Synopsis

Block model estimates are commonly calculated by the well-established
technique of kriging. The mathematics are well established, but
implementation details require site-specific considerations. Checking and
measuring the performance of the estimates is important to ensure the
block model is suitable for its intended purpose. There are different
criteria for long-term planning and short-term planning. The implemen-
tation of kriging should be checked with cross-validation and assessed
for conditional bias and departure from theoretical optimality with the
calculation of kriging efficiency. A new expression of kriging efficiency,
which compares the kriging variance with the theoretically optimal
kriging variance, is developed to aid in this assessment. The assessment
tools presented here can be applied in a number of situations; however,
ordinary kriging with a reasonably large search performs well in most
cases.
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Introduction

The challenge of spatial prediction is common
in the earth science and other disciplines
including meteorology and hydrology.
Estimating spatially related geological
variables is difficult; estimates must be made

kriging techniques were developed by Krige
(1951), Sichel (1973) and others in South
Africa. Matheron (1962, 1963) formalized the
methods for mining resource and reserve
estimation and named them kriging after the

parallel developments in forestry (Matérn,
1960), bathymetry (Switzer et al., 1963),

(Kolmogorov et al., 1962). Further discussion
of the historical development of kriging is
given by Cressie (1990).

is a best, linear, unbiased estimator that
minimizes the variance of estimation errors;
often referred to as the estimation variance or
kriging variance (Journel and Huijbregts,

to make a kriging estimate such as kriging
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given samples taken from only one billionth of
the deposit volume or less. Early computerized

South African pioneer Danie Krige. There were

meteorology (Gandin, 1965), and mathematics

The properties of kriging are well known; it

1978). In practice, many decisions are required
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type, search parameters, and data selection.
The resulting estimates should then be
checked and assessed. In this paper, we
examine kriging and how necessary decisions
should be made and assessed with metrics and
measures of performance. There are three
types of estimates, each requiring a different
strategy and criteria for assessing results: (1)
estimates for visualization and geological
understanding, (2) estimates for interim
planning, and (3) final estimates for reserve
classification.

Review of kriging framework

Consider a regionalized random variable Z (a
realization is referred to as the ‘data’). The
data is subset into reasonable geologic rock
types or domains called stationary populations
in geostatistics. The data is assembled:

{Z(w,)=z,,a=1,.,N} [1]

The notation u, denotes a particular
sample location within the domain. Estimates
at unsampled locations are required. The data
is usually at a nominal point scale, whereas
the unsampled locations are volumes relevant
for mining reserves and resources assessment.
That is, they are blocks of a much larger size.
The block estimate Z* at an unsampled
location u is computed by a linear combination
of n nearby data:

Z, (w)-m= Z A -(z,—m) (2]

The notation V denotes the larger block
volume. The weights applied to each of the
nearby data are denoted by 2;. The stationary
mean is m, and the usual assumption is that
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this applies throughout the domain. The challenge is to
choose the nearest n data to combine and to choose the
weights. One evident choice is to retain 4 to 20 data and
assign weights by inverse distance interpolation to the
unsampled location. This can work well; but there are
nuances of spatial structure and anisotropy that can be
exploited for even better estimates.

Consider a separation vector / defined by an anisotropic
distance and direction (two angles, usually azimuth and
inclination from horizontal). The spatial variability for 4 is
represented by the semivariogram y(h). The semivariogram
(commonly referred to as the variogram) is defined as the
half expected squared difference for the random variable at
data points separated by #:

y() =1/2- E{[Z(w) - Z(u+0)]'} 3]

