to use
experience or a role of thumb.

In this study a feed-forward back-propagation neural
network was used. The characteristics of the ANN
architecture are as follows:

➤ Network type = Feed-forward back-propagation
➤ Training function = Levenberg-Marquardt back-

propagation 
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Figure 4—The curves of 2-dimentional empirical models (a) USBM, (b) Langfors – Kihlstrom, (c) Ambrases-Hendron, (d) Bureau of Indian standard, (e) CMRI

Figure 5—Correlation between empirical models and observed data

Figure 6—MSE error of empirical models 
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➤ Number of layers = 3
➤ Number of neurons in hidden layer = 15
➤ Number of neurons in input layer = 9
➤ Number of neurons in output layer = 1.

The ANN architecture used is illustrated in Figure 7.
To perform the ANN model MATLAB software was used.

The analysis was performed during two stages, namely:
training and validation.

➤ Training stage—the observed data-set including 28
samples was divided into two sets: The training data-
set and validation data-set. The training data-set
contains 20 samples and validation data-set contains
the remaining 8 samples. In the training stage the
network is trained only by using training data-set.
Figure 8 shows the training process during epochs. The
training process is stopped as soon as one of the
stopping criteria is satisfied. The observed data and
data predicted by the trained ANN model are compared
in Table VIII. Figure 9 shows the correlation between
observed data and data predicted by the trained ANN
model.

▲
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Table VI

ANN applications in different fields of mining and civil engineering

Author(s) Year Application Ref.

Dysart and Pulli 1990 ANN used to classify the regional seismic event at the noress array [22]

Yang and Zhang 1997 Investigation of the point load testing using ANN model [23]

Cai and zZhao 1997 Using ANN for tunnel design, optimal selection of rock support and stability assessment of tunnel [24]

Rudajev et al. 1996 and 1999 Determining event types such as earthquake, mining blasts, chemical explosions, etc., [25–27]
from seismological data using ANN

Maulenkamp and Grima 1999 Development of a model by which uniaxial compressive strength could be predicted using ANN [28]

Singh et al. 2001 Prediction of the strength of schistose rocks using ANN [29]

Khandelwal and Singh 2002 Investigation of stability of waste dump slopes by using ANN [30]

Ambrozic et al. 2003 Using ANN approach to predict the subsidence due to underground mining [31]

Deng et al. 2003 Combination of the three approaches, namely finite element methods, neural networks, and [32]
reliability to design pillar

Maity and Saha  2004 Assessment of the damage in structures because of variation of static parameters [33]

Singh et al. 2004 Investigation of P-wave velocity and anisotropic property of rocks with ANN [34]

Monjezi et al. 2006 Prediction by ANN of the ratio of muck pile before and after the blast, fly rock, and total explosive [35]
used in the blasting operation

Monjezi and Dehghani 2008 Evaluation of the effect of blasting pattern parameters on back break using neural networks [36]

Qiang Wu et al. 2008 Prediction of the size-limited structures in a coal mine using artificial neural networks [37]

Table VII

ANN applications in blast-produced vibration prediction

author(s) Year Application Ref.

Chakraborty et al. 2004 Studied the effectiveness of multilayer perceptron neural networks for prediction of the [38]
blasting vibration along with different empirical models

Singh 2004 Employed a feed-forward back-propagation neural network approach for prediction and [39]
control of ground vibrations in mines 

Singh and Virendra Singh 2005 Employed an intelligent approach to prediction and control ground vibration in mines and [21]
also used MVRA as statistical approach, then compared the results.

Khandelwal and Singh 2006 Prediction of blast-induced ground vibrations and frequency in opencast mine using an ANN model [40]

Khandelwal and Singh 2007 Evaluation of blast-induced ground vibration predictors using ANN models [41]

Khandelwal and Singh  2009 Using the neural network to predict the blast-induced vibrations [42]

Figure 7—ANN architecture



➤ Validation stage—during the training stage the
network might learn too much. This problem is referred
to as over-fitting. Over-fitting is a critical problem in
almost all standard NNs architecture43. One of the
solutions is early stopping44, but this approach needs
more critical attention as this problem is harder than
expected43.

Hence, for this problem during training, the validation
data-set is associated with the training data-set. After a few
epochs the network is tested with the validation data. The
training is stopped as soon as the error in the validation
data-set increases rapidly higher than the last time it was
checked45. Figure 10 shows that the training should stop at a
point when the validation error starts to increase.

