
Introduction
The problem of accommodating correlation
between observations made at different
locations permeates design, analysis, and
prediction for spatial data. In two seminal
papers, Krige formulated a statistical model for
such data, which comprises a deterministic
component reflecting the underlying trends
and an error component capturing correlations
between observations taken at separate
locations (Krige, 1951), and invoked his model
to obtain predictions at unobserved locations
(Krige, 1962). Krige’s work provided the basis
for best linear unbiased prediction within the
context of spatial data and was formalized
more rigidly and mathematically by Matheron
(1963). An excellent overview of the historical
development of the methodology, broadly
referred to as kriging, is provided by Cressie
(1990).

The kriging approach has been adapted
seamlessly to accommodate more modern
statistical practice and is used extensively in a

vast range of areas. A particular problem, that
of using best linear unbiased prediction to
predict a response at an unobserved location
when the parameters describing the correlation
structure between locations are unknown is,
however, not fully resolved. To be specific, an
obvious solution to this problem is to ‘plug’ an
available estimate of the parameters into the
expression for the predictor with parameters
known. Unfortunately, the distribution of the
resultant predictor, termed the empirical best
linear unbiased predictor or EBLUP, is
intractable, and more particularly the mean
square prediction error associated with the
EBLUP cannot be expressed analytically.

In the present study, five approaches to
approximating the mean square prediction
error of the EBLUP, the ‘plug-in’, those of
Kacker and Harville (1984) and Prasad and
Rao (1990), and two taken from den Hertog et
al. (2006) and based on bootstrapping, are
introduced and compared using a simulation
study that accommodates weak, moderate, and
strong spatial correlation. The paper is
organized as follows. Basic notions and
formulae underpinning the methodology are
presented first. The simulation study is then
described, and the attendant results
summarized. Finally, some broad conclusions
and pointers for further research are given.

Preliminaries

Kriging basics
Suppose that observations are made on an
attribute Z at the n spatial locations xi, i = 1,
... , n, in a designated geographic region D. Let
Z (xg) denote the observed response at a
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generic location xg where xg ∈ D     R2 and let Z(x) where x =
(x1, ... , xn) denote the n × 1 vector of responses at the n
locations. Suppose further that interest centres on predicting
the response Z(x0) at a location x0 in D. Then it is usual to
obtain such a predicted value by introducing a weighted sum
of the observations of the form

[1]

where λi is the weight associated with the ith observation 

Z(xi) with ∑ i=1
N(x0)

λi = 1, λ is the n ×1 vector (λ1, .. , λN(x0)) and 

N(x0) is the number of points in a search neighbourhood
around the prediction location x0.

Now, assuming second-order stationarity, the kriging
model can be formulated as 

[2]

where F(x) is an n x (k + 1) matrix with rows which usually
depend on the spatial coordinates alone and/or other
explanatory variables, β is a vector of k + 1 unknown
parameters, and e (x) is an n + 1 vector of error terms with
mean 0 and variance-covariance matrix Σ(θ ). The covariance
between any two points is taken here to be a function of the
Euclidean distance between the two points and the vector of
parameters θ =(θ 0, θ 1,θ 2), corresponding, in order, to the
nugget, the partial sill, and the range. Other functions for the
covariance between points, such as the exponential and the
Matérn, which depend on more or fewer parameters, can also
be invoked (Diggle and Ribeiro, 2007). The covariance
between any two points, xi and xj is denoted as 
Cov[Z(xi), Z(xj)] = C(xi – xj; θ ) and for i, j = 1, ... , n
are the elements of the variance-covariance matrix.

