
Introduction
Seismographs were first installed to monitor
mining-related seismicity in South Africa in
1910. The first in-mine seismic systems were
installed in the 1960s, mainly for research
purposes. Intensive research, development,
and commercialization during the 1990s led to
the widespread implementation of real-time
digital monitoring systems and quantitative
methods of analysis (Durrheim, 2010;
Mendecki et al., 1997).

Since then, the understanding of mine-
induced seismicity and the quantification of
the seismic rock mass response has formed the
basis of seismological analysis and seismic
hazard mitigation in South Africa. This
principle of quantifying and understanding the
rock mass deformation and failure mechanism
has been introduced in other countries in
different forms and focused on different
mining environments. Potvin and Wesseloo
(2013) point out that the mines in Australia,
Canada, and Sweden tend to have more
complex three-dimensional orebodies and are
generally smaller and much more contained
compared to the seismically active South
African mines. For that reason it is easier to
install a more sensitive three-dimensional
array to cover the mine volume. With the more
sensitive systems in Australia, Canada, and

fSweden, local rock engineers tend to focus on
the overall rock mass response to mining
based on accurate source location and the
analysis of populations of seismic events with
magnitude of completeness as small as ML-2.
A grid-based spatial analysis of seismic data
was developed to improve and simplify quanti-
tative seismological interpretation within this
environment. The methods, however, have
broader application.

Funk et al. (1997) presented work on the
visualization of seismicity that resulted in the
systems for generating contours and
isosurfaces of seismic parameters. The work
presented here generalizes and extends the
concepts used in that work.

Analysis with spatial filters
Seismic events tend to cluster at the locations
of active seismic sources where some form of
dynamic failure process occurs. The identifi-
cation and understanding of seismic sources is
important in seismic risk management in that
they may be, or become in the future, the
cause of significant seismic hazard. In
particular, small events may start to form
clusters at an early stage of extraction, with a
relatively small stress change. When the
seismic system is sensitive enough to capture
small events, this can assist in the timely
identification of seismic sources and allow for
the tracking of how these sources respond to
mining and, more specifically, how seismic
hazard related to these sources evolves as
extraction progresses. 
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f fInterpretation of the character of seismic sources in space
and time is generally done by analysis of some spatially sub-
filtered data-set. This sub-filtering is often simply based on a
three-dimensional volume in space (polygon). In Australia,
Canada, and Sweden, the data is often sub-filtered on
clusters.

The most widely used clustering method is probably that
implemented in the software mXrap (formerly known as ms-
rap) based on the Comprehensive Seismic Event Clustering
(CSEC) technique described by Hudyma (2008). The CSEC
method is a semi-automated two-pass approach, which was
developed on the basis of generic clustering techniques:
CLINK and SLINK (Jain et al., 1999, Romesburg, 2004). The
first pass of clustering using CLINK is totally automated, and
clusters together events based exclusively on spatial criteria.
The CLINK clusters are then submitted to a second pass of
processing, where clusters are selectively grouped into
’cluster groups’ representing individual seismic sources. This
cluster grouping is a manual process that requires interpre-
tation of the likely seismic sources at the mine and a sound
knowledge of the geology and the induced stress conditions.
Cluster grouping is generally based on the similarity of source
parameters, the spatial proximity of clusters, and on the
correlation of the location with known geological or geometric
features.

The cluster grouping process can be seen as building a
seismic source model by using the generated clusters as basic
building blocks. In this sense it is similar to analysing an
area with the use of polygons, as the polygons become the
basic units within the seismic source model. The use of a
spatial filter (cluster groups or polygons) to provide a basic
spatial unit for quantitative seismic analysis is a common and
practical approach. This, however, introduces a bias of
interpretation towards the pre-defined polygon as the
polygon is originally chosen by the analyst based on pre-
conceived ideas. This process is, per se, subjective, and the
vvalue depends to a large degree on the understanding and
training of the person performing this analysis. Subjectivity,
however, is part of geotechnical engineering and attempting
to eliminate subjectivity from geotechnical analysis is a futile
exercise. With the grid-based approach, however, we can aim
to reduce interpretation bias by providing a spatial interpre-
tation of the data that is independent of any chosen spatial
filter.

