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alloy A201

Synopsis

A201 aluminium alloy is a high strength casting alloy with a
nominal composition of Al-4.6Cu-0.3Mg-0.6Ag. It is strengthened by
the Q(Al,Cu) phase and the 6’ (Al,Cu) phase during heat treatment.
Further strengthening of this alloy system can be obtained through
the addition of transition elements, but care must be taken as other
elements might have adverse effects on the mechanical properties.
The objective of this study is to determine the influence of Mn on
the tensile properties of rheo-processed Al-Cu-Mg-Ag alloy A201.
ThermoCalc software was used to predict the different phases that
can be expected in the alloys, and scanning electron microscopy
(SEM) with energy dispersive spectroscopy (EDS) was used to
investigate the actual phases that formed. The influence of these
phases on tensile properties is quantified. SEM and ThermoCalc
revealed that there is an increased amount of the Al,oCu,Mnz with
increasing Mn. The tensile properties showed that high amounts of
Mn do have adverse effects on the tensile properties of alloy A201,
especially the ductility.

Keywords
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Alzoculelg

Introduction
Semi-solid metal (SSM) processing is a

near-net shape products for a variety of

rheocasting. With thixocasting, a specially

high pressure die casting (HPDC). With

costs associated with thixocasting have

0.3Mg-0.6Ag) possesses the highest
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manufacturing method capable of producing

industrial applications. A semi-solid structure
(free of dendrites) is produced with the solid
alloy particles present in a near spherical form.
This semi-solid mixture flows homogeneously,
behaving as a thixotropic fluid with viscosity
depending on the shear rate and fraction of
solid in the liquid, by either thixocasting or

prepared billet of solid material with a globular
microstructure is reheated into the semi-solid
range, followed by a forming process, such as

rheocasting, an SSM slurry is prepared directly
from the liquid, followed by HPDC. The higher

resulted in rheocasting becoming the preferred
semi-solid process!. Aluminium alloy A201
(with nominal chemical composition Al-4.6Cu-
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mechanical strength of all the aluminium
casting alloys between room temperature and
200°C2. In Al-Cu alloys, the main
strengthening precipitate is Al,Cu (6'). Small
amounts of Ag change the precipitation
process in these alloys, causing a form of
Al,Cu (referred to as Q) to precipitate as thin
plates on the {111} matrix planes (primary slip
plane) rather than the {100} planes. This
results in remarkable high tensile properties
being obtained3. Elements such as Fe
(AlCuyFe) have been reported in literature2 to
have an adverse effect on the mechanical
properties of the alloy, as they tend to form
phases on the grain boundaries which give a
lower supersaturation of copper during
artificial ageing and a decrease in strength in
the T6 condition (solution heat treated,
quenched and then artificially aged). Of
particular interest in this study is Mn. It has
been shown that, in conventional A201
castings at quantities of less than 0.5 wt%, it
tends to contribute to the formation of the
stable dispersion strengthening phase
AlyoCuyMngz, which is known to aid in grain
size control with little removal of Cu in the
form of coarse intermetallics4. Dispersion
strengthening is a means of strengthening
alloys wherein small particles of usually less
than 0.1 m of a hard, inert phase are
uniformly dispersed within a load-bearing
matrix phases. Mn has the additional
advantage of combining with Fe to form
Alg(Mn,Fe)4. At levels beyond a maximum of
0.5 wt%, it has been shown to lead to the
formation of large fractions of coarse and
brittle constituents which act as crack initiators
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and reduce the fracture toughness of the material4. The
purpose of this study is to investigate the effects of Mn in
SSM-processed A201.

Experimental work

In order to study the influence of Mn with the other elements
being kept constant, a batch of alloy A201-A (composition
given in Table I) was melted in a 20 kg resistance heated
tilting furnace and degassed with Ar. Manganese was added
according to a mass balance. A sample was poured each time
and quenched to analyse the chemical composition by optical
emission spectroscopy (Thermo Quantris OES). The CSIR-
OES (Council for Scientific and Industrial Research) does not
have the Al-Ag analysis database. As a result, a different
accredited laboratory was used for the analysis of Ag. Table I
shows the chemical composition obtained for each of the
alloys. The thermodynamic properties of each alloy were then
calculated with an aluminium thermodynamic database
(ProCast 2009.1) from the specific OES compositions given in
Table 1. Stainless steel cups (~ 400 g) were used for
processing in the rheocasting system. The mush metal was
processed using the CSIR rheocasting process where
induction stirring with simultaneous forced air cooling is
employed?. Plates (6 mm x 55 mm x 100 mm) were cast in
steel moulds with a 130 ton clamping force high pressure die
casting (HPDC) machine (LK DCC130). ThermoCalc, a
commercially available software package used to perform
thermodynamic and phase diagram calculations for multi-
component systems of practical importance, was used to
investigate the possible effects of Mn levels on the
equilibrium phases in the alloy, using the AI-DATA ver.2
database. Because of its absence from the available database,
the element Ag was not included in the calculations.