The best linear unbiased predictor (BLUP) at location x0
under the kriging model in Equation [2] is obtained by
minimizing the mean square prediction error, E[λTZ(x) –
Z(x0)]2, with respect to the weights λ under the condition of
unbiasedness, that is E[Z^(x0)] = Z(x0). Thus, assuming the
parameter θ is known, the kriging weight vector λ is given by 

where c(θ ) is the n × 1 vector (C(x0−x1; θ ), ... , (C(x0−xn;
θ )), ∆ = FTΣ(θ )–1F and f0 FTλ. It then follows that the
BLUP at x0 is given by 

and its mean square prediction error, denoted MSPE and
termed the kriging variance, by 

[3]

where β^ is the generalized least squares (GLS) estimator of β,
that is 

In practice, however, the parameters θ = (θ 0, θ 1, θ 2) are
rarely known and must be estimated. Early studies adopted

least squares estimators of θ based on fitting appropriate
nonlinear models to the semivariogram data. However, a
more modern approach involves maximizing the log-
likelihood or the restricted log-likelihood with respect to β
and θ to give the maximum likelihood estimator (MLE),
θ^MLE, or the restricted maximum likelihood (REML)
estimator, θ^REML, of θ respectively. The kriging predictor at
the location x0 is then obtained by ‘plugging’ an estimate of
θ , denoted generically θ^, into the expression for the BLUP to
give the ‘empirical’ BLUP, termed the EBLUP, as 

In the same spirit, the kriging variance or MSPE of the
predictor at x0 can be estimated by plugging θ^ into the
expression for the MSPE with θ known, that is into Equation
[3], to give the ‘empirical’ MSPE, denoted EMSPE and more
commonly referred to as the plug-in kriging variance
estimator.

Kriging variance estimators
It is well known that the plug-in estimator of the kriging
variance underpredicts the MSPE of the EBLUP, at least in
general (Zimmerman and Cressie, 1992, den Hertog et al.
2006). More specifically, the MSPE with θ and Σ(θ ) known is
given in Equation [3] and can be expressed succinctly as 

Thus, for θ unknown, the EMSPE, that is the plug-in kriging
variance, is given by m1(θ^). Strictly, however, the mean
square prediction error associated with the EBLUP is given by 

where the trailing term in the second equality is algebraically
intractable and therefore m2(θ^) cannot be evaluated. A
number of approaches, both algebraic and computational, to
the construction of estimators of the EBLUP kriging variance,
which are approximate and which to some extent redress the
negative bias in the EMSPE, have been reported. In this study
the properties of four such estimators, namely the Kacker-
Harville estimator, the Prasad-Rao estimator, and two
bootstrap estimators, are investigated. These estimators are
summarized as follows.

Kacker and Harville (1984) used a Taylor series
expansion of the trailing term in m2(θ ) to derive an estimator
of the EBLUP kriging variance, albeit approximate, as

[4]

where 

In practice θ^ can be plugged into the terms m1(θ )and
A(θ ) of Equation [4] and the term B(θ ), which is the mean
square error of θ^ and is unknown, can be approximated by
the inverse of the observed Fisher information matrix for θ ,
that is the inverse of the Hessian H(θ^). Thus the Kacker-
Harville estimator can be evaluated as 

▲
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but, since this is essentially a plug-in estimator, it still
remains negatively biased. To redress this bias, Prasad and
Rao (1990) invoked some intricate theory to develop a
further correction to m2(θ ) and, based on their results,
introduced an estimator which approximates the MSE of the
EBLUP as

Both the Kacker-Harville and the Prasad-Rao estimators
reduce the negative bias of the plug-in kriging variance, but
the improvement depends on sample size, spatial autocorre-
lation, Gaussian assumptions, an unbiased estimate of θ , and
on the assumption that the covariance function is linear in
the elements of θ (Prasad and Rao, 1990; Harville and Jeske,
1992; Zimmerman and Cressie, 1992). However, the latter
assumption is clearly not valid for a range of widely used
covariance models, such as the Gaussian, the exponential,
the spherical, and the Matérn. This observation prompted
Wang and Wall (2003) to suggest bootstrapping as an
alternative method for estimating the MSPE of the EBLUP. 

