
Introduction and problem definition

Open-pit mining is the most widely applied
surface mining method and is by and large
regarded to be economically superior to most
underground methods, due mainly to higher
recovery and production capacity. However,
underground mining can be considered as
being more acceptable than open-pit mining
from the environmental and social
perspectives, since it often leaves a smaller
footprint.

There are some near-surface deposits that
extend to considerable depths. Development of
such deposits often starts by adopting a
surface mining method and then changing to
an appropriate underground method when the
mining depth reaches a predetermined
maximum value. The transition depth is the
point at which economic considerations dictate
the change of mining method from open-pit to
underground. Accurate determination of this
depth is of utmost importance. In combined
open-pit and underground mining, it is likely
that block, mass, or panel caving systems are
the most practicable underground methods,
achieving high production rates and low costs
(Fuentes and Caceres, 2004). A general view
of the transition problem is shown in Figure 1.

In the past few decades, limited research
has been carried out in order to solve the
transition problem of some mines that have
the potential of using both surface and
underground methods. Some of the mines
worldwide with potential to use a combination
of open-pit and underground operations are
Chuquicamata copper mine in northern Chile,
Grasberg copper-gold mine in Indonesia,
Diavik diamond mine, Kanowna Belle gold
mine in Australia, Argyle diamond mine in
Australia, Ekati diamond mines in Canada,
Meng-Yin diamond mine, Bingham Canyon in
the USA, Mansa Mina in Chile, Venetia in
South Africa, Mount Keith and Telfer in
Australia, and Kiruna in Sweden (Bakhtavar et
al. 2009b).

Related research

For many large mines on the world scale,
optimization of the transition depth from
open-pit to underground mining is now
considered as being a serious planning
concern in the mine design stage.
Determination of the optimized transition
depth from open-pit to underground mining
has therefore been the subject of some
academic research, although much more work
is required if it is to encompass all possible
situations with acceptable accuracy.

The first method for such evaluation was
the ‘allowable stripping ratio’, which defines a
relation between the cost of winning 1 t of ore
in underground (and in open-pit) mining and
the cost of waste removal in relation to 1 t of
ore won by the open-pit method (Soderberg
and Rausch, 1968).
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Optimization of the transition from open-pit to underground operation

Nilsson (1982) presented an algorithm based upon cash
flow and net present value (NPV), which was later reviewed
in order to emphasize the importance of transition depth
(Nilsson, 1992). To further enhance the analysis of the
transition depth problem, discount rate was recognized as the
most sensitive parameter in the process (Nilsson, 1997).

Camus (1992) introduced an algorithm using block
models and considering net economic value of blocks for both
open-pit and underground mining. This approach basically
consists of running the open-pit algorithm, taking into
account different cost values applicable in underground
mining.

Subsequently, Whittle programming (4-x) was developed
to calculate the transition depth from open-pit to
underground mining. Using this method, decisions can be
made by comparing operational scenarios of the open-pit to
underground transition (Tulp, 1998).

Next, an approach on the basis of ‘allowable stripping
ratio’ method was developed. In this approach, volumes of
ore and waste within the open-pit limit were considered being
a function of ultimate open-pit depth (Chen et al. 2001,
2003).

A computer program with a heuristic-based algorithm
was introduced to find an optimal transition depth (Visser
and Ding, 2007). Bakhtavar and Shahriar (2007) proposed a
heuristic-based approach using the economical block models
of open-pit and underground methods. In this approach, the
total value obtaining from open-pit mining is compared to the
value from underground mining for each level.

Further research resulted in a heuristic-based approach to
determining the transition depth (Bakhtavar et al., 2008a). A
variation of the heuristic-based method using the economical
block models of open-pit and underground methods was
developed after performing some essential modifications to
the original algorithm proposed by Nilsson (1982 and 1992)
in order to solve the transition problem (Abdollahisharif et
al., 2008; Bakhtavar et al., 2009a).

A methodology was represented using the allowable and
overall stripping ratios theory, which generated some
formulae for calculating the transition depth from open-pit to
underground mining (Bakhtavar et al., 2008b). A heuristic

model was presented based on comparing block economic
values of open-pit and underground methods together with
the NPV attained through mining on similar levels
(Bakhtavar et al., 2009b).

It is evident that the problem of transition from open-pit
to underground mining is considering as a new critical
challenge in the mining industry. The research associated
with this problem is not considerable, and it is therefore
essential that a major effort is devoted to the issue. A
methodology based on mathematical programming is
required owing to the deficiencies of the few methods
developed to date, which are not able to find constantly an
optimal transition depth. For these reasons, in this study to
solve the transition problem on the basis of maximizing the
profit gained by open-pit and underground mining, (0-1)
linear integer programming has been used. Therefore, block
economic values of open-pit and underground methods as
the profit parameter have been imported to the transition
model. Finally, to assess the model in detail a hypothetical
example is used. The model proposed in this study can solve
the transition problem by considering the technical and
economic issues of both open-pit and underground mining.