Having said this, one has to recognize that the grid-based
interpretation is not free of user influence as it also is
influenced by the chosen analysis parameters. It is our
conviction, though, that the nature of the analysis
parameters, and the ease of testing the influence on the
analysis parameters on the results, leads to a systematic
reduction in personal bias.

Grid-based analysis of seismic data
In the grid-based approach, the seismic source parameters are
assessed through space by interpolating the source
parameters. This approach allows for anomalies to be
identified without prior selection of groups or polygons. This
is illustrated in Figure 1 and Figure 2.

Figure 1 shows the spatial distribution of b-values at an
Australian mine. High values occur around the stoping
vvolumes while low b-values occur at the lower abutment.

ff ffThese differences can be related to the difference in the
source mechanism in these areas; the higher b-values
correspond with stress fracturing seismicity, and the lower
b-values relate to a shear mechanism.

The same plot is combined with a spatial distribution of
apparent stress in Figure 2. The colouring of each grid point
in space is the same as that in Figure 1, but in Figure 2 each
grid-point marker is scaled by the geometric mean of the
apparent stress. The apparent stress is proportional to the
mean shear stress at the source of the event (McGarr, 1994).
The areas of the mine showing higher b-values generally
show a low apparent stress, while the lower abutment area
shows a high apparent stress state corresponding with low 
b-values. In this example, the distribution of b-values
through space can be obtained without a pre-defined model
of rock mass response.

▲
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Figure 2—Grid-based interpretation of seismicity showing the distri-
bution of b-value by colour. The size of the grid point markers are
scaled by apparent stress. Blue and red highlighted areas enclose the
stoping and abutment areas respectively

Figure 1—Grid based interpretation of the spatial distribution of b-
values in a mining area at an Australian mine. Blue and red highlighted
areas enclose the stoping and abutment areas respectively



General principle
The general principle behind the grid-based approach for
quantitative mine seismology can be summarized as follows:

Assign a representativep seismic parameter value to grid
points in space based on the events in its neighbourhoodg
in order to extract information from the variation of these
different parameter values in space.
Added value is obtained from this approach when the

different parameters are retained on each grid point, which
allows for the analysis of these different parameters together
as shown later.

What can be regarded as ‘representative’ and ‘the
neighbourhood’ depends on the purpose of the analysis, the
density and quality of the seismic data, and the type of
parameter interpolation that is performed i.e. obtaining the
cumulative parameter assessment, interpolation of the mean
vvalue, or obtaining the b-value.

The neighbourhood is defined by assigning a maximum
influence distance, with the addition of two more quality
checks. For a grid point to be assigned a representative
seismic parameter, the grid point events around it must be
both close enough and dense enough. This is illustrated in
Figure 3. The condition that events must be dense enough in
the vicinity of the grid-point prevents the transfer of
parameter values from areas further away, with dense data,
to a grid point where the density of the events close to the
grid point does not warrant the calculation of a parameter
vvalue.

Grid-based analysis of seismic data
The grid-based interpretation of seismic data requires
different approaches for different types of parameters,
wwhether it is the mean or cumulative value of a parameter
that is of interest, or the b-value.

It is important to note that in all the different approaches,
the gridding process involves some level of smearing, the
degree of which is dependent on the analysis parameters that
are discussed in this paper. It is important that the resolution
of the interpretation should match the resolution of the
original input data. Sparse data-sets would require more
smearing than high-resolution dense data-sets. A simple
sensitivity analysis should be performed to test the
sensitivity of the outcomes to chosen input parameters.

Obtaining a grid-based interpretation of b-value
The b-value of the frequency magnitude distribution is
proportional to the mean of the magnitude and, as such, is
simply a statistical parameter. The appropriate b-value
cannot be obtained without knowledge of the magnitude of
completeness of each subset of data. For this reason, the
method for obtaining the spatial distribution of the b-value is
quite involved and is treated separately in the sister paper
published in this volume (Wesseloo, 2014).

