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Introduction

Seismic techniques, which are known as non-
destructive geophysical methods, are
commonly used by engineers working in
various fields such as mining, civil, and
geotechnical engineering. They are frequently
employed to investigate certain properties of
rocks. Ultrasonic measurements can be applied
in various application areas such as rockbolt
reinforcement1, blasting efficiencies in the rock
mass2, the determination of degree of rock
weathering3, determination of deformation and
stress on rock masses4,5, and rock mass
characterization6,7. A number of studies8–13

investigating ultrasonic propagation in
fractured rock have been carried out. Some
researchers14–16 used the P-wave velocity for
the estimation of weathering depth of building
stones. Many researchers have found that P-
wave velocity is closely related to physical and
mechanical properties of rocks17–25.

The main factors that influence P-wave
velocity in rocks are lithology, texture, density,
porosity, anisotropy, grain size and shape,
water contact, stress, temperature, weathering,
alteration zones, pores and microcracks,
bedding planes, and joint properties
(roughness, filling materials, water, dip and
strike, etc.).

The relationships between P-wave velocity
and rock density have been investigated by
various researchers26–28 who have reported an
increase in the density as the velocity
increased. The influence of microcracks on 
P-wave velocity distribution has been studied
by Babuska et al.29 and Jech et al.30. The effect
of crystallographic preferred orientation of
rock-forming minerals on P-wave velocities
was examined by various researchers. The
effects of fracture roughness on P-wave
velocity for granite, marble, and travertine was
studied by Kahraman31, who stated that P-
wave velocity decreased as the fracture
roughness coefficient values increased.
Kahraman32 derived empirical equations in
order to predict P-wave velocity of wet rock
from the P-wave velocity of dry rock. 

Singh and Kripamoy33 revealed that 
P-wave velocity and uniaxial compressive
strength (UCS) decreased as the quartz content
increased, and decreased as the moisture
content increased. They also reported a
decrease in P-wave velocity as the silica
content increased. Some of the empirical
relationships between P-wave velocity and the
UCS for different rock types found in the
literature are summarized in Table I.
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Correlation between P-wave velocity and some mechanical properties

The goal of this study is to investigate the relationships
between P-wave velocity and certain physico-mechanical rock
properties such as unit weight, porosity, shore hardness,
brittleness, UCS, tensile strength, point load index, and
modulus of elasticity, considering the sedimentary rocks
only. 

Sampling of data

It was noticed in some of the previous studies that the rocks
had all been subjected to the same statistical analysis,
regardless of the differences in their geological origins.
However, in this study, only the raw data of sedimentary
rocks obtained from previous studies was taken into account
in the statistical analysis. The properties of the rock samples
employed in statistical analyses are illustrated in Table II. 

Brittleness concepts

Brittleness has become an important rock property.
Nevertheless, no standardized and universally accepted
brittleness concept or measurement method defining or
measuring the rock brittleness has yet been stated. Different
researchers mean, express, and use the concept differently for
different purposes.

The ratio H/Kc, where H is the hardness (resistance to
deformation) and Kc is the toughness (resistance to fracture),
is proposed as the index of brittleness34. Quinn and Quinn35

have studied on ceramics and proposed an index of
brittleness, B≡(HE)/Kıc2, using hardness, Young’s modulus,
and fracture toughness. Determination of brittleness is
largely empirical. Usually, brittleness measures the relative
susceptibility of a material to two competing mechanical
responses.

Morley36 and Hetenyi37 define brittleness as the lack of
ductility. Ramsey38 expresses brittleness as follows: ‘When
the internal cohesion of rocks is broken, the rocks are said to
be brittle’. Obert and Duvall39 described brittleness as
follows: ‘materials such as cast iron and many rocks usually
terminate by fracture at or only slightly beyond the yield
stress’. Brittleness is defined as the property of materials that
rupture or fracture with little or no plastic flow40. However, it
may be stated that following phenomena may be observed41

as the brittleness increases:
➤ Low values of elongation
➤ Fracture failure
➤ Formation of fines
➤ Higher ratio of compressive to tensile strength
➤ Higher resilience
➤ Higher angle of internal friction
➤ Formation of cracks in indentation.

