
J
o
u
r
n
a
l

P
a
p
e
r

Introduction

The economic evaluation of natural resources
depends on the accuracy of reserve estimates.
Such estimates are necessary in making
decisions about opening new mines or in
planning future investment for operating

mines or industrial deposits. Resource
estimation and grade control establish a basis
for successful mining operations. Both the
overestimation and underestimation of mineral
reserves can have severe consequences for
future mine planning. Underestimation may
result in a potentially feasible operation being
disposed of when it actually represents a
potentially profitable mine. The more likely
consequence is an underdesigned plant.
Overestimation may lead to construction of a
mine where no profitable orebody exists. More
commonly, it will result in the lifespan of the
mine operation being shorter than anticipated. 

Generally, reserves are estimated by the
traditional methods such as polygon,
triangular prism, trapezoid, isopach maps, and
geological section. These techniques do not
allow for a determination of the reliability of
the estimate. The estimation error may be high
and the actual mean value cannot be
determined. Geostatistical techniques do not
only provide estimations for any point, but
also make it possible to find weighting coeffi-
cients for a given mining block and also data
configurations that minimize the error or
obtain the associated variance.

The application of geostatistics in mining
dates back to the late 1970s (Krige, 1951;
David, 1977; Journel and Huijbregts, 1978;
Clark, 1979). Geostatistics was applied
primarily in the mining industry and then
developed in the areas of environmental
problems and oil reservoir modelling (David,
1988; Isaaks and Srivastava, 1989; Clark and
Harper, 2000). A few studies have been found
relating to the application of geostatistics to
cement raw material deposits (e.g. Almedia 
et al., 2004; Marcotte et al., 2005). 
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Synopsis
Estimation techniques such as polygonal, triangular prism,
trapezoid, isopach maps, and inverse distance methods are often
used in ore or industrial minerals deposit evaluation. These
techniques do not express the variability of the deposit and do not
allow a determination of the reliability of the estimates. However,
geostatistical methods can express a measure of the error associated
with the estimates, by finding weighting coefficients for a given
mining block, and can also help with data configuration that
minimizes the error. This work addresses an application study on
the quality and reserve characteristics of the cement raw materials
of the Adana Cement Factory in Adana, Turkey, based on the spatial
distribution and variability of the chemical components (SiO2, CaO,
Al2O3, Fe2O3). The study has been carried out using a geostatistical
procedure that is useful for site assessment, characterization, and
monitoring situations where data are collected spatially. Directional
and omnidirectional experimental variograms of the cement raw
material variables showed that neither strong geometric nor severe
zonal anisotropy exists in the data. The most evident spatial
dependence structure expressing the continuity for omnidirectional
experimental variograms were characterized by exponential and
spherical variogram models. These models have been used in cross-
validation analysis, which proved that these models, their
parameters, and kriging parameters are applicable for the study
area. Quality contour maps of the deposits at given levels
underground were estimated using a kriging interpolation
technique. Anomalies such as bullseyes and drift were not observed
in the maps that were generated. Kriged maps showed the spatial
distribution of quality continuity and variability of the deposits.
Grade-tonnage curves and total tonnage estimates in the particular
grade were determined using ordinary kriging in order to improve
the mining operation and planning. Consequently, local uncertainty
and the probability of extreme values occurring are tools of prime
importance for the mine planning, the optimum mix of raw
materials coming from different quarry stopes.
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Geostatistical analysis provides a powerful tool for
enhancing the prediction and decisionmaking capabilities of
planners and engineers in the cement raw materials industry.
Geostatistical methods are useful for site assessment, charac-
terization, and monitoring situations where data is collected
spatially. The approach preferred in a geostatistical study is
to apply an iterative three-step approach involving:

➤ Exploratory data analysis
➤ Variogram model selection, parameter determination,

and model validation
➤ Making predictions (kriging estimation and/or

simulations).

There are several types of variogram models. However, in
this study, Gaussian, spherical, and exponential variogram
models were used due to the appropriate fitting of the data to
these models. 

This paper is a case study and aims to assess the spatial
structure of the distributions of quality and reserve
information for cement raw materials. The geostatistical
results are determined from variograms and ordinary kriging
using core samples from drillholes. The qualities and reserve
estimation were carried out for a successful raw materials
operation and production planning. Kriging contour maps and
a three-dimensional estimation of the study area were
constructed for future planning.