Two bootstrap estimators of m2(θ ) are investigated in the
present study. Specifically, suppose that observations Z(x) at
the n locations, x1, ... , xn, are taken from a Gaussian random
field and that predictors at m new or test locations, x01, ... ,
x0m, are required. The MLE or REML estimators of β and θ ,
denoted β^ and θ^ respectively, can immediately be obtained
from the data and, following den Hertog et al. (2006),
bootstrap procedures based on the estimated distribution
Z(x) ~ G (Fβ^, Σ(θ^)) can then be implemented. 

The bootstrap estimator of the MSPE of the EBLUP based
on the assumption of a joint or unconditional Gaussian distri-
bution for the responses at the observed and the test
locations, termed the unconditional bootstrap estimator
(UBE) and denoted m2(UBE)(θ

^), is introduced here and can
be obtained by implementing the following algorithm.

Unconditional bootstrap estimation
1.  Sample from G (Fβ^, ∑(θ^)) at the observed locations x1, ...

, xn and at the test locations x01, ... , xom simultaneously
2.  Use the bootstrap sample at the n observed locations to fit

a kriging model and use this fitted model to compute
predictions at the m test locations x01, ... , xom 

3.  Calculate the squared prediction error at each test point
4.  Repeat steps 1 to 3 B times. Then compute the uncondi-

tional bootstrap estimate of the MSPE, that is m2(UBE)(θ
^),

at each test point. Stop.
An alternative bootstrap estimator to the UBE, termed the

conditional bootstrap estimator (CBE) and denoted
m2(CBE)(θ

^), is based on the fact that the conditional distri-
bution of the responses Z(x0) at the test locations, x01, ... ,
x0m, given observations Z(x) at the n locations, x1, ... , xn
under a Gaussian assumption is well known. Specifically, 

where the vectors µ^ = Fβ^ and µ^0 = F0β
^, with β^ evaluated at

θ^, are the vectors of estimated means at the n observed and
the m test locations respectively and the variance matrix for
x = (x1, ... , xn) and x01, ... , x0m, partitioned conformably
with these vectors, is given by 

The conditional bootstrap estimator is also introduced in
the present study and can be obtained by implementing the
following algorithm.

Conditional bootstrap estimation
1.  Use the kriging model, G (Fβ^, ∑(θ^)) fitted to the

observations Z(x) to make predictions at the m test
locations x01, ... , x0m

2.  Take a bootstrap sample at the test locations x01, ... , x0m
conditional on the observations Z(x), that is, sample from
the conditional distribution Z(x0)|Z(x)

3.  Calculate the squared differences of the predictions and
the bootstrap realizations obtained from steps 1 and 2
respectively

4.  Repeat steps 2 and 3 B times. Then compute the
conditional bootstrap estimate of the MSPE, that is,
m2(CBE)(θ

^), at each test point. Stop.

Simulation study
In order to investigate the performance of the five estimators
for the MSPE of the EBLUP introduced in this paper, namely
the plug-in, the Kacker-Harville, the Prasad-Rao, the
unconditional bootstrap, and the conditional bootstrap
estimators, a simulation study incorporating conditions of
spatial correlation specified by three Gaussian random fields
was undertaken (Ngwenya, 2009).

Settings for the simulations are summarized as follows.
The observed locations were taken as a regular grid of 112
points in a square domain D = [0,15] x [10,15] and are
specified by the set 

S = {x = (u, v): u = 2k, v = 2l + 1 and u = 2l + 1, v = 2k
for k = 1, ... , 7, l = 0,1, ... , 7}.
In addition, a set of five points, {x01, ... , x05} =

{(3,1),(13,0),(8,8),(3,13),(15,15)} within the domain D, was
chosen to specify the prediction locations (Figure 1). The five
prediction points were located so as to enable the effective
study of location and data configuration on the various m2(θ )
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Figure 1—Spatial configuration of observed 112 points in domain D and
5 prediction locations. Observation locations are indicated by open
circles and prediction locations by solid circles 
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estimators. We have chosen a point in the middle of the grid,
one inside the grid but close to the edge of the domain D, 
two on the edge of the grid, and one outside the grid but 
still in D.