Some brittleness index definitions obtained from stress-
strain curves were introduced and used in literature42–44. A
simple index of brittleness is the ratio of compressive
strength to tensile strength, (B1= σc/σt). This definition is

▲
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Table I 

Some empirical relationships between UCS and P-wave velocity from previous studies

Equations Correlation Units and Rock type Number of References
coefficient ( r ) notations data

UCS = ax + b 0.85 -- Sandstones -- [64]

UCS = 0.0642 Vp- 117.99, (MPa) 0.90 Vp: m/s Sandstone, coal, quartz mica 43 [65] 
schist, phyllite, basalt

UCS = 35.54 Vp – 55 0.80 -- Granitic rocks 19 [66]

UCS = 56.71 Vp – 192.93, (MPa) very small -- Cement mortar, sandstone, limestone 75 [67]

UCS = a Vpb 0.94 -- A wide range of British rock types 150 [68]

UCS = 9.95 Vp1.21, (MPa) 0.83 Vp: km/s Marl, limestone, dolomite, sandstone, 48 [15]
hematite, serpantine, diabase, tuff

Vp = 0.00317 UCS + 2.0195 0.80 -- -- [24]

UCS = 0.78 e0.88Vp 0.73 Vp: km/s Volcanic group -- [69]
UCS = 0.78 Vp0.88 0.73 Vp: km/s Volcanic group --
UCS = 0.0407 Vp -36.31, (N/mm2) 0.85 -- 19 [70]

UCS = 0.004 Vp1.247, (MPa) 0.85 Vp: m/s Granites 9 [71]

UCS = k ρ Vp2 + A , (kg/cm2) ρ: g/cm3, Vp: km/s -- -- [22]

UCS = 0.036 Vp – 31.18, (MPa) Vp: m/s -- -- [72]

UCS = 0.1564 Vp – 692.41, (MPa) 0.90 Vp: m/s Sandstones 9 [73]
UCS = 0.0144 Vp – 24.856, (MPa) 0.71 Vp: m/s Sandstones 24
UCS = 7.1912 Vp + 26.258, (MPa) 0.57 Vp: km/s Sandstone, gravel stone, limestone, 8 [74]

mudstone, shale

UCS = 21.677 Vp + 21.427 0.95 Vp: km/s Limestone, marble, dolomitic 8 [75]
limestone, tuff, basalt

UCS = 0.0188 Vp + 0.0648 0.95 Vp: km/s Sandstone -- [76]

UCS = 2,304 Vp2.4315 0.97 Vp: km/s Diorite, quartzite, sandstone, limestone, 19 [77]
marble, granadiorite, basalt, travertine, 

trachyte, tuff, andesite.

UCS = 12.746 Vp1.194 0.79 Vp: km/s Limestone, sandstone, travertine, marl, 97 This 
UCS = - 7.155 + 6.194 Vp + 9.774 TS 0.88 Vp: km/s dolomite, mudrock-shale, slate, siltstone 43 Study
UCS=- 10.029+5.734 Vp+10.876 TS–2.408 Is 0.90 Vp: km/s 26
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Table II 
Physical and mechanical properties of rocks
Rock type UCS (MPa) TS (MPa) Point load index, Is (MPa) Vp (km/s) Modulus of elastisity (GPa) Brittleness* References