Problem formulation

In mathematical programming using binary variables, a value
of ‘0’ will be attributed to a decision ’no’ and a value of ‘1’ to
‘yes’. The transition problem can be defined as a decision-
making process in form of ‘extracting’ (one) or ‘non-
extracting’ (zero) in each block. It is evident that all of the
decision variables of the transition problem are restricted to
take on only integer (or discrete) values of ‘zero’ and ‘one’.
Therefore, the mathematical programming model introduced
in this paper is based on (0-1) linear integer programming,
and takes into account the economical block models with
open-pit and underground block values (Bakhtavar, 2009).
In order to mathematical model the transition problem some
of the following assumptions have been considered:

� The problem should be modelled on the basis of
maximization of the overall profit achieved through
open-pit and underground mining

� Each block and also each row (level) can be mined at
most once, and through at most one mining method
(open-pit or underground)

� At most one uniform crown pillar with constant height
should be defined, being a multiple of row height
considering the selected underground mining method
and geotechnical criteria

� At most one underground method focusing on
‘overhand’ stoping methods can be used, which is
known

� All open-pit and underground rows are contiguous
� The required constraints of open-pit and underground

mining methods should be considered.

In both open-pit and underground two-dimensional
economical block models, dimensions (width and height) of
the blocks are considered as being a multiple of the bench
height, which is more common in open-pit mining and must
also be applicable in underground stope mining. Furthermore,
according to the wall slope of 45 degrees that has been
conventionally considered in open-pit optimization
algorithms, both the width and height of the blocks are

�
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Figure 1—A schematic of the transition problem from open-pit to
underground mining



assigned equal values. For example, if the bench height is
designed to be 15 m, it would be better to consider the
dimensions of blocks as 15*15 m2, 30*30 m2, or 45*45 m2

according to the volume of ore deposit. Although small size
blocks can increase the accuracy of the model, the number of
blocks and decision variables as well as size of the model
may be increased. Therefore, in order to avoid this problem
the most suitable dimension must be used for the blocks in
the model. In the case of an ore deposit with a large volume
(in the shape of massive and vertical or near-vertical thick
veins), large size of blocks (45*45 m2) should be considered.
However, for small ore deposits a size of 15*15 m2 can be
effectively used for the blocks.

Definition of symbols and terms

In addition to ‘variable’ and ‘constant’ factors as the basic
concepts for the transition model definition, some required
indices, counters, and sets are defined in the Appendix.

The objective function

The authors seek to optimize the transition problem on the
basis of maximization of the overall profit achieved through
open-pit and underground mining. For this reason, the
objective function of transition model is expressed as follows
(Bakhtavar, 2009):

[1]

The model constraints

Both equality and inequality types of constraints have been
modelled. They can be mathematically defined as the
following (Bakhtavar, 2009):

Extracting or non-extracting constraints (reserve
restriction)

A block is mined at most once and through at most one
mining method (open-pit or underground). This constraint
allows a block to be left in form of waste or in the crown
pillar. It also ensures that if a waste block is located within
the open-pit limit or underground layout, it inevitably has to
be mined.

According to inequality [2], these constraints can be
formulated to ensure that each block in the economical block
model can be mined at most once and through at most one
method.

[2]

Slope stability and contiguous open-pit rows constraints

These constraints ensure that the open-pit wall slope
restrictions hold. All the overlying blocks that must be mined
before mining a given block have to be determined. This can
be effectively imposed through one or more cone templates
representing the required wall slopes of the open-pit mine
(Figure 2). These constraints also ensure that all open-pit
rows are contiguous. It is notable that these types of wall
slope constraints are referred to as numerous constraints in
this model. The constraints are defined mathematically as the
following inequalities:

[3]

In Equation [3], on the basis of two-dimensional block
models and considering conventional wall slope of 45 degree,
a equals to 3 and Ba={-1, 0, 1}. This means that for
extracting block (i,j), three overlying blocks {(i-1,j-1), (i-1,j),
(i-1,j+1)} have to be mined.

Minimum stope width and height constraints

From the economic and technical points of view, extraction of
each block in underground stope mining is often conditional
upon extracting all of the adjacent blocks within the stope
layout. On the other hand, a block can be mined only if the
other blocks within the stope layout have the potential to be
mined. In this regard, the minimum applicable dimensions of
the stope, namely width and height, are of the utmost
importance in optimizing the underground layout.

It is supposed that minimum stope width and height are
equal to three and four contiguous blocks respectively. In this
case, in order to extract block (i,j) it is necessary to mine all
of the highlighted blocks shown in Figure 3, thus ensuring
the minimum stope area and layout.

