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Synopsis

This paper presents a matrix formulation of factorial kriging, and its
relationships with simple and ordinary kriging. Similar to other kriging
methods, factorial kriging can be applied to both stationary and intrinsic
stochastic processes, and is often used as a local operator. Therefore, the
concepts of intrinsic random function and local stationarity are first
briefly reviewed. Kriging is presented in a block matrix form in which
the kriging solution is useful not only for understanding the
relationships between simple and ordinary kriging methods, but also the
relationships between interpolative kriging and factorial kriging. When
used as a signal/noise-filtering method, factorial kriging is especially
useful for multiscale modelling. Examples for general signal analysis
and geophysical data signal filtering are given to illustrate the method..

Keywords
kriging in matrix form, locally stationary, block matrix, multiscale
modeling, relationship between simple and ordinary kriging, filtering.

Heterogeneity, stationarity, and kriging

Heterogeneity is an important concern when
applying a statistical method to a spatial
process, because it largely determines the
choice of an appropriate modelling method and
whether the chosen method can be effectively
applied. Large heterogeneities generally cause
stationary stochastic modelling methods to go
astray (Delfiner, 1976; Ma et al., 2008).
Universal kriging and intrinsic random
function (IRF) techniques were proposed to
deal with modelling nonstationary stochastic
processes (Matheron, 1973). These techniques
have been successfully used for topographic
mapping and other applications (Delfiner et
al., 1978; Chiles and Delfiner, 2012).

Stationary, locally stationary, and
intrinsic random functions

IRF theory is a generalization of stochastic
processes with independent increments. The
latter implies uncorrelated first-order
differences, such as a Brownian motion
(Matheron, 1973; Papoulis 1965; Serra, 1984).
A Brownian motion is not stationary, because
the variance increases when the domain of
study increases. This was coined an intrinsic
random_function of order O (IRF-0) by
Matheron (1973). Besag and Mondal (2005)
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provided a bridge between spatial intrinsic
processes (also called de Wijis process) and
first-order intrinsic autoregressions. By a
further extension, a stochastic process whose
(k+1)th differences constitute a stationary
process is termed an intrinsic random_function
of order k or IRF-k (Matheron, 1973).

Let A denote the vector space of real
measures in R" with finite supports. A second-
order random function (RF) Z: R'->L2(Q, A,
P) admits a linear extension Z: A->L2(Q, A,
P) defined by

Zh) = [ h(dx) Z(x) forhe A [1]

which implies the strict positive
definiteness of the covariance matrix <Z(xy),
Z(x)> for any finite set of distinct points x4
and x, in R". As an example, Wiener’s linear
estimator is such a type (Wiener, 1949). An
IRF-k is defined in a more restrictive way. A
continuous function p(x) is chosen in a way
that a subspace G is defined on the space A by

G ={h:h e 4, [ h(dx) p;(x) = 0} 2]

forj=0, ..., k and h(0) = -1

As such, the linear mapping Z: G->L2(Q,
A, P) is a generalized RF on the space G.

For a nonstationary process, the
covariance calculated from sample data can
cause a serious bias in the prediction (Serra,
1984). Matheron defined a generalized
covariance for IRF-k using the distribution
theory (Matheron, 1973). It is generally
difficult to characterize and construct an
effective generalized covariance function in
practice (Chauvet, 1989), but in most
applications, the variance of the first order,
called the variogram, suffices.
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Stationarity of a stochastic process in a strict sense
implies translation invariant of the probability density
function in space or time (Papoulis 1965, p. 300). A wide
sense or weak stationarity of a stochastic process assumes a
constant expected value or mean and translation invariant of
correlation function or variogram in space or time (Papoulis,
1965; Matheron, 1989). When applying kriging or factorial
kriging with a local moving neighborhood, global stationarity
is not required, but a local stationarity suffices. Local
stationarity is a weaker assumption by definition (Matheron
1989, p. 126; Ma et al., 2008). Although factorial kriging can
be used globally, we generally recommend using a local
operator. An example is presented in a later section.

Matrix formulation of kriging

Several kriging methods have been proposed according to
stationarity or non-stationarity assumptions, including
simple kriging, ordinary kriging, universal kriging, and
intrinsic kriging (Chiles and Delfiner, 2012). The applicability
of each method depends on the physical problem of concern,
and the availability of data.