B1 B2 B3

Sandstone 58.14 3.04 2.69 6.08 19.13 0,90 9.40 [78]
Sandstone 63.82 4.31 2.42 5.41 14.81 0,87 11.73
Limestone 103.3 6.08 6.22 13.31 16.99 0,89 17.72
Limestone 126.67 7.94 6.27 13.70 15.95 0,88 22.42
Limestone 118.24 7.35 6.18 13.95 16.09 0,88 20.85
Limestone 106.86 5.49 6.18 13.18 19.46 0,90 17.13
Limestone 78.73 6.37 5.84 11.51 12.36 0,85 15.84
Limestone 84.41 6.86 6.2 11.47 12.30 0,85 17.02
Limestone 46.32 4.91 5.78 24.11 [79]
Limestone 58.02 4.36 5.75 23.21
Limestone 51.2 4.95 5.13 23.98
Limestone 50.33 3.72 3.52 8.00
Limestone 11.5 3.75 3.74 7.60
Limestone 62.97 3.594 4.753 [67]
Limestone 63.7 3.86 4.799
Limestone 74.07 3.94 4.866
Limestone 74.11 4.05 4.869
Limestone 74.93 4.408 5.109
Sandstone 82.66 7.425 4.911
Sandstone 85.25 8.5 4.926
Sandstone 97.94 9.5 4.973
Sandstone 105.42 11.29 4.979
Sandstone 105.47 11.356 5.007
Marl 24.9 3.56 0.76 6.99 0,75 6.66 [80]
Marl 34 7.9 1.5 4.30 0,62 11.59
Marl 16.9 2.13 0.46 7.93 0,78 4.24
Marl 24.8 2.29 0.72 10.83 0,83 5.33
Clayey marl 2.7 0.06 0.07 45.00 0,96 0.28
Marl 23.8 6.03 1.05 3.95 0,60 8.47
Sandstone 43.2 3 15.4 14.40 0,87 8.05 [81]
Sandstone 64.53 4.34 22.5 14.87 0,87 11.83
Limestone 68.92 3.93 4.45 30.29 17.54 0,89 11.64 [82]
Limestone 115.79 8.41 6.13 61.95 13.77 0,86 22.07
Limestone 121.8 5.17 5.73 40.42 [83]
Limestone 99 4.61 4.99 30.97
Limestone 90.6 4.29 3.98 19.74
Limestone 74.2 2.24 3.21 16.68
Limestone 138.1 5.77 6.75 46.23
Limestone 134.2 5.46 6.08 45.48
Limestone 109.1 5.07 5.86 38.06
Limestone 92.4 4.3 4.84 34.16
Limestone 118.2 4.85 5.94 46.81
Limestone 100.5 3.89 5.59 36.51
Limestone 131.6 6.32 6.2 41.56
Limestone 114 4.86 5.55 42.64
Limestone 76 1.74 3.6 18.58
Limestone 111 4.42 4.99 44.3
Limestone 93.7 3.4 4.67 31.6
Limestone 86.4 3.55 3.88 24.75
Limestone 124.8 6.3 6.02 41.46
Limestone 81.6 2.61 3.47 18.95
Limestone 90 3.31 3.62 17.62
Limestone 85.8 3.54 3.52 16.77
Mudrock-Shale 54.37 4.67 2.457 2.548 5.158 11.64 0,84 11.27 [84]
