
Introduction
One of the cornerstones of seismic data
interpretation and hazard assessment is the
Gutenberg-Richter (GR) relationship in the
frequency-magnitude plot. Estimation of the
spatial variation of the b-value is useful for
both the general interpretation of the
mechanism of rock mass response as well as
seismic hazard assessment (Wesseloo 2013).

The assessment of the spatial variation of
seismic parameters in general is discussed in a
sister paper in this volume (Wesseloo et al.,
2014). This paper focuses specifically on
obtaining the b-value, as it is quite involved
and warrants a separate discussion.

To estimate the b-value requires that the
magnitude of completeness, mmin, is known.
As both these parameters vary spatially and
temporally, it is necessary to automatically
obtain the most likely mmin and b-value for
every spatial subset of data.

The paper discusses the algorithm for
spatially sub-sampling the data as well as the
algorithm for obtaining the mmin and b-value
for every spatial sub-sample.

bb-value
The frequency-magnitude relationship (inverse
cumulative distribution) of seismic event
magnitude generally follows a power law
relationship which is often described by the
wwell-known GR relationship. The b-value

f fdescribes the frequency distribution of
magnitudes occurring in a given seismic data-
set and, as such, is a key component in any
seismic hazard assessment. Assessing the
spatial variation in the b-value forms one 
of the key components of any seismic
hazard map.

Apart from the obvious importance of the
b-value for hazard assessment, it is also a
valuable parameter for interpreting the rock
mass deformation and failure mechanism.
Several studies in both seismology and the
mining environment support this notion.

Wyss and his co-workers (Wyss et al.,
1997) pointed out that mapping the b-value is
equivalent to mean magnitude and assumes
that this is proportional to the mean crack
length. They also point out that along fault
zones the low b-values seem to correspond
with asperities (Amelung and King, 1997;
Wiemer et al., 1998; Wiemer and Wyss, 1997),
while high b-values correspond with creeping
sections of faults. High b-values seem to be a
characteristic of active magma chambers
(Wiemer et al., 1998; Wyss et al., 1997) where
seismicity is dominated by the creation of new
fractures under stress build-up.

Mogi (1962) noted that increasing material
heterogeneity results in a high b-value, while
others have pointed out that an increase in
applied shear stress (Scholz, 1968; Urbancic
et al., 1992; Wyss et al., 1997) or an increase
in effective stress decreases the b-value
(Wyss, 1973; Wyss et al., 1997).

In the mining environment different 
b-values have been associated with different
rock mass failure mechanisms. Legge and
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Spottiswoode (1987) pointed out that higher b-values may
be expected to result from seismic events occurring on
different planes dispersed in a three-dimensional volume,
wwhile lower b-values will be associated with events
distributed uniformly in two dimensions, as on a single
plane. Further along the scale, very low b-values can be
associated with one-dimensional linear distributions, which
could result from the interaction between the mining-induced
stress change and extensive planar discontinuities.

The b-value has in some cases been linked to a fractal
dimension, D. Aki (1981) related the b-value and the fractal
dimension as D = 2b. The conclusions of Spottiswoode and
Legge are consistent with a fractal interpretation of the
bb-value, where a b-value of 0.7 would relate to a D of 1.5,
wwhich could be interpreted as planar spatial distribution of
events; and a b-value of 1.5 relates to a D of 3, which could
be associated with a three-dimensional distribution of events.

The spatial assessment of the b-value is, therefore,
vvaluable for both hazard assessment and the interpretation of
the rock mass response to mining.

A generalized and simplified summary of the literature on
the interpretation of the b-value is provided in Table I.

Evaluation of the spatial variation of b-value
In order to evaluate the spatial variation of b-value, a grid is
generated over the volume of interest and the b-value
obtained for every grid point. Several crustal seismology
studies were performed where the spatial variation in b-value
wwas evaluated (e.g. Wiemer et al., 1998; Wiemer and Wyss,
1997; Wyss et al., 1997). These studies used the methods
developed by Wyss and co-workers that are incorporated into
a Matlab library (Zmap) (Wyss et al., 1997). The
methodology presented here is, in general terms, similar to
the approach used by Wyss and his co-workers.