An ordinary kriging model with F(x) = 1 and a Gaussian
distribution for the error terms, namely

was adopted. More specifically, the regression parameter β
was taken to be zero, thus defining a simple kriging model,
and an exponential covariance structure 

where h denotes the Euclidean distance between the locations
xi and xj, θ 1 the nugget, θ 2 the partial sill, and θ 3 the range,
was adopted. Fixed values of θ 1 = 0.25 and θ 2 = 1 were
taken and three values for the range, namely θ 3 = 1.5, 2.5,
and 4.2 corresponding to weak, moderate, and strong spatial
correlations respectively, were introduced. Thus three data-
sets or random fields, denoted Z1, Z2 and Z3, with increasing
spatial correlation were created. 

It is sensible to compare each of the five estimators of the
MSPE of the EBLUP introduced in this study with the true
value, m2(θ ). As noted earlier, no analytical expression for
m2(θ ) is available. However Monte Carlo simulation to
approximate the true value m2(θ ) to a chosen degree of
accuracy can readily be performed. The procedure is
summarized as follows.

Monte Carlo procedure to approximate m2(θ )
1.  Set r = 1
2.  Generate a spatial process over the grid of observation and

prediction locations using the true values of the
parameters β and θ

3.  For the rth realization fit a kriging model by using the
data at the observation locations to obtain estimates β^r of
β and θ^r of θ

4.  Calculate [Z^(x0; θ^r) – Zr(x0)]2, the squared difference
between the predicted value Z^(x0; θ^r) and the observed
value Zr(x0) at each of the prediction locations, x0

5.  Repeat steps 2 to 4, updating r to r + 1, R times and then
compute the average squared differences between the
predicted and simulated values as

for each of the prediction locations, x0. Stop. 
A pilot study to determine the number of simulations R

that gives m2(θ ) to an accuracy of at least ±0.0001 for each
of the three random fields, Z1, Z2, and Z3, was performed. A
maximum value of R = 250 000 for the full Monte Carlo
simulations was found and used in all cases.

The plug-in, the Kacker-Harville, and the Prasad-Rao
estimators of the MSPE of the EBLUP at the m = 5 prediction
locations for each of the random fields Z1, Z2, and Z3, were
based on 1000 realizations at the observation locations.
Specifically, for each realization the MLE and REML estimates
of θ , denoted generically as θ^, were found and plugged into
the appropriate expressions. The resultant estimates were
then averaged over the 1000 realizations to give the

estimators m1(θ^), m2(KH)(θ
^) and m2(PR)(θ

^) to a degree of
accuracy determined by the number of simulations. The
bootstrap estimators were based on B = 1000 bootstrap
iterations for each of the 1000 realizations of the observed
and, in the case of the unconditional bootstrap estimator, the
observed and the prediction locations. The unconditional
bootstrap method is computationally expensive since 1000 ×
1000 × 2 (MLE and REML) = 200 000 kriging models had to
be fitted to the simulated data. This consideration limited the
number of realizations.

Results
The values the MSPE of the BLUP, m1(θ ), the MSPE of the
EBLUP, m2(θ ), and the EMSPE m1(θ^) together with the
values of the four alternative kriging variance estimators,
namely m2(KH)(θ

^), m2(PR)(θ
^), m2(UBE)(θ

^) and m2(CBE)(θ
^),

under both MLE and REML estimation of the covariance
parameters, were computed at each prediction location across
the three random fields, Z1, Z2, and Z3. The R programming
language (R Development Core Team, 2012) was used to
calculate these values and the results are tabulated in
Ngwenya (2009). For conciseness, only the relative biases in
the estimators of the MSPE of the EBLUP are presented here,
with relative bias defined to be

where m2,E(θ^), is a generic estimator of m2(θ ). Specifically,
the relative biases under MLE and REML estimation of the
covariance parameters θ are summarized in Table I(a) and
I(b) together with m2(θ ) values obtained by the Monte Carlo
procedure. In addition, the absolute values of the percentage
relative biases are represented diagrammatically in Figures
2(a) and 2(b) respectively.