Figure 11 shows the training and validation processes
during epochs. Unlike the training stage, here the training
process is stopped as soon as the error in the validation data-
set increases rapidly higher than the last time it was checked.
The observed data and data predicted by the trained ANN
model are compared in Table IX for validation and training
data-sets. Figures 12 and 13 show the correlation between
observed data and data predicted by the trained ANN model
for validation and training data-sets.
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Figure 8—Trained network

Table VIII

Observed data and predicted by the trained ANN
model

Observed data Predicted by ANN model Error

0.7 0.67 0.03
1.1 1.38 0.28
0.3 0.33 0.03
3.3 3.30 0
0.6 0.69 0.09
0.4 0.85 0.45
1 1 0
4.7 4.89 0.19
3.7 5 1.3
3.3 3.31 0.01
1.2 1.56 0.36
34 34.74 0.74
54 55.43 1.43
65 65.01 0.01
1.3 1.15 0.15
1.5 2.1 0.6
71 71.03 0.03
63 68.25 5.25
69 70.00 1
67 67.9 0.9

Figure 9—Correlation between the observed data & predicted in
training stage

Figure 10—Training and validation curve

Figure 11—Trained and validated network
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Results and discussion

By considering the results of the approaches used to predict
the PPV, it can be seen that ANN technique has the highest
R2 = 0.98 for the given problem, after that MVRA with R2 =
0.94, and finally the general predictor of empirical predictors
with R2 = 0.92. But a high R2 indicates only that correlation
between the observed and predicted data are high, it does not
mean that the observed data are close to the predicted data.
In other words R2 is not a suitable index or able to show
errors between them. By considering just R2, the ranking of
these methods would be: ANN, MVRA, and general predictor.

As stated before, another index is required to indicate the
estimation error of each predictor. Here the MSE error is
used, given in Equation [10]. In empirical models, Figures 5

and 6 illustrate the correlation (R2) and MSE error for each
model; these indexes determine the reliability and prediction
precision of any predictors. In these figures, general predictor
has the highest correlation or R2 but the CMRI predictor has
the least MSE error or the error of estimation. Although the
correlation of the general predictor is 0.01 more than that of
the CMRI predictor, the MSE error of the CMRI predictor is
47.84 less than that of the general predictor. Based on
engineering judgement, the CMRI predictor is selected as the
best empirical predictor.

Figure14 compares the obtained results of the best-fit
empirical equation, MVRA and ANN with observed data. This
figure shows that although MVRA has greater R2, it shows a
wide range of estimation errors. From this figure it can be
easily seen that ANN has the most correlation and the least
error, thus it is chosen as the most reliable model.

▲
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Table IX

Observed data and data predicted by ANN model for training and validation data-sets

Training data-set Validation data-set

Observed data Predicted by ANN model Error Observed data Predicted by ANN model Error

0.7 0.85 0.15 57 45.60 11.4
1.1 1.86 0.76 47 47.52 0.52
0.3 0.80 0.5 1.3 2.14 0.84
3.3 3.30 0 1.7 1.75 0.05
0.6 1.2 0.6 0.9 0.63 0.27
0.4 0.89 0.49 1.2 2.45 1.25
1 1.06 0.06 1.1 1.17 0.07
4.7 4.65 0.05 7.2 7.68 0.48
3.7 6.3 2.6
3.3 3.32 0.02
1.2 1.34 0.14
34 36.98 2.98
54 49.85 4.15
65 64.36 0.64
1.3 1.21 0.09
1.5 1.48 0.02
71 75.55 4.55
63 56.45 6.55
69 68.41 0.59
67 72.1 5.1

Figure 12—Correlation between the observed data and data predicted
in validation stage (for training data-set)

Figure 13—Correlation between the observed data and data predicted
in validation stage (for validation data-set)



Again, this study indicates that the ANN model has great
adaptability. Table X gives the exact values of the MSE error
and R2. By considering Table X and using engineering
judgement, the best empirical model (CMRI) is superior to the
MVRA approach. Although the ANN model is the best-fit
model, the results of the empirical models are reliable and
satisfactory and can be considered as a solution.

Conclusion

In this paper three techniques, i.e. ANN, MVRA, and
empirical, have been used to predict the blast-induced PPV in
the structures of the Karoun III power plant and dam. After
analysis, it was found that the ANN model is the best
predictor model using a novel methodology. The most
important point which has been taken into consideration in
this methodology is that the R square (R2) is not a reliable
and suitable index to show and validate the precision of the
prediction of a proposed model. The high R2 shows only that
the outputs of the proposed model are highly correlated to the
measured and observed data. It does not mean that these two
groups of data are close to each other or that; the error
between them is small. To select the proper model in any
case, these two indexes (R2 and an error function such as
MSE) should be simultaneously taken into account, and
based on engineering judgement, the proper model would be
chosen. In this paper the ANN model has the highest R2 and
the least MSE error. Thus it was selected as the best model.
But between empirical models and the MVRA model, the
empirical model (CMRI predictor) was selected as the second
model using engineering judgement. This methodology is

first employed in this paper to interpret the results of a
model.
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