The method used in this study can be summarized as
follows:

➤ Events with magnitudes much smaller than the
estimate of the overall sensitivity based on the whole
data-set (mmin - ∆) are excluded from the analysis. This
is done to speed up the calculations by excluding very
small events that do not contribute to obtaining the
b-value. Including these very small events also has a
negative impact on the overall algorithm performance
as it reduces the number of events useful for b-value
calculations within the search distance Rmax from each
grid point

➤ For each grid point, the mmin and b-value are obtained
from the closest N points and calculated with the search
radius limited to a value Rmax. Rmax is a user-defined

fvalue which depends on the resolution of the data, the
data density, and the purpose of the analysis.

With this method, only the maximum search distance is
specified and the real search distance is determined by the
distance to the Nth neighbouring event. Each grid pointNN
therefore has a unique search distance. This is illustrated in
Figure 1, where the sizes of the spheres illustrate the search
volume with radius Rmax.

A user-defined Rmax value limits the analysis to be
performed on grid points with N or more values within a
radius smaller or equal to Rmax, the purpose of which is to
restrict the grid point b-value to local data.

Several quality checks are built into the analysis, which
are discussed in the sister paper (Wesseloo et al., 2014).  In
addition to these, the following checks are also implemented
in relation to the b-value assessment:

➤ The value of mmin must be within reasonable expected
bounds

➤ The number of events with magnitude greater than
mmin must exceed a set threshold value.

▲
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Table I

Typical interpretation of b-value in terms of rock mass deformation mechanism

Low b-value High b-value References

Events localize on a plane Events spread out within the volume Legge and Spottiswoode (1987)

Corresponds with asperities on a fault Correspond with creeping sections of faults Amelung and King (1997); Wiemer and Wyss (1997); Wyss et al. (2004)

Increasing material heterogeneity Mogi (1962) 

Increase in applied shear stress Scholz (1968); Urbancic et al. (1992)

Figure 1—Illustration of the search distance and associated b-value for
an Australian mine



This added quality check is necessary to ensure that
reasonably stable b-values are obtained, as the standard
deviation of the b-value is inversely proportional to the
square root of the number of events used in the b-value
calculation (the number of events above mmin) (Kijko and
Funk, 1994), i.e.:

[1]

AAlgorithm for finding mmin and b for a given subset of

data
In order to obtain the grid-based spatial distribution of the
bb-value, I developed an algorithm to automatically obtain the
mmin and b-value for the subset of data associated with every
grid point. Examples of the results obtained by the algorithm
are shown in Figure 2.

The algorithm aims to maximize the number of data
points included above mmin, while minimizing the deviation
from the log-linear GR relationship. This described process is
performed for any data-set for which the mmin and b-value
need to be obtained.

The process for obtaining mmin can be described as
follows:

➤ Sort the data-set of magnitudes in descending order
➤ Calculate the b-value for subsets of the data, where

each subset of data is defined as consisting of data
points 1 to k where k varies between 10 and the full
number of data points in the data set. The b-value for
each subset, i, is therefore defined as follows:

[2]

➤ fThe minimum value of k = 10 is an arbitrarily chosen
practical lower limit and can be set higher. The purpose
of this minimum value is simply to ignore erratic
behaviour for the very high tail end of the distribution

➤ For each subset k, obtain the Kolmogorov-Smirnov
goodness of fit parameter, KS. This parameter is not
sensitive to the exponential tail end of the distribution
and is, therefore, well suited for the stable estimation
of mmin

➤ The decision parameter, C, is defined as follows:rr

[3]

The decision parameter has the form (A(( · B ) · (C ), with
each of these components combined to provide a good
and stable estimate of mmin.
A gives more weight to steeper b-values. This
component mitigates against the search algorithm
overshooting the true mmin value as a result of a
balancing effect of residual values on both sides of the
best-fit relationship near the mmin value.
B gives more weight to more data included above the
mmin value and works against local minimum values
for small values of k.
C defines the goodness of fit, with larger values
defining a better fit

➤ The value of k for which Ck is a maximum defines the
number of data points in the full data-set. That is:

[4]

Independent check for the algorithm

Check on the second moment
Figure 3a shows the result of the mmin algorithm applied to
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fdata from an Australian mine. The dashed lines show the GR
relationship for b ± σbσ . The change in the decision parameter
is shown in Figure 3b. Figure 3c shows the first and second
moment values of the distribution with mmin assumed to be
at each of the event magnitude values. This graph serves as
an independent check of the algorithm.

Figure 3c shows the 1st and 2nd moment  values of the
distribution with mmin assumed to be at each of the event
magnitude values. For a negative exponential distribution,
the first and second moments (mean and standard deviation
of the distribution) are equal.

It should be recognized that the open-ended GR
relationship is the negative exponential distribution of the
translated values of (Magnitude - mmin).