For current purposes it will suffice to summarize the
process as follows. For each grid point:

➤ Obtain the closest N events
➤ For these events obtain the mmin and associated b-

value
➤ Retain b-values for grid points passing the quality

tests.

Mean value of all parameters
In order to obtain the mean value of parameters, the
geometric mean of the parameters of the closest events to
each grid point is calculated. The process can be summarized
as follows. For each grid point:

➤ Find all the events (if ≥ N) within a distanceNN Rmin or
the closest N events within a seach distance of Rmax

➤ Calculate the geometric/arithmetic mean for the
parameter

➤ Perform quality checks (see above) and retain
calculated values for only the grid points passing the
quality tests.

This approach is used for obtaining spatial distribution of
parameters like energy index (EI), apparent stress (AS), and
time of day (TOD).

Smearing cumulative parameters
In the cases where one is interested in the cumulative effect
of different events, for example to obtain an event density or
the cumulative apparent volume, a smearing process is used.
In contrast to the method used to obtain the mean parameter
of neighbouring events (previous section), the parameter
value (intensity, I) of each event is distributed to (or
‘smeared onto’) grid points within its zone of influence.

This procedure can be summarized as follows:

➤ For each event
– Find all grid points within its influence zone
– Distribute a portion of its value to every grid point

➤ For every grid point
– Sum all the portions received from each event
– Perform quality checks.

This is performed with a variable smoothing where the
kernel bandwidth is linked to the event source size.

The distribution of the events’ parameter is performed
with an inverse distance weighting. The cumulative
parameter at each grid point is obtained as the sum of all the
values of all the events registered to that grid point. This can
be expressed as follows:

[1]
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Figure 3—Illustration of the concept of data neighbourhood
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[2]

[3]

[4]

wwhere pjp is the cumulative parameter at grid point j, and s are
the location vector of the event and grid points. The intensity
vvalue, I, is the parameter value of interest and K(θ) is the
kernel function. The bandwidth function h defines the
influence zone of each event, i.

F is a correction factor that ensures that no errors are
introduced due to the discretization of the volume space, i.e
that the following condition is met:

[5]

In other words, summing the parameter values over all
events must equal the sum of the parameter value associated
wwith each of the grid points.

This process is graphically illustrated in Figure 4. The
circles in Figure 4a represent different events with different
source sizes.  The parameter values of each of these curves
are distributed to the grid points in the influence zone with
the kernel function (Figure 4b). These values for each grid
point sum to the final spatial distribution of the parameter
vvalue (Figure 4c).

In the smearing process, described in the following
section, each event has an influence zone. Our current
approach is to define an influence based on the event source
radius, as defined by Brune (1970). A lower cut-off value
equal to the grid spacing is imposed to ensure stability of the
method for coarser grid discretization. A limiting ceiling value
is also introduced for numerical efficiency and stability. The
results are not sensitive to the ceiling value.

fIt is important to note that the results of the smearing
process are not sensitive to the influence of large events, as
the parameter values of these large events are distributed to
more grid points within the larger influence zone.

Grid-based quantitative analysis
This section provides a short discussion on some of the
parameters used in the grid-based analysis and examples to
illustrate the application of the method. The use of these
methods is not limited to these parameters.

Energy stress and apparent stress
Apparent stress is generally calculated as:

[6]

where G is the shear stiffness of the rock mass, and E and
MoMM are the total radiated energy and average moment for an
event, respectively. As indicated by its name, the definition of
apparent stress relates to the stress state in the rock mass at
the occurrence of the event. The apparent stress is propor-
tional to the mean shear stress at the source of the event,
(McGarr, 1994), and is defined as follows:

[7]

where η is the seismic efficiency and τ and τrτ are the peak
and residual shear stress, respectively.

As η is unknown, the absolute shear stress is also
unknown. The value of apparent stress is, however, a good
indicator of the relative stress state. This concept is refined by
Mendecki (1993), who showed that for a given slope of the
log(E)-log(M) relation, the intercept value relates to theMM
stress level. A simpler way to express this relative value of
the intercept is the log(EI), as defined by van Aswegen andII
Butler (1993).