Certain features of the relative biases in the MSPEs of the
EBLUP are worth noting. In particular, the performance of the
conditional bootstrap estimator m2(CBE)(θ

^) is almost indistin-
guishable from that of the plug-in estimator m1(θ^) under
both MLE and REML estimation of θ and at each point across
the three random fields. These estimators seriously underes-
timate m2(θ ), with the degree of underestimation increasing
with an increase in the spatial correlation exhibited by the
random fields.

The Kacker-Harville and unconditional bootstrap
estimators, m2(KH)(θ

^) and m2(UBE)(θ
^) respectively, also

exhibit very similar behaviour, but only when the spatial
correlation is moderate to strong. It is interesting to note here
that Zimmerman (2006), in simulation studies on optimal
network designs, found that design criteria based on
m2(KH)(θ

^) and m2(UBE)(θ
^) lead to similar designs. However,

when the spatial correlation is weak, m2(KH)(θ
^

MLE) has a
propensity to lead to overestimates of m2(θ ), while
m2(UBE)(θ

^
MLE) exhibits a high degree of accuracy, with an

absolute relative bias as small as 0.3% at the prediction
location (15, 15). In contrast, the estimators m2(KH)(θ

^
REML)

and m2(UBE)(θ
^

REML) are more evenly matched when the
spatial correlation is weak.

Values of m2(θ ), at the points (3,1), (15,15), and (13,0),
which lie at an edge, a corner, and outside of the area circum-

▲
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scribed by the grid of observed locations, are greater than
those for the prediction points (8,8) and (3,13), which are
surrounded by observed locations. However it is also clear
from the results summarized in Table I that this feature of the
values of m2(θ ) for the prediction points is not mirrored in
the corresponding values of the absolute relative biases.
Indeed, there seems to be no obvious relationship between
these measures of bias and the location of the prediction
points and the spatial configuration of the grid, in accord
with the findings of Zimmerman and Cressie (1992).

The Prasad-Rao estimator m2(PR)(θ
^) does not seem to

exhibit behaviour that is very close to any of the other four
estimators of the MSPE of the EBLUP investigated in this
study. Specifically, when the spatial correlation is weak, the
estimator exhibits a large positive bias of up to 11.7% with
θ^MLE and 2.3% with θ^REML. This observation can be
explained by the fact that, for weak spatial correlation, the
large sample covariance matrix overestimates the variability
in the parameter estimates θ^, thereby inflating the trailing
term in the expression for m2(PR)(θ

^) (Abt, 1999). The same
explanation can be given for the fact that m2(KH)(θ

^) has a
propensity to be positively biased when the spatial correlation
is weak. In contrast, for moderate and strong spatial
correlation, the Prasad-Rao estimator m2(PR)(θ

^) exhibits the
smallest absolute relative bias at all prediction locations when
compared to the other four estimators of m2(θ ) in accord with
the findings of Zimmerman and Cressie (1992). In fact, the
Prasad-Rao estimator performs well with both θ^MLE and
θ^REML in these situations, with biases as small as 0.5% and
0.1% respectively, and is clearly to be preferred.

Conclusions
Some broad conclusions based on the simulation study are
now drawn, but should be taken strictly within the context of
that study. Thus the performance of all of the five estimators
of the mean square prediction error examined here depend
somewhat sensitively on the method of estimation, that is
MLE or REML, and in most cases REML should be the
desired choice. The plug-in estimator consistently underes-
timates the MSPE of the EBLUP, in accord with more general
findings in the literature, and is clearly unsatisfactory. The
Prasad-Rao estimator performs optimally for the random
fields with moderate and strong spatial correlation but would
seem to be erratic for the field with weak correlation. In the
latter case the Kacker-Harville estimator is to be preferred
overall. It is interesting to note that the absolute relative
biases of the prediction points do not appear to be related in
any meaningful way to the location of those points in the
domain of the simulation experiment.