The variogram is experimentally estimated using the N (/)
data separated by a vector i within some defined tolerance:
N(h)

aoy | 2 4
PO = 212 =2, + b [4]
The experimental variogram is fit with a parametric
variogram model. This permits calculation of the closely
related covariance function C(h) = 02 - y(h) where o2 is the
variance of the data for the domain. The local weights for the
estimate are optimized to minimize the variance of the errors
of estimation (estimation variance):
min(o}) = min(E{[Z, (W) - Z, W]’} [5]
= min(iiﬂll/C(ul,uJ)72i AC(u,u)+C(V.,V))
=l j=1 i=1
Where C(u;,u)) is the covariance between two data locations
u; and u;, C(u;, u;) is the average covariance between the
block centered on u and the data at u;, and C(V,V) is the
average covariance value between any two points within the
block variance (Journel and Huijbregts, 1978). Minimizing
this function by taking the partial derivatives and setting
them equal to zero results in the simple kriging (named by
Matheron) equations which are solved to determine the
optimal weights:

> ACwu,u)=Cuu,),i=1..n [6]
j=1

It should be noted that for simple kriging, there is no
constraint that the sum of the weights equals unity and that
the simple kriging equation can be expressed differently to
include the weight given to the mean; this expression can be
found in any standard geostatistical text (Journel and
Huijbregts, 1978). The corresponding minimized estimation
variance (kriging variance) can then be calculated:

oy =CW.,V)-Y AC(u,u,) [7]
i=1

Choosing to constrain the weights to sum to unity leads
to the ordinary kriging equations (so named by Matheron).
The error variance is minimized subject to the unbiasedness
constraint that the sum of the weights is equal to unity
(Journel and Huijbregts, 1978). This relaxes the assumption
of global stationarity since the mean is effectively estimated
using the local search data. Other variants of kriging such as
universal kriging or intrinsic random function kriging can
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also be considered for specific cases. Complete development
of these kriging methods can be found in many geostatistical
texts (Chilés and Delfiner, 2012; David, 1977; Journel and
Huijbregts, 1978). For the estimation of mining variables in
practice, ordinary kriging is used more often than simple
kriging or alternative formulations, although integrated
simulation approaches are also being adopted (Godoy and
Dimitrakopoulos, 2011), and simple kriging is used in areas
of wide data spacing.

Decisions for kriging and assessment of results

When kriging is used for estimation, there are a number of
significant decisions to be made. The type of kriging,
generally either simple or ordinary kriging, must be decided.
A restricted search is often considered to reduce the computa-
tional burden of computing and inverting large covariance
matrices and, in the case of ordinary kriging, to reduce
reliance on the hypothesis of a stationary mean (Rivoirard,
1987). A restricted search for simple kriging may also be
used to eliminate the presence of negative weights and
therefore decrease the weight applied to the mean (Boyle,
2010). As such, the next step is data selection and the
definition of search parameters. Search parameters commonly
include a maximum range around the location being
estimated to search for local data and a maximum number of
local data to consider. Other search parameters could include
a maximum number of data to use from the same drill-hole
and a maximum number of data to use from each octant of
the local neighbourhood (Deutsch and Journel, 1998). This
data pooled together composes the kriging neighbourhood
(Rivoirard, 1987; Vann et al., 2003).

Rivoirard (1987) suggests the use of the weight given to
the mean in simple kriging and the slope of regression for
ordinary kriging as diagnostics on the search parameters. If
the weight given to the mean in simple kriging with a limited
neighbourhood is large, then a larger neighbourhood (less
restrictive search) can be used. Conversely, if the weight
applied to the mean in simple kriging is small, then the local
neighbourhood has a strong influence. From Rivoirard’s
analysis, it is almost always necessary to use a larger
neighbourhood for ordinary kriging compared to simple
kriging to reduce conditional bias. The slope of regression of
the true values against the estimated values is used as a
diagnostic for conditional bias. Ideally, the slope of this
regression would be as close to unity as possible. This
diagnostic depends heavily on the stationarity of the domain,
as many of the diagnostics presented here do.