The cast plates were heat treated to the traditional T6
condition that consisted of solution treatment at 513°C for 2
h, followed by 527°C for 17 h, quenching in water at ambient
temperature and artificial ageing (AA) at 153°C for 20 hs. It
has been shown by the authors that these solution
treatments are not necessarily the optimum solution
treatments for rheo-processed material9. The samples in the
as-cast and heat treated conditions were X-rayed to
determine the types of defects present. Subsize rectangular
tensile test specimens were machined from the plates to final
specimen dimensions with the nominal width of 6mm and
gauge length of 25 mm according to ASTM standards and the
tensile properties were evaluated (Instron Model 1342)10. A
total of 9 tensile tests were done for each alloy. Scanning
electron microscopy (SEM) with energy dispersive
spectroscopy (EDS) at an acceleration voltage of 20 kV was
used for microstructural characterization and to quantify the
actual intermetallics that had formed.

Results and discussion

Chemical composition

The chemical compositions of the A201 alloys used in this
study are shown in Table I, as well as the specification of
alloy A2016. The difference in the copper content in all alloys
is minimal; this simply means the volume fraction of the
strengthening precipitates should be the same in all alloys. It
has already been stated that Ag additions promote the
formation of Q rather than 6'23. 1t is also known that Mg is a
critical component for the nucleation of Q11. Magnesium-rich
clusters are believed to act as heterogeneous nucleation sites
for Q plates. Silicon, on the other hand, hinders the precipi-
tation and stability of Q12. Trace additions of Si have also
been shown to stimulate matrix precipitation of 8’, S
(Al,CuMg) and AlsCugMgy, which are phases competing for
solute. Q precipitation is suppressed in alloys with Mg to Si
ratios of < 2.0, regardless of Mg and Si content11. It is seen
from Table I that the Mg to Si ratios of all the studied alloys
were > 2.0 in this study. Ti plays a major role as grain refiner
for the primary o-phase. The Mn content was purposely
varied to a maximum of 1.0 (wt per cent) for the scope of the
study.

ThermoCalc analysis

The calculated phase equilibria (minor phases) for the three
alloys used in this study (Table I) are shown in Figure 1
(a—c). In all cases the major phases were liquid, Al-based FCC
solid solution (the primary phase upon solidification), and
Al,Cu (formed by precipitation after solidification). However,
of interest to this study is the formation of Al;oCu,Mnj
phase. Figure 1 (a—c) shows that mass percentage of the
AlpoCu;Mnjz phase increases from ~1.2% in the low Mn alloy
to around 4.5% in the high Mn alloy. In the two higher-Mn
alloys (Figure 1 (b and c)), AlyoCu,Mnj is predicted to form
during solidification. Some manganese is predicted to be
taken up also by the ‘alpha’ phase, which is an Al-Mn-Fe-Si
solid solution based on AlgFe,Si. The other detrimental
phases in alloy A201 predicted by ThermoCalc are CuyFeAl;
and Mg,Si. However, these are predicted to be present at
mass percentages of less that 0.1% in all three alloys, thus
their impact on the mechanical properties is expected to be
minimal.

Microstructure

Scanning electron microscopy (SEM) coupled with energy
dispersive X-ray spectroscopy (EDS) was used for
microstructural investigation and to determine the
compositions of the phases. Secondary electron images of the
three alloys in T6 temper condition are shown in Figure

Table |

Chemical composition (wt%) of Al-Cu-Mg-Ag alloys (balance Al)