The study area

The study area is located 10 km southeast of Adana County
and 1 km south of the E-90 motorway in Turkey (Figure 1).
The study area belongs to Adana Cement Industry, which is
the first and biggest cement factory in Turkey. The factory
uses 4 Mt of cement raw materials, and produces approxi-
mately 2.5 Mt of cement, per year. The factory has the
capacity to produce 3.5 Mt of cement annually. The Adana
cement industry has 65 kt stock capacity of preblending, four
raw crushers, four raw mills, four rotary kilns, five cement
mills, and six packing-weighing machines. Different types of
cement (e.g. Portland, composite, white Portland, sulphate-
resistant, blended, tras, blast furnace slag, Portland
composite, and pozzolanic cement) are produced.
Approximately 25% of the cement produced is exported to
European and Middle Eastern countries. 

Geology in the area of interest consists of limestone,
clayey limestone, marl, and , which were formed during the
Upper Miocene. These rocks are thought, on the basis of their
lithology and texture, to have been deposited in a shelf
environment. Clayey limestone is widespread and the
dominant material in the area. Its thickness is very variable,
and it gradually passes into other lithologies. The rock is very
fine-grained and is composed of microcrystalline calcite, clay
minerals and microcrystalline quartz, and fossil fragments
make up the remainder of the rock. Limestone with an
mixture of silica, clay substance, and iron oxide is called
marl. Geologically, marls are generated by the simultaneous
sedimentation of calcium carbonate and clay minerals. Marls
are an excellent raw material for cement production, because
they contain the lime and the clay component in an already
homogenized condition, are easy to operate, crush, mill, and
burn for the cement process. Marls appear different in colour,
mainly yellow-green and blue-grey-black. There is little
difference in terms of chemical content for the different
coloured marls. The rocks in the north of the study area have
a high silica content, whereas the marls in the south of the
study area are high in carbonate. The rock contains a consid-
erable amount of fossil fragments. Sandstone is fine-grained,
fossilferous, dispersive, and varies in thicknesses. The rock
consists of 20–30% free silica (quartz), 25–30% calcite, and
5% fossil fragments. The surface of the cement raw materials
in the area is covered by caliche, which is 1–2 m in thickness
and Quaternary in geologic age. This rock is classified as
secondary limestone, and is widespread in the region. It is
formed by evaporation in dry climatic conditions.

Open pit mining is employed for the production. The
produced material is transported by lorries to the factory. The
study area is approximately 500 000 m2 in extent.

The data

The data consisted of core samples obtained from 43
drillholes, the locations of which are shown in Figure 2. A
grid design was applied for the drillhole locations. The
distance between the collar locations was approximately
80–100 m and the average depth of the holes 20 m, on the
basis of the topographical and geological conditions of the
area. All holes were drilled to 40 m altitudes above sea level,
because of problems with ground water which is costly to
drain. Approximately 900 m of drilling was completed. The
borehole intersections were logged. These logs include the
thickness of the intersection, chemical contents and
geological description of the raw materials, and depth and
coordinates of the drill hole. Core samples were taken from
each of the different geological formations. A total of 220
representative core samples were collected.  

The samples were analysed in order to determine the
concentrations of CaO, SiO2, Al2O3, Fe2O3, MgO, Na2O, K2O,
and loss on ignition (LOI). The raw material quality depends
on these compounds (especially CaO, SiO2, Al2O3, and
Fe2O3). Distribution of the compounds varies greatly
according to sampling location in the study area. A set of
parameters is currently used in cement manufacturing to
characterize the quality of the raw material and to ensure the
quality of the produced cement. Most of cement industries in
the world uses quality parameters such as the LSt-lime
standard, SiM-silica modulus and AlM-alumunium modulus.

▲
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Figure 1—Location map of the study area



The LSt represents the relationship between the amount
of calcium in the cement and the maximum amount theoret-
ically possible for combining with other elements. It has a
major influence in the manufacturing process and on the
quality of the final product. If there is an excess of
uncombined lime (existing as free lime) in the cement, it may
cause damage in mortar or concrete as a result of expansion.
The lime standard provides a criterion for determining the
optimum lime content. An LSt value of 100 represents the
optimum CaO content.

The equations of the modulus are given as follows, when
expressed in weight percentage. 

[1]

The object of the proportioning formula is to provide a
means to calculate the maximum proportion of lime that can
be made with the acidic oxides (SiO2, Al2O3, and Fe2O3). 