Obtaining the log(E)-log(M) trendline introduces someMM
difficulties with unsatisfactory ‘best-fit’ lines. This problem
can easily be overcome. For the sake of maintaining the focus
of this paper, this will be discussed further in Appendix A.

The results of a grid-based analysis of the log(EI) at anII
Australian mine are shown in Figure 5. The colour scale of
the grid points reflects the values of log(EI). TheII
transparency of the grid points is also scaled with log(EI).II
The upper 50% of the log(EI) values are more solid while theII
lower 50% are more transparent.

In this particular case, low log(EI) values occur at theII
centre of the volume with surrounding higher log(EI) values.II
This corresponds with lower stress areas in the immediate
vicinity of the mined stopes, while the more competent rock
further away from the stopes is under a higher stress state.
The particular shape of the grid cloud is determined by the
location of seismic data, as grid points are generated only
where seismic data exists.

Time of day
The time-of-day parameter (TOD) is a measure of the
temporal differences in the seismic response. It is defined as
the ratio of the rate of seismicity occurring within a specified
time window(s) to the rate of seismicity occurring outside of

▲
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Figure 4—Illustration of the smearing of parameters onto grid points



those time windows. As an example, where the rock mass
reacts strongly (in a purely temporal sense) to blasts, the
TOD value will be high for a time window around blast time.
Orepass noise, on the other hand, results in TOD values of
less than 1 for time windows around shift change, as no
orepass activity occurs during shift change.

fGrid points with a low TOD were isolated for an
Australian mine. These grid points all located in a couple of
distinct areas. The diurnal chart for the events reporting to
these grid points is shown in Figure 7. From this chart it is
clear that the events are small and inversely correlated to the
shift change, indicating that these events are human-induced
noise, in this case orepass noise. The fact that these events
are human-induced noise is highlighted by the fact that the
time of lunch breaks during the two shifts is visible in the
diurnal chart.

Figure 8 shows the b-value and TOD plots for three
adjacent areas in a mine. Area (1) has an unnaturally high
b-value with a very low TOD and is the result of crusher
noise. Area (2) has a very high b-value and a higher TOD
and is the result of a raise bore experiencing some dogearing.
Area (3) has a lower, but still fairly high, b-value, with a
very high TOD. The seismicity in this area generally relates to
stress fracturing around development blasting temporally
concentrated around blast time. The diurnal charts for these
three areas area shown in Figure 9.

Cumulative damage
It is generally accepted that there is a correlation between
historical seismic activity in an area and the damage
accumulated in the rock mass.  Despite the work of Falmagne
(2001), Cai et al. (2001), Coulson and Bawden (2008), and
Pfitzner et al. (2010), there appears to be no accepted way to
quantify this damage accumulation from seismic data. Until
these difficulties are solved, we propose the use of apparent
volume and the cube root of moment as proxies for damage.

Apparent volume has been linked to the amount of co-
seismic strain (Mendecki, 1997), while the cube root of
moment is proportional to the maximum displacement at the
seismic source (McGarr and Fletcher, 2003).

Figure 10 shows the results of a grid-based analysis at an
Australian mine. In this example, log(EI) as a proxy forII
stress and the cube root of moment as a proxy for damage
are combined. Log(EI) is represented by the colour scale andII
the transparency varies with damage. The mean log(EI) isII
calculated for a 6-month data period, while the damage is
accumulated over the whole history of the mine.

Grid-based analysis of seismic data
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Figure 5—Grid-based interpretation of log(EI(( ). Both colour andII
transparency reflect the log(EI(( )II

Figure 6—TOD definition

Figure 7—TOD definition 
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The destressed area in this case corresponds with the
area of high historical damage, with some high-stress areas
on the abutments, where similar levels of damage have
accumulated. It should be noted that the destressing did not
take place due to the damage alone but is a result of the
mining voids. As one would expect, the area of high damage
is concentrated close to the stopes.