Mathematically, minimum stope width and height
constraints can be merged in the form of a set of constraints.
These constraints ensure the minimum applicable stope
dimensions considering the underground mining sequence,
which are defined on the basis of mathematical logic as
below:

[4]

Optimization of the transition from open-pit to underground operation
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Figure 2—Two-dimensional block model and the cone template
ensuring the required wall slope
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Figure 3—Minimum stope area in relation to block (i,j) on a two-
dimensional block model
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These constraints can be used in relation to all of the
underground ‘overhand’ stoping methods.

Maximum stope width and height constraints
From the technical point of view, dimensions of a stope
layout have to be restricted through the number of
contiguous blocks in the vertical and horizontal directions.
Maximum stope width and height constraints are formulated
separately according to inequalities [5] and [6] respectively.

[5]

[6]

Crown pillar constraints
A crown pillar is often provided to prevent water entering
from the open-pit floor into the stope, as well as to reduce
surface subsidence and caving. Finding the most suitable
crown pillar in a combined mining method using open-pit
and underground operations, especially block caving, is one
of the most interesting and useful problems for mining
engineers today. With the increasing depth of open-pit mines,
a combination of these two methods is gaining popularity
and hence the importance of the problem is increasing.
Leaving a pillar with adequate thickness will minimize
detrimental interference between the two working areas,
while maximizing ore recovery.

During this study, at most one uniform crown pillar with
constant height being a multiple of the row (level) height is
defined. For this purpose, the number of required rows is
considered with reference to the selected underground
stoping method, economic aspects, and geotechnical
concerns.

Crown pillar constraints can be mathematically modelled
through two set of constraints according to Equations [7] 
and [8].

[7]

[8]

‘At most one method for each block’ constraints
In addition to mining each block at most once and via at most
one method (open-pit or underground), each row (level) also
has to be mined according this rule. On the other hand, it is
essential to define a set of constraints ensuring that each row
can either be left as the crown pillar or mined through open-
pit or underground methods. These constraints can be
formulated according to Equation [9].

[9]

First, open-pit and underground block models must each
be separately generated. Then, it is necessary to establish a
long-range mining plan for the deposit.

The beginning of this economical comparison is level
1and it continues to level m, which is identified as the
optimal final level of open-pit mining without considering
any underground alternative.

Results and discussion

Generally, the two-dimensional ore deposit model contains
many blocks, and it is very difficult or impossible to obtain a
solution through linear binary integer formulations if they
are applied to the block model including small blocks sizes
(15*15 m2). Thus, it is often necessary to consider applying
the formulations the blocks with larger dimensions such as
30*30 m2 and 45*45 m2. This can also be effective in
reducing the processing (CPU) time required to solve the
model.

The number of binary variables required for the presented
linear integer model is equal to the number of blocks in the
model multiplied by two (for open-pit as well as underground
mining) plus the number of rows multiplied by two.

This section presents an application of the transition
model on a 2D economical block model generated on the
basis of a hypothetical ore deposit. The model embodies 204
square blocks of 30*30m2, with 17 and 12 blocks along the
horizontal and vertical axes respectively.

The economical block models and the block economic
values achieved by open-pit and underground mining are
shown in Figures 4 and 5 respectively.

The model is solved using the optimization toolbox in
MATLAB software after a running time of 14 seconds. The
program output based on the model for the case example is
shown in Figure 6. It is resulted in the initial seven levels
being mined using open-pit method. This means that the
transition depth equals 210 m. The minimum and maximum
widths of the underground stopes are assumed to be four and
five blocks respectively. Furthermore, four and five blocks are
assumed to be the minimum and maximum heights of the
underground stope. Two blocks are reserved for the crown
pillar. As a result, the maximum total value due to the
combined of open-pit and underground methods is
determined to be 172 units of currency. 

Most of the methods previously reported in the literature
introduce the simply heuristic algorithms. They provide the
majority of the essential factors to be considered, including
the discount rate and time value of money in the NPV
computations. However, while these algorithms have not
been mathematically modelled and hence apply no limitations
for the number of variables and constraints, the present

�
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Figure 4—Open-pit economical block model



paper introduces the complexities of the modelling and
thereby circuments the limitations of the conventional and
the current forms based on its mathematical model.
Consequently, applying all the relevant factors contributes
greatly to the complexity of the method, which has barely
been discussed in this paper. It is worth mentioning here that
an extension of the present work is in the authors’ future
plan to investigate the feasibility of applying some effective
factors in the model. Furthermore, the authors are aware of
3D mathematical model benefits based on NPV that improve
production scheduling. However, taking into consideration
both open-pit and underground methods results in an
increase in the number of variables in a way that make 3D
modelling either inapplicable or infeasible. The extension of a
2D model to 3D should constitute an ideal solution; however,
this has not been implemented as yet. The present paper
considers a model that targets an optimal layout for both
open-pit and underground design based on mathematical
modelling. Ultimately, such optimization problems are
initially modelled on 2D block model basis regardless of the
NPV concept (including the time value of money and discount
rate). For instances on this matter, the authors would like to
refer to the work presented by Lerchs and Grossmann (1965)
in optimum open-pit mine design, and by Riddle (1977) and
Alford (1995) on the optimization of underground mine
design. As stated earlier, applying the NPV concept in real