In the study area, carbonate rocks are classified into two
categories, either as limestone or as clayey limestone, on the
basis of CaO content. If CaO is lower than 45%, the raw
material is called clayey limestone; whereas if the CaO
content is higher than 45%, then the material is called
limestone. However, there are small amounts of clay in the

limestone. For example, if the limestone contains 50% CaO,
the clay content is only 1–2%. Quality and reserve modelling
of limestone and clayey limestone are done separately in this
study. 

The SiM is the second most important parameter for
controlling the final product, and it is calculated through the
relationship between the grade of silica and the sum of the
alumina and iron grades:

[2]

This modulus characterizes the ratio of solid to liquid
during clinkering of the material, because at clinkering
temperatures the SiO2 is predominantly present in the solid
phases, whereas the other two oxides occur in the liquid
phase (Duda, 1985). A high SiM has the advantage of
producing cement with a high silicates content, consequently
with high mechanical resistance. The preferred values range
between 2.2 and 2.6.

The AlM represents the relationship between the alumina
and iron contents in the raw material:

[3]

This modulus expresses the composition of the liquid
phase in the clinker. If the iron oxide content is higher, the
modulus is lower, and the viscosity of the melt decreases
(Alsop, 1998). In industrial cements, the optimum values
should range between 1.3 and 2.8. However, in special types
of cement the value may be much lower.

This modulus is used as a quality or grade criterion for all
cement raw materials in the study area in terms of production
planning, and mixing and preparing of the raw materials for
the clinker and cement production process. The lime standard
is considered to be a characteristic quality criteria for
limestone and clayey limestone. Marl quality is characterized
by both the aluminium and the silica modulus (AlM, SiM).
Also, sandstone having high SiO2 content is not required as a
cement raw material in cement manufacturing. Raw materials
from the marl and limestone quarries are combined to obtain
optimal mixtures, with additives if necessary so that the final
product presents quality parameters within adequate ranges. 

Results and discussion

Two commercial software packages (Isatis and Surfer) were
used for the data assessment and interpolation of the quality
(grade) and mineral reserve characteristics of the cement raw
materials in the study area. The results from the analyses
were included as exploratory data analysis, variogram
analyses, cross-validation tests, and the quality mapping and
tonnage distributions, and three-dimensional views of the
study area.

Exploratory data analysis

Regularization of the sample lengths is an essential phase of
a geostatistical study using 3D data, especially in the mining
industry, although the principle is much more general.
Regularization is a well-known method to obtain composites
of the same size from an irregular line sampling
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Figure 2—Locations of the drill holes and boundary of the study area
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(compositing). The algorithm used in the regularization
process is a ‘weighted average’ of the original properties, the
weights being the length of the analysed ‘cores’ that fall
inside the new regularized composites. The data is
regularized into 2.5 m composites. This composite length was
chosen by taking into consideration the minimum and
maximum thicknesses of the formations. The summation of
grade times length and length values were the same before
and after compositing. Both data and composites were
unbiased, because the average grades of all composites were
centred on the same mean value. All geostatistical analyses
were carried out on the composite data. 

The summary statistics of the composite data are shown
in Table I. It is important to check the effect of the regular-
ization on the statistics for each variable. We have seen that
the mean remain unchanged, but the variance decrease. From
Table I, it can be seen that the values of the central tendency

measurement for LSt (limestone and clayey limestone), AlM
(marl), and sandstone are very close to each other. This also
indicates that these modulus or materials are normally
distributed. The histograms of the variables, except for
sandstone, are presented in Figure 3. The histograms show
that the variables approximately a Gaussian distribution
except for SiM (marl) (Figure 3d). The histogram of the SiM
(marl) is skewed to the right, showing a departure from the
symmetrical shape of the normal distribution. The coefficients
of skewness and kurtosis for SiM (marl) are high in
comparison to the coefficients of the normal distributios.
Although it is not a mandatory, it is expected that a variable
is normally distributed for the Kriging technique. Thus, a
‘normal score’ transformation is applied to the SiM(marl).
Consequently, the data distributions provide that statistical
assumptions for the geostatistical analysis are obtained. The
next stage is the variogram analysis.