The large number of decisions required for kriging
requires careful assessment of the resulting estimates. The
most widely used method for assessing kriging results is
cross-validation. Data locations are estimated with local data,
excluding data from the same drill-hole. The estimated values
are compared to the true values. Ideally, the estimates would
correlate very strongly with the truth. In practice, the variance
of the estimates is lower, so on average, high values are
underestimated and low values are overestimated. A more
robust cross-validation method is jackknifing, where a subset
of the data is omitted from the beginning of modelling, and
all calculations (estimation of the mean, variance, and
variogram) are performed without this subset of the data.
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Cross-validation and jackknifing are excellent assessment
methods, but can be used only for locations where we know
the true value. For the majority of locations where we do not
know the true value, kriging metrics such as the slope of
regression and kriging efficiency can be considered. The
slope of regression provides a measure of the conditional bias
in the estimates. The kriging efficiency as defined by Krige
(1997) is akin to a goodness of fit. In this paper, a novel
definition for kriging efficiency estimates the departure from
the theoretical minimum squared estimation error. The
results of cross-validation and these metrics can be used to
guide decisions regarding data selection and kriging type.

Data selection

Search anisotropy and ties

The determination of search anisotropy for kriging is not
trivial. The decision on search anisotropy parameters is
guided by the variogram and data spacing. The variogram
provides information on the spatial variability law of the
domain, and the data spacing is used to choose a practical
range. The search anisotropy should align with the variogram
anisotropy, but be modified by the data spacing. As each of
the variogram structures can have a different orientation, an
effective anisotropy across all nested variogram structures
should be considered. A reasonable distance for the search
anisotropy should then be used, such as two data spacings.
Other considerations can include restricting the search to a
maximum number per octant or maximum number per drill-
hole. Imposing additional restrictions may be necessary for
very complicated deposits or deposits with long-range
geologic continuity.

Care should be taken in the case of evenly spaced drill-
hole data when a limited number of data are used for the
kriging estimate. In this case the data used in the estimation
(if they are equidistant) will depend on the kriging program
and original order in the file. This can lead to inconsistencies
between estimates if the data order in the file changes. This
is a concern in mining, where establishing an audit trail and
the reproducibility of estimates are critically important. One
solution is to pre-sort the data along an arbitrary vector. The
positions of data at tied distances are then chosen in order of
the pre-sort vector. Alternatively, equidistant data could
always be included if the situation arises.

A related issue when using only a subset of the data for
kriging is the generation of discontinuous kriging surfaces.
For some applications such as hill shading, hydrological
modelling, and visualization, this is undesired (Gribov and
Krivoruchko, 2004; Rivoirard and Romary, 2011). Gribov
and Krivoruchko propose the use of a smoothing kernel
which is applied to the weights of distance data. Rivoirard
and Romary use a penalizing function to drive distance data
weights to zero. These approaches are useful when the
kriging application calls for it, but the resulting histogram of
estimates should be checked.

Number of search data

The choice of the number of local search data to use for the
kriging estimate is very important. As discussed earlier, the
number of search data is commonly limited to reduce
computational time and reliance on a global stationary mean.
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With increasing computer speed, this first concern is
relatively minor. These kriging decisions were evaluated by
the authors using a series of case studies similar to the
evaluation of nonlinear kriging methods by Moyeed and
Papritz (2002). A series of case studies were carried out to
determine the effect of the number of search data on the
mean squared error of the estimates. For each test case,
kriging was carried out in cross-validation mode considering
both simple and ordinary kriging with between 5 and 100
local data used to make each estimate. The mean squared
error between the estimates and true value were then
compared. In all cases, data from the same drill-hole as the
estimate being made was excluded as is typical in cross-
validation studies.

The first case study was a low-grade porphyry copper
deposit. This data set includes copper data from 134 drill-
holes with an average spacing of 100 m. The vertical copper
data was composited into 3 m sections. The copper assays are
moderately skewed with a mean of 0.25% copper and
standard deviation of 0.27%. The variograms for this deposit
are approximately isotropic and well behaved with a nugget
effect of 20% of the sill. Figure 1 plots the effect of the
number of search data on simple and ordinary kriging results
using this copper data. For a low number of search data,
simple kriging performed better than ordinary kriging, but
with a large number of search data, ordinary kriging was the
better estimator.