Marl 24.93 3.56 0.47 2.33 5.19 7.00 0,75 6.66 [85]
Marl 23.4 2.85 0.44 2.44 3.3 8.21 0,78 5.77
Marl 24.8 2.29 0.72 2.43 8.37 10.83 0,83 5.33
Limestone 163 10.1 4.1 5.69 19.3 16.14 0,88 28.69 [77]
Sandstone 160 12 4 5.18 20.7 13.33 0,86 30.98
Limestone 127 10.3 3 6 19.7 12.33 0,85 25.57
Sandstone 122 10.3 3.3 4.75 18.1 11.84 0,84 25.07
Limestone 112 9.8 2.2 5.84 15.9 11.43 0,84 23.43
Sandstone 111 9.2 2.6 4.58 13.2 12.07 0,85 22.60
Travertine 62 1.7 1.7 4.5 13 36.47 0,95 7.26
Marl 64.9 4.4 3 3.4 4.758 14.75 0,87 11.95 [86]
Marl 11.4 1 0.8 1 0.241 11.40 0,84 2.39
Marl 21.4 2.2 1.7 1 1.595 9.73 0,81 4.85
Marl 13.5 1.5 1.4 1.5 0.98 9.00 0,80 3.18
Limestone 123.8 6.6 5.3 5.3 10.682 18.76 0,90 20.21
Limestone 45.1 6 4.6 3.3 22.419 7.52 0,77 11.63
Sandstone 70.5 5.5 6.3 3.7 13.855 12.82 0,86 13.92
Limestone 42.1 6 4.4 4.7 16.757 7.02 0,75 11.24
Sandstone 45.2 5.8 3.6 4.5 11.092 7.79 0,77 11.45
Dolomite 68 6 3.5 6.3 6.83 11.33 0,84 14.28
Limestone 51.3 7 4.6 5.4 7.193 7.33 0,76 13.40
Marl 39.5 5.2 2.7 3.1 4.06 7.60 0,77 10.13
Limestone 15.7 0.9 1.1 2.2 0.79 17.44 0,89 2.66
Limestone 85.2 9.1 8 5.5 20.253 9.36 0,81 19.69
Limestone 70.56 5.5 3.9 4 12.517 12.83 0,86 13.93
Limestone 49.7 7.75 - - 23.1 6.41 0,73 13.88 [87]
Limestone 53.5 5.5 - - 19.6 9.73 0,81 12.13
Limestone 85.6 8.45 - - 24.2 10.13 0,82 19.02
Limestone 87.2 7.4 - - 23.9 11.78 0,84 17.96
Sandstone 102.94 11.74 9.41 - 48.7 8.77 0,80 24.58 [88]
Limestone 83.63 4.77 6.28 - 15.25 17.53 0,89 14.12
Claystone 57.9 5.6 - - - 10.34 0,82 12.73 [89]
Sandstone 113.6 6.6 - 3.74 17 17.21 0,89 19.36
Sandstone 87.4 8.3 - 5.2 33.3 10.53 0,83 19.04
Siltstone 58 5.3 - 4.95 30 10.94 0,83 12.40
Sandstone 173.7 11.6 - 5.33 28 14.97 0,87 31.74
Slate 150 - - 5.046 - - - [90]
Slate 181 - - 4.743 - - -
Limestone 68 - - 5.036 - - -
Sandstone 64.7 6.3 - 3.148 - 10.27 0,82 14.28
Sandstone 44.1 2 - 2.582 12.5 22.05 0,91 6.64 [91]
Sandstone 36.6 0.9 - 2.385 14 40.67 0,95 4.06
Sandstone 35.1 1.8 - 3.26 7.5 19.50 0,90 5.62