▲

242 MARCH  2012                                VOLUME 112     The Journal of The Southern African Institute of Mining and Metallurgy

Table I

Summary statistics of the composited cement data

Variable Limestone Clayey limestone Marl Sandstone
(LSt) (LSt) (AlM) (SiM) (% SiO2)

Count 93.00 70.00 164 164 42.00
Min. 83.11 62.29 1.410 2.026 26.00
Max. 494.09 208.94 2.050 4.202 46.20
Mean 278.06 138.86 1.775 2.460 36.07
Mod. 153.39 165.99 1.720 2.410 35.56
Median 282.85 138.94 1.784 2.350 37.13
Std. Dev. 103.12 35.85 0.116 0.400 4.42
Variance 10 633.00 1 285.48 0.013 0.160 19.53
Skewness 0.08 -0.09 -0.329 2.427 -0.36
Kurtosis 2.06 2.26 3.427 8.991 2.83
Variation C. 0.37 0.26 0.065 0.163 0.12

Figure 3—Histogram of the variables (a) LSt (limestone), (b) LSt (clayey limestone), (c) AIM (marl), (d) SiM (marl)



Variogram analysis

The variogram is used in various procedures during mineral
resource and mineral reserve evaluation to quantify the
geological factors that affect the accuracy of estimates. The
variogram is a critical input to geostatistical studies: firstly, it
is a tool to investigate and quantify the spatial variability of
the phenomenon being studied, and secondly, the geosta-
tistical estimation or simulation algorithms require an
analytical variogram model that will reproduce the statistical
properties of the variable depending on direction and
distance. 

The semivariogram analyses have been carried out in
both the horizontal and vertical planes on the data observed.
Both directional (for the directions of 0°, 45°, 90°, 13°
respectively) and omnidirectional experimental semi-
variograms for LSt (limestone, clayey limestone), AlM (Marl),
SiM (Marl) and SiO2% (sandstone) were performed
separately. Omnidirectional horizontal and vertical
variograms of the variables, except for SiO2 (sandstone), are
shown in Figure 4 and Figure 5 respectively. Directional
experimental semivariogram graphs of the raw material
variables show neither severe geometric nor strong zonal
anisotropy. The horizontal and related vertical variograms
could not be shown in the same figures because of different
range values of the planes (about 20 m and 1 200 m in the
vertical and horizontal planes respectively), which degrade
the clarity of parameters on the graph. It should be noted that
horizontal and vertical variogram graphs of sandstone (%
SiO2) are not presented here, but they were calculated and

evaluated as part of the study. The parameters of both the
horizontal and vertical variogram structures are given in
Table II. In the variogram graphs, the jagged continuous lines
and bold continuous lines represents the experimental and
modelled variograms respectively. Visual examination of the
experimental variograms suggested that the modelled
spherical, exponential, and Gaussian models are reasonably
in agreement with the data. The horizontal variogram graphs
exhibit clear spatial structures. It is important to highlight
that the sill values of the theoretical models of each variable
were found close to the variance of the variables (Table I and
2, Figure 4). The ranges were 275 m, 225 m, 160 m, 225 m,
and 250 m for LSt (limestone, clayey limestone), AlM (Marl),
SiM (Marl) and sandstone (% SiO2) respectively (Table II).
On the other hand, the vertical variograms did not show a
clear structure relatively to the horizontal plane, although
both plane variograms share the same nugget effect. This
implies that there is no important spatial variation in the
vertical plane in contrast to the horizontal plane. The
maximum distance between two samples in the study area is
about 1 300 m. Approximately half of the maximum distance
between two samples is considered appropriate for variogram
analysis in practise. Thus, a distance about 650–800 m is
considered to be optimum for the variogram analyses on the
study area in the horizontal plane, and 20–25 m in the
vertical plane 
(Figure 4). Consequently, the variogram analysis findings
showed that the sampling layout is effective in that the
distance between samples is large enough to determine the
spatial structure. 
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Figure 4—Omnidirectional (horizontal) variograms (a) LSt (limestone), (b) LSt (clayey limestone), (c) AIM (marl), (d) SiM (marl)
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Kriging implementation 

There are several forms of kriging including ordinary,
universal, lognormal, outlier restricted, indicator, probability,
multi-Gaussian, and disjunctive. Ordinary kriging is a
method 
that calculates point or block values directly from the semi-
variogram (or covariogram) relationship without having to
provide additional qualifying data or modification of the
sample data or kriging results. Several authors (Fytas et al.,
1990; Dominy et al., 1997 and Roy et al., 2004) have stated
that for grade distributions with a coefficient of variation of 

less than about 1.5, meaningful semivariograms can be
produced. Fytas et al. (1990) explained that parametric
geostatistics like ordinary kriging works well in deposits with
a coefficient of variation of around one or less. Coefficients of
variation of all the variables for the study area are below 0.4
(Table I). Ordinary kriging was chosen as the estimation
method to evaluate in this study. The correlation matrix of
the cement modulus is given in Table III. The table shows
that there is no correlation amongst the modulus. Therefore,
co-kriging was not applied to estimate grade and reserves of
the cement raw materials.   