Event density
Event density is conceptually a very simple parameter and is
very easy to interpret as the number of events occurring per
unit volume. From a mathematical viewpoint, event density is
a cumulative parameter with the intensity value, I, equal to 1
(refer to Equation [5]) and for this reason is calculated with
the same method as is used for the cumulative damage.

Figure 11 shows examples from the Tasmania Mine for
different time periods during the life of the mine.

Calibrating numerical models
In mining geomechanics, the need for calibrating or
constraining the models with physical observations is well
recognized. Seismic data provides a valuable source of
information on the rock mass response to mining, and for
this reason has been used by some investigators to provide
calibration data for their models.

Often the calibration of numerical models with seismic
data is limited to a visual correlation between the event
location and strain or stress contours from the models, or the
visual correlation of event density with areas of higher plastic
strain. More recently, correlations between the energy release
monitored within a specified cell and the modelled plastic
strain energy have been used (Levkovitch et al., 2013; Arndt
et al., 2013). Both of these groups limit themselves to energy
and perform basic grid calculations, simply summing the
energy of all monitored events located within a specific grid
cell.

▲
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Figure 9—Diurnal charts for the events shown in the three areas in
Figure 8

Figure 10—Analysis results, combining log(EI(( ) results in colour withII
cumulative ‘damage’ results plotted with varying transparency

Figure 8—b-value and TOD plots for three adjacent areas in an
Australian mine



We are of the conviction that the grid-based approach to
the evaluation of seismic data presented here provides the
opportunity to better utilize the seismic data to constrain
numerical models.

As the grid-based interpretation can be continually
updated, this provides further opportunity to continually test
predicted rock mass behaviour against experienced
behaviour, with the possibility of flagging deviation from the
predicted behaviour.

Concluding remarks
A grid-based interpretation of seismic data has been
discussed and some examples of results obtained with the
method presented. A grid-based interpretation allows the
spatial variation of seismic source parameters to be evaluated
wwithout predetermined analysis volumes. As such, it provides
some buffer against biasing of interpretations towards pre-
conceived ideas.

The gridding process involves some level of smearing, the
degree of which is dependent on the analysis parameters
discussed. It is important that the resolution of the interpre-

ftation should match the resolution of the original input data.
A sparse data-set would require more smearing than high-
resolution dense data-sets. A simple sensitivity analysis
should be performed to test the sensitivity of the outcomes to
chosen input parameters.

The grid-based analysis approach is well suited to
compare with results from numerical modelling approaches.
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AAppendix A

Obtaining the log(E)-log(M) trendline
It should be recognized that a least-squares ‘best-fit’
approach assumes the total radiated energy (E) to be a
vvariable dependent on the total moment (M). ThisMM
assumption is incorrect as M and E are two independent
parameters and as such the use of the least-squares best-fit
method is invalid.

Applying the general least-squares best-fit approach to
the Log(E)-Log(M) relation underestimates the slope of the
trendline and overestimates the intercept (Figure 12).

When evaluating the log(E)-log(M) relationship we areMM
not interested in obtaining log(E) as a function of log(M) butMM
in the general statistical relationship between these
parameters.

Wesseloo and Potvin (2012) suggested the use of the
log(E)-log(M) quantile-quantile (QQ) relationship for thisMM
purpose, which is the method implemented in the software
mXrap (Figure 13).

It should be noted that this approach, although much
simpler, is equivalent to the approach suggested by Mendecki
(2013).

The QQ method for obtaining the log(E)-log(M)MM
relationship is performed as follows.

➤ Independently sort E and M, both in ascending order
➤ Plot log(Ei) against log(MiMM ) for every value of i. Note

that the actual values of log(Ei) and log(MiMM ) are not
from the same event and the only link between them is
the fact that they both represent the N

i quantile of the
two different sets log(E) and log(M)MM

➤ For practical use a best-fit line can be fitted to the QQ
relationship. ◆

▲
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Figure 12—Least-squares ‘best fit’ to the log(E(( ) log(EE M(( ) dataMM

Figure 13—‘Best fit’ to the QQ plot of log(E(( )-log(EE M(( ) dataMM