* Calculated values by the author
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used in many studies45–50, although it remains only an
indication and there is no physical basis for using the ratio as
a brittleness indicator. 

Evans and Pomeroy51 showed theoretically that the
impact energy of a cutter pick is inversely proportional to
brittleness. Singh52 indicated that cuttability, penetrability,
and the Protodyakonov strength index of coal strongly
depend on the brittleness of coal. Singh53 also showed that a
linearly proportional relationship existed between in situ
specific energy and the brittleness (B2) of three Utah coals.
Goktan54 stated that the brittleness concept (B2) adopted in
his study might not be a representative measure of specific
energy consumption during rock cutting. Kahraman55 statis-
tically investigated the relationships between three different
brittleness indices and both drillability and borability using
the raw data obtained from the experimental work of
different researchers. Altindag56–58 found significant
correlations between his proposed new brittleness concept
(B3) and the penetration rate of percussion drills, the drilla-
bility index in rotary drilling, and the specific energy in rock
cutting. Kahraman and Altindag59 correlated fracture
toughness values with different brittleness values using the
raw data obtained from the experimental works of two
researchers. They indicated that the Altindag’s brittleness
concept (B3) can be used as a predictive rock property for the
estimation of the fracture toughness value. Kahraman et al.60

found a strong correlation between Los Angeles abrasion loss
and the brittleness (B3) for 26 different rocks. Gunaydin et
al.61 reported a very strong correlation between hourly
production and the brittleness B3, and they emphasised that
the brittleness B3 is the most reliable index among the
brittleness indices used in their study. Yilmaz et al.62 stated
that the grain size seems to predominantly influence their
relative brittleness index values in granitic rocks. Goktan and
Yılmaz63 investigated the relationships between brittleness
(B1) and specific energy (SE) and no meaningful correlations
could be found between B1 and SE. However, after normal-
ization of SE by uniaxial compressive strength and classifi-
cation of test data for a particular rock group, the correlation
is significantly improved. 

The brittleness concepts based on the compressive
strength and tensile strength in this study are given as
follows:

[1]

[2]

[3]

where B1, B2, and B3 brittleness indices, σc is the uniaxial
compressive strength (MPa) and σt is the tensile strength
(MPa). The calculated values of brittleness for the dataset
prepared in this study are displayed in Table II.

Regression analysis applied to rock properties

Many equations, some of which are presented in Table I, are
reported in literature to estimate the UCS of rock from the 
P-wave velocity. The majority of the equations yield linear

and power relationships between the UCS and P-wave
velocity. In each study, the amount of data was limited and
the same statistical analysis was applied to various rock
types, regardless of the differences in their geological origins.
Thus, a concern arises as to the reliability of the empirical
equations developed. In this study, only sedimentary rocks
were taken into account to improve the reliability of the
equations. 

Statistical analyses used in this study relying on the
relationship between Vp and other intact rock properties were
based on the data obtained from different studies. Results of
the basic descriptive statistical analysis performed on data set
are given in Table III. The boxplot of the dataset is shown in
Figure 1. 

Simple regression analysis

The raw dataset (Table II) was subjected to least squares
regression analysis. Linear (y = ax+b), logarithmic (y = a + ln
x), exponential (y = aex), and power (y = axb) curve fitting
approximations were executed and the approximation
equations that have the highest correlation coefficient were
determined for each regression. A power correlation was
found between the UCS and P-wave velocity for the entire
dataset (Figure 2). The equation of the curve is: 

[4]

where UCS is the uniaxial compressive strength (MPa) and
Vp is the P-wave velocity (km/s). The correlation coefficient
of the relationship is 0.76.

A plot of tensile strength vs. Vp is shown in Figure 3. The
empirical equation of this relation is: 

[5]

where TS is the tensile strength (MPa) and Vp is the 
P-wave velocity (km/s). The correlation coefficient of the
relationship is 0.77.

In Figure 4, a power relationship between point load
index and P-wave velocity is shown. The equation of the
curve is: 

▲
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Figure1—Boxplot of the data set



[6]

where Is is the point load index (MPa) and Vp is the P-wave
velocity (km/s). The correlation coefficient of the relation is
0.70.

There is a power relationship between Modulus of
elasticity (Et) and P-wave velocity (Figure 5). The equation
of the curve is: 

[7]

where Et is the modulus of elasticity (GPa) and Vp is the P-
wave velocity (km/s). The correlation coefficient of the
relationship is 0.79.

However, the relationships between brittleness B1 and B2
and P-wave velocity resulted in quite weak correlation coeffi-
cients, as seen in Figures 6 and 7. A power correlation
between brittleness B3 and P-wave velocity was obtained, as
shown in Figure 8. The equation of the curve is: 
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Figure 2—The relationship between the P-wave velocity and UCS of
rocks

Figure 3—The relationship between the P-wave velocity and TS of
rocks

Figure 4—The relationship between the P-wave velocity and Is of rocks

Figure 5—The relationship between the P-wave velocity and modulus of
elasticity of rocks

Figure 6—The relationship between the P-wave velocity and B1 of rocks

Figure 7—The relationship between the P-wave velocity and B2 of rocks
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[8]

where B3 is brittleness and Vp is the P-wave velocity (km/s).
The correlation coefficient of the relation is 0.84.