▲

244 MARCH  2012                                VOLUME 112     The Journal of The Southern African Institute of Mining and Metallurgy

Figure 5—Vertical variograms (a) LSt (limestone), (b) LSt (clayey limestone), (c) AIM (marl), (d) SiM (marl)

Table II

The variogram structure parameters of the cement variables

Limestone Clayey limestone Marl Sandstone
(LSt) (LSt) (AlM) (SiM) (% SiO2)

Horizontal plane Variogram model Exponential Spherical Exponential Exponential Spherical
Lag distance (m) 25 31 30 33 30
Number of lags 31 27 25 28 24

Sill 8.500 1.100 0.007 0.56 1.05
Range (m) 275 225 160 225 250

Nugget Effect 1.000 250 0.007 0.44 0.1

Vertical plane Variogram model Gaussian Gaussian Gaussian Spherical Gaussian
Lag distance (m) 2.5 2 2.5 2 1.7
Number of lags 7 9 10 15 10

Sill 3.800 175 0.005 0.22 0.7
Range (m) 11 9 18 11 13

Nugget Effect 1.000 250 0.007 0.45 0.1



Cross-validation tests

Cross-validation is a procedure that checks the compatibility
between a set of data and a structural model. This procedure
considers each data point in turn, removing it temporarily
from the data set, and using its neighbouring information to
predict (through a kriging procedure) the value of the
variable at its location and using the model previously fitted.
The estimation result is compared to the actual value to
produce the estimation error, standardized by the standard
deviation of estimation. Another essential parameter of this
process is the neighbourhood concept, which tells the system
which data points, located close enough to the target will be
used in the estimation. In this case study, because of the
small number of points, we use the unique neighbourhood,
which means that all information will be systematically used
for the estimation of any target point in the field. In the case
of cross-validation, each data point is estimated from
neighbouring data. Rotation angles were not used for
anisotropy as this was not present in the variogram models.
The search geometry was an ellipsoid. The ellipsoid is unique
in the horizontal plane and different in the vertical plane.
Four kriging sectors for clayey limestone, marl, and
sandstone, and two sectors for limestone, were chosen
respectively. The number of sectors, optimum sample points
used in the sectors, and the range of the variables were
individually adjusted on the basis of the best cross-validation
results. Related neighbouring and search radius parameters
are shown in Table IV.

The procedure followed by Isatis (Geovariances, 2006) is
cross-validation performed to cross-check the models and the
data. The mean of the standardized squared error (MSSE)
and mean error (ME) of the exponential and spherical models
produced the most favourable results, indicating that the
search strategy, neighbourhood parameters, model, and
model parameters etc. used in the estimation were
appropriate. Furthermore, the ME of the exponential and
spherical models proved that the unbiasedness condition of
the kriging algorithm worked properly. Therefore, the
exponential, spherical and Gaussian models were chosen to
calculate the variables for the cement raw materials. 

Cross-validation of the model is shown in Figure 6 for the
variable LSt (limestone). Cross-validation graphs of the other
variables are not presented here, as the results for these
variables showed the same behaviour as those for LSt
(limestone).

Cross-validation tests were carried out as a 95%
confidence interval. Dashed lines (Figure 6c, 6d) delineate
the outliers from the valid points. The pluses (Figure 6d)
indicate that the data is included into the 95% quantile of a
normal distribution, that is, to the samples lying inside the
95% confidence limit of a normal distribution. It is likely that
the points outside the confidence limits imply that the data is
over/underestimated outliers resulting from estimation error.

A sample is considered as an outlier when its
standardized estimation error (SEE) is larger than a given
threshold in absolute value (Geovariances, 2006). Outliers
are depicted on the base map (Figure 6a). A scatter diagram
of the observed data versus estimated value is shown in
Figure 6b, the histogram of the SEE is shown Figure 6c, and
a scatter diagram of the estimated value versus the SEE is
shown in Figure 6d. Outliers of the variables did not follow
any particular pattern, as is shown in Figure 6a-d. 