applications would lead to a dramatic increase in the number
of variables and constraints, since the mathematical model
will embrace both open-pit and underground blocks. This
prohibits defining an achievable specific scope for the
problem. Due to this constraint, our projection focuses on a
more realistic sub-problem to establish a mathematical model
that at the same time provides new challenges in the
combination of open-pit and underground methods.

The technique is proposed here with the hope that it will
be used by the mining industry as a preferable mathematical
model, which may be further refined and developed in further
investigations into the optimization of the transition from
open-pit to underground mining.

Conclusion

Due to the importance of optimizing the transition from
open-pit to underground mining as a new challenge in
mining engineering, a mathematical programming based
model considering the block economic values of open-pit and
underground methods together is presented. In this regard,
all of the decision variables of the transition problem are
restricted to take on only integer values of ‘zero’ and ‘one’.
Therefore, the transition model was established being a (0-1)
linear integer programming base model.

Dimensions (width and height) of the blocks in two-
dimensional economical block models were considered to be
multiples of the desired conventional bench height for open-
pit mining. This relationship is also applicable in
underground stope mining.

It is notable that during the mathematical modelling of
the transition problem, the objective function was expressed
as maximization of the overall profit achieved through open-
pit and underground mining. The objective function is
subjected to a number of required constraints in relation to
open-pit and underground mining, as well as a crown pillar
between them.

In order to analyse the model in detail, a hypothetical
example is used. After solving the model, the initial seven
rows were considered for mining through the open-pit
method. After leaving two rows as a crown pillar immediately
below the final open-pit floor, the rows beneath the crown
pillar were considered for underground mining. The
transition depth from open-pit to underground mining for the
case example was thus determined to be 210 m. The
maximum total net value gained by combined mining was
calculated to be 172 units of currency.
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Appendix
Indices and counters

i Index for rows
j Index for columns
i,j Index specifying location of a block within the

economical block models
k Index to indicate possible mining methods for blocks (1

for open-pit; 2 for underground)
l Counter for blocks overlying ore-block (i,j) considered

for assigning the slope constraint
q Counter for blocks (in a row) considered for setting the

minimum width of an underground stope constraint

u Counter for blocks (in a row) considered for setting the
maximum width of an underground stope constraint

µ Counter for blocks (in a column) considered for setting
the minimum height of an underground stope
constraint

λ is counter for blocks (in a column) considered for
setting the maximum height of an underground stope
constraint

η Counter for rows considered for setting the crown pillar
between open-pit and underground stope mining
constraint

Sets:

K Set of possible mining methods for blocks; K= {1,2}
B Set of blocks considered in modelling
Ba Set of blocks overlying ore-block (i,j) considered in

modelling
BR Set of blocks that should be successively mined in a

row through underground method; BR=
{(i,1),(i,2),…,(i,b), …,(i,c)}

BC Set of blocks that should be successively mined in a
column through underground method; BC =
{(1, j),(2, j),…,(d, j), …,(e, j)}

I Set of rows; I = {1,2,…,m}
J Set of columns; J = {1,2,…,n}
Ih Set of contiguous rows that should remain immediately

below open-pit mining; Ih = {1,2,…,h}

Constant parameters:
a Number of blocks overlying ore-block (i,j) considered

in modelling
b Minimum number of blocks that should be successively

mined in a row through underground method
c Maximum number of blocks that should be succes-

sively mined in a row through underground method
d Minimum number of blocks that should be successively

mined in a column through underground method
e Maximum number of blocks that should be succes-

sively mined in a column through underground method
h Number of rows that should successively remain below

the open-pit mining
m Number of rows considered in modelling
n Number of columns considered in modelling
Ci,j

k Economical net value of block (i,j), of which Ci,j
1 is

considered for open-pit and Ci,j
2 for underground

mining

Decision variables:

Xi,j
1 Binary variable representing block (i,j) mined through

open-pit; it is assigned 1 if block (i,j) is mined through
open-pit and assigned 0 otherwise.

Xi,j
2 Binary variable representing block (i,j) mined through

underground; it is assigned 1 if block (i,j) is mined
through underground and assigned 0 otherwise.

Yi
1 Binary variable representing row i mined through

open-pit; it is assigned 1 if Xi,j
1 is one and assigned 0

otherwise.
Yi

2 Binary variable representing row i mined through
underground; it is assigned 1 if Xi,j

2 is one and
assigned 0 otherwise.     �

�
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