Figures 2–8 show the plots of P-wave velocity versus
uniaxial compressive strength, tensile strength, point load
index, modulus of elasticity and brittleness concepts. The
results of such regressions also represented good correlations
between the properties tested. Relationships are statistically
significant according to the student’s t-test with 95%
confidence.

The scatter diagram of observed and estimated values of
UCS of rocks is shown in Figure 9. In the plot of Equation [1],
the points are scattered uniformly about the diagonal line,
suggesting that the model is reasonable.

Multiple regression analysis

In the second stage of the regression analyses, a series of
multiple regression analyses were performed. It may not be

always possible to predict the rock strength from a particular
rock index test only, owing to the reason that rock strength
parameters are a function of physical, textural, and
mineralogical properties of rock.

Multiple linear regression analysis was also undertaken,
including tensile strength, point load index, and P-wave
velocity values in the model. The equations derived to
estimate the uniaxial compressive strength of sedimentary
rocks can be listed as follows:

[9]

[10]

where UCS is the uniaxial compressive strength (MPa), Vp is
P-wave velocity (km/s), TS is tensile strength (MPa) and Is is
point load index (MPa). The correlation coefficients are 0.88
and 0.90, respectively.

The multiple regression models to predict the uniaxial
compressive strength are summarized in Tables III and IV, 
and the regression equations obtained are given in 
Equations [9–10].

The relationships between the measured and the predicted
values are illustrated in Figures 10–11. As can be seen, the
prediction models appear to be more reliable than that of
obtained by simple regression analysis. In addition, determi-
nation of P-wave velocity, tensile strength, and point load
index requires relatively shorter core samples than those
needed for uniaxial compressive test. Hence, the predictive
models obtained in this study for sedimentary rocks can be
suggested as useful tools for researchers and engineers.

Conclusion

The results of simple regression analyses may suggest that
the relationships between P-wave velocity and uniaxial
compressive strength, point load index, modulus of elasticity,

▲
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Table III

Multiple regression model for the prediction of
uniaxial compressive strength (coefficient of
correlation is 0.88)

Independent variables Coefficient St. error t-values Sig. level

Constant -7.155 8.761 -0.817 0.419
P-wave velocity 6.194 2.928 2.116 0.040
Tensile strength 9.774 1.553 6.293 0.000

Figure 8—The relationship between the P-wave velocity and B3 of
rocks

Figure 9—The relationship between the measured and predicted
uniaxial compressive strength values from the simple regressions
(Equation [4])

Table IV

Multiple regression model for the prediction of
uniaxial compressive strength (coefficient of
correlation is 0.90)

Independent variables Coefficient St. error t-values Sig. level

Constant -10.029 11.375 -0.882 0.388
P-wave velocity 5.734 4.731 1.212 0.238
Tensile strength 10.876 2.250 4.833 0.000
Point load index -2.408 2.957 -0.815 0.424

B
3
(M
P
a)



and brittleness values are meaningful. Two equations with
high prediction performance were developed by multiple
regression analysis for the prediction of uniaxial compressive
strength. 

The relationship equation between the UCS, Vp, and TS
is:

[11]

Equation [9] is simple and easier to use to predict the
uniaxial compressive strength than other multiple regression
equations.

Under certain conditions, it may be difficult and
complicated to measure the uniaxial compressive strength of
rocks. The use of empirical relationships to estimate the
uniaxial compressive strength of rock can be more practical
and economical.

The equations found in the literature are derived using
the rocks from different geological origins to estimate the
UCS from P-wave velocity. The author of this work believes
that the geological origins of rocks should be taken into
account separately in statistical analysis when seeking for the
relationships between P-wave velocity and UCS of rocks. 

In this way, more reliable predictions will be possible for
project engineers and researchers.
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Figure 11—The relationship between the measured and predicted
uniaxial compressive strength values from the multiple regression
(Equation [10)]

Figure 10—The relationship between the measured and predicted
uniaxial compressive strength values from the multiple regression
(Equation [9])
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