The second case study is a set of bitumen data from the
Athabasca oil sands. The percentage bitumen was sampled at
280 drill-holes with the vertical data composited into 3 m
sections. Due to the stratified geology of the oil sands, this
deposit displays very strong vertical to horizontal anisotropy
of approximately 150:1. The bitumen histogram is approxi-
mately uniform with a mean of 7.7% bitumen. As with the
copper case study, ordinary kriging performed better than
simple kriging for a large number of search data (Figure 2).

The third and final case study considered was a zinc
deposit with zinc assays from 367 drill-holes. For this
deposit, the metal assays were skewed, and there was a
moderate amount (approximately 3:1) of anisotropy between
the horizontal and vertical directions observed in the
variograms. For this deposit, the mean squared errors for
ordinary or simple kriging with large numbers of search data
were comparable (Figure 3).
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Figure 1—Effect of the number of search data on simple and ordinary
kriging results with low-grade copper porphyra data
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Figure 2—Effect of the number of search data on the mean squared
error of kriging estimates for bitumen data drom oil sands
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Figure 3—Effect of the number of search data on the mean squared
error as a function of the number of kriging search data for a zinc
deposit

Metrics

Given the large number of choices that must be made by the
practitioner, we are motivated to consider measures and
metrics of how kriging performs. Clearly, the number one
measure is the minimized mean squared error variance
(kriging variance); however, if search parameters are not
used there will be less emphasis on local stationarity. In such
cases other measures related to conditional bias and
departure from theoretical optimality should be considered.

Slope of regression

Consider cross-plotting the unknown true value of a random
variable Z with estimation volume V against the known
estimate of the random variable Z* on the same volume V.
The regression of the true values given the estimate is an
indication of the conditional bias in the estimate (Rivoirard,
1987). Specifically, the slope of regression, b, approximates
the conditional bias of the kriging estimate:

E{Z,\Z, =z}=a+bz (8]
If the bivariate relationship between the truth and
estimate was Gaussian, then the linear regression would be
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exactly the conditional expectation. Even in non-Gaussian
settings, the slope of regression is a reasonable approxi-
mation of the conditional bias. The slope of regression is
calculated using the estimation weights:

y AC(v.,
| _Covlz.z) 2RO o

o 3 S A4,C0,v,)

i=l j=1

For simple kriging, the slope of regression is exactly 1. In
the case of ordinary kriging where the Lagrange multiplier is
used, the slope of regression is generally less than 1. Given
this, we could say that ordinary kriging is conditionally
biased unless the slope of regression is equal to 1.

Kriging efficiency

Kriging efficiency was first introduced by Krige (1997) as a
measure of the efficiency of block estimates. The kriging
efficiency is expressed as the kriging variance (o2)
normalized by the variance of the true blocks (02) as a
percentage (Equation [10]). For block kriging, we consider
the estimates to be made on some volume V, and the
corresponding variance of the blocks is equal to the average
covariance between points within the blocks: C (V, V). We
express Krige's kriging efficiency, KEpx, subscripted by
Krige’s initials:

2_0']2( :E(K,V)—G;( [10]
o’ RS

A high efficiency means that the kriging variance is low,
and the variance of the block estimates is approximately
equal to the variance of the true block values. A low
efficiency implies a high kriging variance relative to the block
variance. The kriging variance varies from block to block, so
the kriging efficiency will vary as well. There are a number of
limiting cases discussed by Krige (1997). For perfect
valuations, the efficiency is 100%:

KE, (%) =<

o’ -0
0y =0,0, =0’ and KE,, = = =100% [11]

3 =

Where all blocks are valued at the global mean (global
estimate of all blocks is the only estimate made):

2 2
02, =0, of =0’ and KE,,, =00720=0% [12]

With no conditional bias for imperfect valuations:

ool T g
2 2 2 %
o’ =o'~ andKE,, =— K -
z, 2 2
o o2

With a conditional bias for imperfect valuations:

2
o

& [14]
c < o’

Krige also notes that the efficiency can be negative if the
kriging variance is greater than the true block variance.
When the estimation variance exceeds the block variance,
Krige deems this a kriging anomaly and states that valuing
the block with the mean would be more efficient assuming
we know the mean accurately.