Scatter plots of observed data versus estimated values
with conditional expectation curves (the 45° diagonal line) in
Figures 6b show a slight conditional bias. This indicates that
true and estimated values do not match exactly. Cross-
validation graphs of estimated values versus SEE showed
that the errors in estimation are within acceptable limits,
excluding the outliers (Figure 6d). Histograms of SEE for all
the variables (Figure 6c) were in good agreement with the
findings of the cross-validation analyses mentioned above. 

The tabulated statistical results of the cross-validation on
the estimation error and standardized error (mean and
variance) are presented in Table V. Each model satisfies the
global unbiased condition reasonably, where distributions of
errors are centred on a zero mean. The spread of the errors
and the correlation coefficient of the known values against
the kriged estimates were used to determine an adequate
search strategy. On this basis, a search radius and the use of
the nearest points for each variable were selected as an
optimal model. In theory, it is expected that the mean error
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Table IV

Search radius and neighbourhood parameters for cross-validation testing

AlM SiM LSt LSt SiO2%

(Limestone) (clayey limestone) (Sandstone)

Number of angular sectors 2 4 4 4 3
Optimum samples per sector 6 3 3 2 2

X (m) 160 225 275 225 250
Search Radius Y (m) 160 225 275 225 250

Z (m) 18 11 11 9 13

Table III

Correlation matrix of the cement modulus

AlM SiM LSt SiO2

AlM 1.00 0.25 -0.37 0.43
SiM 0.25 1.00 -0.07 0.23
LSt -0.37 -0.07 1.00 -0.49
SiO2 0.43 0.23 -0.49 1.00
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and the variance of the estimation are equal to 0 and 1
respectively. The mean error proves that the unbiased
condition of the kriging algorithm worked efficiently. The
variance of the estimation standardized error measures the
ratio between the experimental estimation error and the
kriging variance. Consequently, the cross -results showed
that the estimation is reasonably acceptable (Table V). 

Grade (quality) and mineral reserve estimation

The objective of geostatistical estimation for an industrial
deposit evaluation is to provide a continuous representation
of grade variation that accounts for structural, lithological,
and mineralogical discontinuities. 

At this stage, a grid design was applied over the study
area (Table VI). The neighbourhood and variogram
parameters were used for the estimation. The grade-tonnage
curves and tonnage estimations were carried out using the
ordinary block kriging method. Co-kriging is another interpo-
lation technique that allows one to better estimate map values
by kriging with auxiliary data. Co-kriging requires much
more for estimation, including estimating the autocorrelation
for each variable as well as all cross-correlations. Through
the interpretation of the correlation matrix of the variables at
the same points, there is no correlation among the variables
(Table III). For this reason, multivariate techniques were not
performed for the estimation process. 

The ordinary block kriging method has mostly been
applied to sedimentary deposits such as coal and industrial
raw mineral deposits. 

The total tonnage above cut-off grade is calculated using
the following equation:  

[4]

where
∑Ti = Total tonnage of 1 block in percentage
Vb = Volume in m3 of 1 block
d = Density (t/ m3).

▲
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Figure 6—Cross-validation graphs for LSt (limestone). (a) The base map showing the locations of the tested data points, (b) The scatter plot of the true
values Z against the estimated values Z*, (c) The histogram of the standardized estimation errors, (d) The scatter plot of the standardized estimation errors
vs. the estimated values Z*

Table VI

Grid design parameters for the estimation volume

X (m) Y (m) Z (m)

71,850 4 092 000 36
25 25 1.5
28 60 26

Table V

The statistical results of the cross validation tests

Variable Standard error
Mean Variance

Limestone (LSt) 0.098 0.999
Clayey limestone (LSt) 0.033 1.054
Marl (SiM) -0.015 0.992
Marl (AlM) 0.005 1.010
SiO2 % (sandstone) 0.008 1.017



Mean grade above cut-off is calculated using the
following equation:

[5]

where
mi = Mean grade unit
n = Number of samples above cut-off.
Bulk densities of the cement raw materials were

determined from core samples. The mineral reserve estimate
of the raw materials was made within the polygon boundary
(Figure 2).