Empirical studies on the nature and performance of
approximate estimators for the MSPE of the EBLUP based on
simulation or real data can be construed as being endless.
Clearly, therefore, there is scope for further theoretical
research into constructing reliable and robust estimators of
this MSPE. One such approach could involve third-, fourth-,
and higher-order approximations of appropriate Taylor series
expansions. However, such derivations are intricate and
nontrivial and indeed are fraught with subtle problems. 
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Figure 2—Graphical comparisons of the absolute relative bias of the five estimators of m2(θ ) at the five prediction locations in the three fields, Z1 (left
panel), Z2 (middle panel), and Z3 (right panel). All parameters for the estimators reported here were estimated via (a) MLE (top row) and (b) REML (bottom
row)
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Table I

Approximate relative bias of the five kriging variance estimators at each point under (a) MLE and (b) REML of the
covariance parameters across the Gaussian random fields Z1, Z2, and Z3 used in the simulation study. For each
field the estimator with the smallest relative bias at each point is indicated in bold. Also shown are the values of
m2(θ ) obtained by the Monte Carlo procedure

I(a) Random field x0 m2 (θ ) θ
^

MLE

m1 (θ^) σ 2 (θ^)KH σ 2 (θ^)PR σ 2 (θ^)UBS σ 2 (θ^)CBS

Z1 weak (3,1) 0.862 -0.030 0.020 0.070 -0.010 -0.029
(13,0) 1.067 -0.031 -0.017 0.004 -0.016 -0.030
(8,8) 0.806 -0.026 0.038 0.103 -0.006 -0.025
(3,13) 0.795 -0.011 0.053 0.117 0.008 -0.011
(15,15) 0.941 -0.023 0.014 0.050 0.003 -0.022

Z2 moderate (3,1) 0.676 -0.049 -0.031 -0.012 -0.036 -0.049
(13,0) 0.880 -0.040 -0.025 -0.011 -0.026 -0.041
(8,8) 0.625 -0.048 -0.029 -0.008 -0.032 -0.046
(3,13) 0.617 -0.036 -0.016 0.005 -0.021 -0.034
(15,15) 0.765 -0.044 -0.026 0.008 -0.029 -0.042

Z3 strong (3,1) 0.544 -0.064 -0.048 -0.029 -0.051 -0.064
(13,0) 0.708 -0.048 -0.032 -0.017 -0.032 -0.048
(8,8) 0.502 -0.064 -0.046 -0.028 -0.048 -0.064
(3,13) 0.495 -0.051 -0.032 -0.014 -0.036 -0.051
(15,15) 0.623 -0.059 -0.042 -0.024 -0.043 -0.058

I(b) x0 m2 (θ ) θ
^

REML

m1 (θ^) σ 2 (θ^)KH σ 2 (θ^)PR σ 2 (θ^)UBS σ 2 (θ^)CBS

Z1 weak (3,1) 0.864 -0.039 -0.017 0.003 -0.021 -0.038
(13,0) 1.070 -0.037 0.023 -0.009 -0.020 -0.036
(8,8) 0.809 -0.040 0.015 0.010 -0.019 -0.040
(3,13) 0.798 -0.025 0.001 0.023 -0.009 -0.026
(15,15) 0.945 -0.029 -0.010 0.011 -0.008 -0.029

Z2 moderate (3,1) 0.678 -0.044 -0.028 -0.012 -0.028 -0.046
(13,0) 0.883 -0.035 -0.031 -0.006 -0.017 -0.034
(8,8) 0.627 -0.045 -0.027 -0.010 -0.032 -0.045
(3,13) 0.618 -0.031 -0.013 0 .005 -0.015 -0.032
(15,15) 0.767 -0.034 -0.016 0.001 -0.016 -0.035

Z3 strong (3,1) 0.545 -0.051 -0.035 -0.020 -0.037 -0.050
(13,0) 0.708 -0.038 -0.023 -0.008 -0.021 -0.038
(8,8) 0.503 -0.052 -0.036 -0.020 -0.034 -0.050
(3,13) 0.496 -0.036 -0.022 -0.006 -0.022 -0.036
(15,15) 0.624 -0.042 -0.024 -0.006 -0.022 -0.038