Alloy Cu Fe Si Mn Mg Ti Ag
Specificationé 4.0-5.2 <0.15 <0.1 0.2-0.5 0.15-0.55 0.15-0.35 0.40-1.0
A201-A 4.15 0.04 0.03 0.29 0.23 0.16 0.65
A201-B 4.36 0.05 0.07 0.57 0.26 0.22 0.65
A201-C 4.28 0.07 0.10 1.01 0.26 0.26 0.65
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Figure 1—Calculated phase equilibria (minor phases) in mass percentage for Al alloys with compositions given in Table | corresponding to alloy a) A201-A,
b) A201-B, c) A201-C. The vertical broken lines give the solidus temperature, and the temperature at which the primary FCC phase first appears upon

cooling

Figure 2—Secondary electron images of samples of alloy (a) A201-A , (b) A201-B and (c) A201-C in T6 temper condition

2(a-c). In all alloys the phases with the spherical and needle-
like morphology were tentatively identified by EDS (see
typical EDS spectra in Figure 3 representing all three alloys)
to be AlyoCu,Mnsz. Figure 2 (a-c) shows that the volume
fraction of the precipitates increases with increasing Mn
content, as predicted from the equilibrium calculations. This
is expected to have an adverse effect on ductility; the effect
on strength is not expected to be large since the equilibrium
amount of Al,Cu is predicted to be little affected by the
presence of the Mn-containing precipitates (see Figure 1).
Beffort et al.12 also showed that increasing levels of Mn,
Cr and V in the matrix will result in the formation of
intermetallic compounds that reduce the fracture toughness
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of the material due to the fact that they act as crack initiators.
They postulated that the embrittlement was caused by
particles with composition of (AlCu)e(Cu,Mn,Cr,V). Based on
the EDS analysis (see Figure 3) and ThermoCalc (see

Figure 1) done in this study, the embrittling particles are
believed to rather be AlyoCusMns.

The SEM fractographs of the tensile samples of the three
alloys in T6 temper condition are shown in Figure 4 (a-c). All
alloys failed in a ductile manner, as characterized by the
dimple nature of the fracture surfaces. Slight variation in
dimple size was observed for all three alloys. The presence of
AlyoCuyMnj particles is more evident in A201-B and A201-C
(see Figure 5 for higher magnification). This is expected to
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Figure 3—EDS spectra of tentatively identified AlogCusMnj particle
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Figure 4—Secondary electron images of fracture surfaces of tensile specimens for alloys (a) A201-A, (b) A201-B and (c) A201-C in T6 temper condition

cause lower ductility as these hard, brittle particles will serve
as stress concentrators, making it easy for crack initiation to
occur. Close inspection at high magnification reveals the
presence of the Al,oCu,Mnj (see Figure 5(a-b)).

Mechanical behaviour

The average tensile values of the alloys in the T6 temper
condition are shown in Table 11, with the standard deviation
from nine values shown in brackets. Table I shows that the
tensile properties (especially ductility) of the alloys decrease
with increasing Mn content as expected from SEM analysis.
The difference in the elongation of A201-B and A201-C is not
significant. Figure 6 clearly shows how the brittle particles
cracked during tensile testing. The same phenomenon was
experienced by Méller et al using SSM-HPDC F357 alloy13.

» 170 MARCH 2011 VOLUME 111

Tseng et al.14 showed that Mn-bearing phases such as
AlyoCu;Mnjz caused the solid solution level of copper in the
matrix of A206 (the Ag-free version of A201) to decrease.
More importantly, they suggested that increasing the Mn-
solution level retarded the precipitation of the strengthening
phases in the alloy. This resulted in a decrease in strength of
the A206 alloy with increasing Mn levels—in agreement with
the observed results for A201 in this study (Table II).

Conclusions

High Mn contents in rheo-processed Al-Cu-Mg-Ag alloy
A201 resulted in the formation of high volume fractions of
AlpoCuyMnj particles. Tensile properties of the alloys
decreased with increasing Mn content. Micro-cracking of the
AlpoCusMnj particles occurred during tensile testing, which
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Figure 5—Secondary electron images of fracture surfaces of T6 tensile
specimens at magnification of x2500 for alloys (a) A201-B, and (b)
A201-C

Table Il

Tensile properties of the three A201 alloys in T6
temper condition

Alloy YS (MPa) UTS (MPa) %A

A201-A 297 (20.1) 407 (10.6) 13.4 (4.8)
A201-B 273(9.7) 371 (12.1) 6.0 (1.6)
A201-C 267 (8.0) 353 (18.9) 4.2(0.8)

caused a marked reduction in ductility. Increasing the Mn-
solution level presumably retards the precipitation of the
strengthening phases in the alloy, which results in a decrease
in strength with increasing Mn levels.
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