2 2
2 2 2 _ 0 — 0y
0, >0 —0y and KE,, =———
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Statistical efficiency

Efficiency is a measure of the relative amount of effort to
accomplish a task. If a different process can accomplish the
same task with less effort, then it is more efficient. In
statistics, the efficiency of a statistical quantity is defined
differently depending on the property. The three most
commonly considered are the efficiencies of (1) an estimator,
(2) an experimental design matrix, and (3) a hypothesis test.
For an unbiased estimator, the efficiency is defined as the
minimum possible estimation variance divided by the
variance of the estimator (Fisher, 1922). The minimum
possible estimation variance is determined by the sample
size; the minimum possible estimation variance will change
depending on whether we have 10, 100, or 1 million samples.
This minimum possible estimation variance is given by the
Cramér-Rao bound, which states that the minimum possible
variance of the estimator is the inverse of the Fisher
information matrix (Rao, 1945). The most efficient estimator
(if one exists) will have an efficiency of 1. Less efficient
estimators will have efficiencies in [0,1).

Krige’s definition of kriging efficiency differs from the
classical definition in that the kriging efficiency is a measure
of the variance in the true value that is not represented in the
kriged estimate. This is more akin to a goodness-of-fit or
proportion of variance explained. The absolute minimum
variance would be the global simple kriging variance. If the
definition of efficiency proposed by Krige were to be
reworked as a statistical measure of efficiency, it should
incorporate the global simple kriging variance which is the
absolute minimum kriging variance. If the kriging variance is
equal to the global simple kriging variance, then the
estimator is efficient and will have an efficiency of 1. If the
kriging variance is larger than the global simple kriging
variance, then the efficiency will be less than 1. This could
also be expressed as a percentage. The efficiency will vary
depending on the block being estimated and data available.
Although global simple kriging is the lowest variance linear
estimator, there may exist lower variance nonlinear
estimators. Restricting the definition of efficiency to linear,
unbiased estimators, a new definition for the kriging
efficiency is:

2
KE(u) - Zex ) [15]
oy (u)

Global simple kriging is the most statistically efficient
unbiased linear estimator. It does, however, force the model
to rely heavily on a strong global stationarity assumption,
which is unrealistic in many cases. For example, issues with
an increase in the mean squared error and decrease in the
actual slope of regression were encountered by Boyle (2010)
when a very large search area was used. The reason for using
ordinary kriging is to obtain a local estimate of the mean at
the expense of introducing some conditional bias by limiting
the search, and therefore reduce reliance on the assumption
of a global stationarity mean throughout the whole domain.

Constraining the estimator will introduce a conditional
bias. Constrained estimators are sometimes used in statistics
because it is possible that an estimator with a small bias will
have a smaller mean squared error (the mean squared error
is equal to the variance plus the square of the bias). To
compare efficiencies, the ratio of efficiencies is taken. This
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gives a measure of how much more efficient one estimator is
compared to a second estimator.

For example, kriging with a more restrictive search radius
will decrease the relative efficiency compared to kriging with
a large search radius. The ratio of efficiencies would give a
measure of how much variance is being incurred to decrease
reliance on the global stationarity assumption. Ultimately,
knowledge of how much the decision of stationarity could be
relied upon would be necessary to determine an acceptable
efficiency level (McLennan and Deutsch, 2004).

Application of kriging metrics to case studies

Recall the three case studies introduced earlier: (1) a low-
grade copper porphyry deposit, (2) an oil sands deposit, and
(3) a zinc deposit. We can consider calculating the kriging
metrics discussed for the same range of search data. For
simplicity, the global simple kriging variance is approximated
using 100 search data. This approximation was found to be
very reasonable with the data-sets.