As mentioned previously, LSt for limestone > 45 % CaO,
clayey limestone < 45 % CaO, AlM and SiM for marl, and
SiO2% for sandstone have been used as the quality (grade)
criteria. The cut-off grade for cement raw materials is
determined as a minimum value of the cement modulus
(such as LSt, AlM, SiM, and SiO2 content of sandstone).
Sometimes, minimum values of the modulus are required,
because of proportional mixing of the raw material. Figure 7
shows the cut-off grade or quality of the cement raw
materials versus the tonnage for LSt and AlM (marl). From
the figures, raw material tonnage in a given quality value or
in particular quality intervals can be easily seen. The total
mineral reserves of the raw materials are given in Table VII.
Consequently, these results can form the basis of production
design and future planning of raw materials, clinker and
cement production.   

Quality mapping

The procedure of evaluating normal distributions of data, 

variogram analysis, and cross-validation tests was carried
out prior to constructing a contour map of the cement
modulus. The distribution of the modulus in all geological
formations of the area was considered in quality mapping.
The values at the 43 680 grid nodes of each quality modulus
were estimated by ordinary block kriging using the
exponential, spherical variogram, and Gaussian models of the
modulus. Greyscale maps were produced by using gridded
data to determine quality distribution and variability of the
cement modulus in all the raw materials in the study area. It
should be noted that a map of each quality modulus was
plotted at specific levels in the ground (at 40.5 m, 43.5 m,
46.5 m, 49.5 m, 52.5 m, 55.5 m, and 58.5 m). The maps at
these specific levels are not illustrated here, and only the
contour map of the LSt modulus at the 43.5 m level is shown
in Figure 8. Interpretation of the maps is relatively simple
and practical. These maps assist the operational and
production management of the raw materials, and in
identifying mix and the proportions of the materials for the
cement manufacturing process. 

A three-dimensional (3D) perspective view for the study
area is shown in Figure 9. This figure shows the distribution
of the main variables in the area. When preparing this
diagram, each estimated cell was designated with different
colours according to the presence of each related variable,
resulting in a four-colour 3D view of the study area was
obtained. The vertical plane scaling has been exaggerated to
show the variable locations in the deposit. This solid model
enables an operational design and future production planning
of the deposit (such as monthly or yearly production). 
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Table VII

Total mineral reserves of the raw materials

Limestone Clayey limestone Marl Sandstone (SiO2)

(LSt) (LSt) (AlM) (SiM)

Total reserve 5 913 844 3 620 925 10 219 491 10 219 491 2 425 313
(tons) 9 534 769 10 219 491

19 754 260
22 179 573

Figure 7—Cutt-off grade versus total tonnage (a) LSt (limestone), (b) AIM (marl)



Conclusions

The following conclusions can be drawn from this case study.

➤ Geostatistics provides a set of tools and techniques for
addressing the problem of evaluating cement raw
material deposits and mineral reserve features.
Variograms can be used to successfully characterize the
spatial variability of deposit quality

➤ The study showed the benefits of the using geosta-
tistical methods in the assessment of data, sampling

strategy, and estimation of values at unsampled areas
to determine quality and mineral reserve characteristics

➤ Sufficient good, quality data and exploratory analysis
of the data is essential for raw materials and clinker
production

➤ Anisotropy was not detected in the three-dimensional
experimental semivariograms of the raw materials. The
omnidirectional horizontal experimental variogram of
each variable was found to be the most representative
by the fitted exponential, spherical, and Gaussian
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Figure 8—Kriging contour map of the LSt modulus at 43.5 m level of the underground

Figure 9—Three-dimensional view of the study area
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models. Variogram analyses exhibited clear spatial
structures. This showed that the sampling strategy was
effective and the distance between the samples is
sufficient to determine raw material quality and
mineral reserve characteristics. These models have
been tested by cross-validation analysis, which showed
that the models with their parameters and kriging
search parameters are representative for the variables
in the study area

➤ The quality and tonnage curve for the raw materials
was constructed and the tonnages of the raw material
variables for a particular quality interval were also
calculated, since these are the basis for efficient cement
deposit operation and production planning 

➤ Kriged maps for the cement modulus at a particular
underground level were produced. These contour maps
showed the extent, quality variability, and proper
mixing of the raw materials required for clinker
production

➤ A 3D perspective view of the study area was
constructed. The view showed the thickness and depth
of the formations for underground modelling. This
provides an operational design for future production
planning of the cement raw materials for geologists and
mining engineers.
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