For the GR relationship, therefore, the translated first and
second moments should be equal. The change in the
calculated first and second moments of the data-set is shown
in Figure 3c. In this case, the algorithm estimate of mmin is at
the smallest magnitude before the values of the first and
second moments start to deviate from each other. That is the
smallest value of mmin at which the distribution exhibits the
characteristics of a negative exponential distribution. As the
second moment is not used in the mmin algorithm, this
provides independent support for the reliability of the
algorithm.

AAlgorithm verification using synthetic data-sets
In order to verify the developed algorithm, synthetic data-sets
wwere generated. These enable the known values of the
bb-value and mmin to be compared with those obtained
automatically through the use of the proposed algorithm.

To generate the synthetic data-set, random deviate
sampling was performed from a specified Truncated GR
relationship. This data-set was randomly distributed in a
rectangular volume with an arbitrary chosen array of sensors.
The distance between the event and sensor location was used

to determine which events will be detected by the system. The
resulting data-set provides one data sample for testing the
proposed algorithm.

▲
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Figure 3—Results from mmin-b-value algorithm applied to data from an
Australian mine; (a) provides the frequency-magnitude relationship,
while (b) and (c) plot the change in the value of the decision parameter
and the first and second moment of the magnitude, with magnitude
change, respectively

Figure 4—Example results of the verification tests performed on synthetic data-sets



The abovementioned process was repeated several
hundred times to obtain the distributions of mmin and
bb-values. Two examples are shown in Figure 4.

In the figure, a histogram of the estimated mmin values is
shown in blue on the chart on the right side. Also shown in
the right hand chart is one of the several hundred sampled
data-sets in red, together with its corresponding mmin value
as a black dot on the curve and the fitted GR relationship as a
solid blue line.

The distribution of mmin values follows a fairly narrow
distribution around the true value.

On the left side in Figure 4, a histogram of estimated
bb-values is shown in green. The distributions of b-values
follow a normal distribution around the specified b-value. It
should be noted that a variation in the estimated b-value will
result from the fact that each of the samples provides only a
small portion of the true population. This can be seen in
Figure 5. The solid green histogram shows the variation in
the estimated b-value obtained from the data-set for which
the mmin value is estimated, while the open blue histogram
shows the distribution of results for which the true mmin
vvalue is specified.

The similarity in the distributions confirms the reliability
of the method for obtaining  a good GR relationship for the
data-set. Note that it is not implied that same b-value is
always obtained for the two cases, but that the inherent
uncertainty in the b-value is not increased by applying the
algorithm to calculate mmin.

Results of evaluation of the spatial variation of 
bb-value
The method described previously was applied to the data-
base of Tasmania Mine (formerly known as Beaconsfield).
Figure 6 shows the isosurfaces enveloping the higher,
intermediate, and lower b-values for different dates during
the history of the mine. The green volume indicates b > 1.2,
orange indicates 0.8 < b < 1.2, and red b < 0.81. The volume
covers changes over time as mining progresses and the
seismically active volume increases.

This method clearly demonstrate that the b-value
changed over time for different areas. Some areas show a
high b-value which reduces as mining progresses, and later
increases with further progressing of the mining. The original
high b-value is associated with fracturing taking place as
stress change occurs. With further mining deformation
mechanism is dominated by larger structures with an
associated lower b-value. At later stages in the mining, the
stresses on these structures are released and the seismicity
takes the form of continued fracturing in the hangingwall.

This is similar to the results reported for a deep-level
South African environment by Legge and Spottiswoode
(1987). In contrast to some of the other areas, the western
(left) abutment continues to exhibit a low b-value throughout
the mining history. This implies that seismic deformation in
this area is typically concentrated on major structures.

Evaluation of the spatial variation of b-value
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Figure 5—Example results of the verification tests performed on
synthetic data-sets

Figure 6—Examples of the spatial variation of the b-value at Tasmania
Mine at different stages throughout the mine life

1Note that these isosurface values were chosen for the local magnitude
scale used on site, which tends to give lower b-values than for moment
magnitude
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Concluding remarks
The b-value of seismicity has been linked to the seismic
deformation mechanism of the rock mass and as such is
important for quantitative seismology in mines. The spatial
and temporal evaluation of the b-value is important for the
evaluation of the rock mass response to mining and changes
in seismic hazard as a result of mining.

The evaluation of the spatial variation of the b-value was
successfully implemented on a grid basis with an automated
method for obtaining the mmin and b-value for subsets of
data.
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