Kriging metrics were calculated for the copper porphyry
case study (Figure 4). The mean slope of regression, Krige’s
efficiency, and kriging efficiency are each given as the mean
of the calculated theoretical values. The mean weight given to
the simple kriging is also plotted for reference. The shape of
Krige's efficiency, the theoretical slope of regression, and
kriging efficiency are all similar, with the exception of the
simple kriging slope. Recall that for simple kriging, the slope
of regression will always be 1. A key aspect of this plot is
that as the number of search data increases, the mean
kriging efficiency (using the measure introduced in this
paper) for both ordinary and simple kriging asymptotically
approaches 1. This is because the estimator variances are
approaching that of the theoretically best linear estimator:
global simple kriging. This contrasts with what is observed
for Krige’s efficiency, which plateaus around a value of 0.3.
This is because the kriging variance is not being compared to
the best possible case but to the block variance instead.

For the oil sands case study, the kriging metrics follow a
similar shape (Figure 5), although with a distinct elbow at
the point (10-20 search data) where the cross-validated
mean squared errors displayed an elbow (Figure 2). This
elbow indicates that any additional search data used receive
only very small weights.
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Figure 4—Effect of the number of search data on the kriging efficiency
and theoretical slope of regression for the copper case study
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Figure 5—Effect of the number of search data on kriging metrics for the
oil sands case study

Scatter plots of the estimated values versus the true
values are shown for simple and ordinary kriging with 10
and 90 data in Figure 6. As expected, the observed
conditional bias for simple kriging with any number of data
is very low, as is the conditional bias with ordinary kriging
and a large number of data. Note that the metrics presented
here, including the slope of regression, are not the average of
the theoretical values as they are in Figure 5, but are
calculated using the known true values from cross-validation.
As the number of search data used for simple kriging
increases, the average weight to the simple kriging mean
decreases, resulting in an increased standard deviation of the
estimates.

Finally, the effect of the number of search data on kriging
metrics was quantified for the zinc case study (Figure 7). As
with the mean squared error, it can be observed that the
simple kriging and ordinary kriging efficiencies quickly
converge. In this test case, the slope of regression exceeds 1
for ordinary kriging; it is not common for the theoretical slope
of regression to exceed 1, but this has been documented in
the literature (Boyle, 2010).

Discussion

There are a number of useful observations that can be
gathered from the test cases. Increasing the number of search
data will generally decrease the mean squared error for
simple and ordinary kriging. This is contrary to the notion
that the search should be restricted to relax the assumption of
global stationarity and make better estimates. Increasing the
number of search data for ordinary kriging will implicitly
increase the accuracy of the estimate of the local mean and
improve the estimates made. In the case studies examined
here, using a large number of data resulted in estimates with
a lower mean squared error when examined with cross-
validation. For the majority of the deposit where the truth is
not known, kriging metrics, including kriging efficiency and
the slope of regression, provide a reasonable proxy for
assessing the departure from theoretical optimality. If
increasing the number of search data results in a large
increase in kriging efficiency, or the slope of regression, then
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increasing the number of search data will also be likely to
reduce the mean squared error of the estimate. This is
observed when the effects of the number of search data on
the mean squared error and kriging metrics are compared for
each of the case studies.

In both the oil sands and copper case studies, ordinary
kriging with a large number of search data resulted in a lower
observed mean squared error compared with simple kriging.
In the zinc case study, the results of ordinary and simple
kriging with a large number of data were comparable.
Theoretically, simple kriging will always result in a lower
mean squared error compared with ordinary kriging. The
better performance of ordinary kriging relative to simple
kriging is attributed to better estimation of a local mean
compared to the global mean used by simple kriging. If the
mean is not globally stationary in the domain, then using a
local stationary mean with ordinary kriging will result in
better estimates. This is supported by the plots of the mean
weight given to the simple kriging mean in the case studies
(Figures 4, 5, and 7). In the copper (Figure 4) and oil sands
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Figure 6—Scatter plots of estimates versus true values made with 10
(left) and 90 (right) search data for simple kriging (upper) and ordinary
(lower) kriging for the oil sands case study
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(Figure 5) case studies, the simple kriging mean receives
weights of up to 0.1 when a very large search neighbourhood
is used. In these cases simple kriging was outperformed

by ordinary kriging. Conversely in the zinc case study
(Figure 7), the simple kriging mean receives a negligible
weight when a large search neighbourhood is used. In this
case the results of simple and ordinary kriging were almost
identical. Using a very large number of search data resulted
in a very accurate estimate of the local mean. Increasing the
number of search data did not decrease the accuracy of this
estimate, as very distant data points received negligible
weight.

Increasing the number of search data had the expected
effect on the kriging metrics; it decreased the conditional
bias, which was accessed through the slope of regression,
and increased the kriging efficiency as the kriging variance
approached the global simple kriging variance. When the
number of search data is restricted to reduce smoothing and
produce estimates that more closely match with the
histogram predicted by volume-variance relationships, a
conditional bias will be introduced into the estimates. For the
purposes of estimating resource and reserves, this conditional
bias is generally accepted since the cost of using a very
smooth kriged map is often drastically under- or over-
estimating of reserves unless the estimates are post-
processed with a local conditioning approach such as uniform
conditioning.

Ultimately, the kriging search strategy depends on the
estimate type. Estimate types can be broadly classified as (1)
visualization and geological understanding, (2) interim
estimates, or (3) final estimates. When the goal is visual-
ization and gaining a level of geological understanding, a
very smooth map is desired since this is easier to understand.
For this purpose global simple kriging (to prevent any search
artifacts) could be considered. An alternative approach would
be to use local kriging with a smoothing method (Gribov and
Krivoruchko, 2004; Rivoirard and Romary, 2011) applied.

Interim estimates are used for long-term planning. The
goal is to anticipate the information effect for the future and
consider volume variance relations. For interim estimates a
restricted search to increase the variance of the estimates
could be considered. This increases understanding of what
variability can be expected in the future. This approach is
straightforward and commonly implemented, but not the only
available approach. Emery (2006) compared the use of Monte
Carlo integration with the point-support multigaussian model
and the commonly used discrete Gaussian model for use with
ordinary multigaussian kriging. Either method could be used
as an alternative to evaluate ore deposit reserves without
introducing a bias.

Final estimates come down to the decision of ore or
waste. These decisions must be made with minimum
conditional bias and should have a minimum mean squared
error. From the results of the case studies presented, the
practitioner should consider the use of ordinary kriging with
a large number of search data. A series of cross-validation
case studies could be done with the data-set to confirm that
this was the best approach. These results are similar to the
results obtained by Boyle (2010), who demonstrated that a
large number of samples increased the accuracy of estimates,
although this improvement was marginal. Boyle emphasized
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that dividing the area into suitable domains is likely to be far
more important than the selection of the precise number of
data to use when estimating, a suggestion that we echo here.
The incorporation of additional data to decrease estimation
error and conditional bias must be done within a stationary
domain.

Conclusions

There are a number of useful kriging measures, including
Krige's efficiency, the slope of regression, and the statis-
tically-based kriging efficiency proposed in this paper. The
proposed kriging efficiency considers the estimation variance
compared to the global simple kriging variance, which is the
theoretically minimum possible estimation variance. In the
case studies considered, the lowest mean squared error in
cross-validation was normally for ordinary kriging with a
very large number of search data. In this case, the kriging
efficiency was close to 1. The kriging metrics used in this
paper can be used to ascertain the departure from theoretical
optimality of a kriging implementation. If the kriging
efficiency or slope of regression is significantly lower than 1,
then the mean squared error and conditional bias will likely
be high. This may be acceptable if the goal of the estimate is
to assess the proportion of the deposit above a certain cut-off
grade, in which case the smoothing introduced by using a
very large number of search data may be unacceptable.
Ultimately, the decision of how many search data to use and
search strategy depends on the type of estimate being made.
The kriging metrics and guidelines introduced in this paper
should assist the practitioner in making these decisions.
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