Consider a random variable, Z(x), defined in a spatial
domain such as:

{Z(x):x e DcR"}

where x is the sampling location of the variable Z(x) within
the defined domain D, which is a bounded subset of the n-
dimensional real space, R".

Simple kriging
Simple kriging uses an affine linear equation for spatial
prediction, such as

n
Z¥x) =m+ 2 L[ Z(x;)- m] 3]
j=1

Because of the assumption of constant mean that can be
estimated from the data, the kriging system can be obtained
by minimizing the sum of the squared errors (the least-
square method), and it can be expressed in the following
matrix form:

Codg=c; or Ay= CZZ-I Cz [a]

where C(.) represents the covariance; C; is the n x n matrix
of the spatial covariance of the data used for prediction, Z(x;)
to Z(x,); ¢ is the n x 1 vector of the spatial covariance
between Z(x) and the data Z(x;) used for prediction; and Ag
is the vector for the simple kriging weights. In an expanded
form, Equation [4a] is written as

C]] ...C]k j-] Col
C, .Cy As = Co2
Ci .. Cu A Cok

The variance, oszk, of the error, ¢ = Z(x) - Z*(x), between
the estimation and the truth can be expressed as follows:

0'25/(= OZZ - CtzAsk =OZZ‘ C’zsz_Icz [4b]

wizth CZ_Z1 the inverse matrix of the covariance matrix C.;, and
o the variance of Z(x).
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Simple kriging is applicable to phenomena with a strong
assumption of global stationarity, which implies that the
global mean can be calculated from the samples. Simple
kriging is especially useful for spatial stochastic simulation.

Ordinary kriging

For an IRF-0, or locally stationary random fields, the mean is
not known or cannot be estimated globally by averaging the
sample values. The affine Equation [3] cannot be used for
estimation; an ordinary linear combination is used instead:

n n
Z*(x) =2 LiZ(x;) with 2 ;=1
j=1 j=1 [51]
where the constraint on the kriging weights X; A= 1 is
imposed to the estimator Z*(x) (i.e. the estimation errors
being null on average, E(e) = 0, with ¢ = Z(x) -Z*(x)).

The ordinary kriging system can be obtained by
minimizing the sum of the square errors under the constraint
in Equation [5] by using the least-square and Lagrange
methods, and can be expressed in the following block matrix
equation:

______ Bl B I S
i) lue | |1
The error variance, ogk, is equal to:
O k=07 €' Ak ox [6b]

where C, represents the sample covariance matrix, A, is the
vector of the ordinary kriging weights, u is a unit vector with
all the entries equal to 1, such as u = [1 1 ... 1], superscript ¢
is the vector transpose, u,y is the Lagrange multiplier due to
the constraint on the kriging weights which sum to 1, and c,
is the vector of covariance between the estimation point, x,
and each of the sample points, x;.

Relationship between simple kriging and ordinary kriging

Equation [6a] is an expanded matrix formulation from simple
kriging (see Equation [4]), taking into account the constraint
on the ordinary kriging weights. The block-matrix inversion

formula (Appendix 1) is used to rewrite the square matrix on
the left side of Equation [6a]. The solution is thus as follows:

-1 -1 t -1 -1_t -1
Aok = C e ~C.u(uCy; w)" uC;;c; +

sz-Iu (”rczz-l u)-l = Ask—Am”tAsk + [72]
Am= Ask+ (I_ut/lsk)/lm= Ask+ imAm
Ay = sz-lu(utczz-l ”)-Iz 'sz-lulum
Am=1-u'Ag [7b]
Hm = - ("t zz-Iu)-I [7c]
Mok = (”tsz-I”)-I”tsz-Icz - (utsz-I”)_I=

[7d]

= A u'C zz'lu)'l=im m
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where Ag is the vector of simple kriging weights defined in
Equation [4], Ay, is the vector of kriging weights for
estimation of the mean, and w,, the corresponding Lagrange
multiplier. The latter is obtained by replacing the vector ¢,
with a zero vector of the same size in Equation [6a], because
of the nil correlation between a random variable and its
mean. A, is the weight of the mean in simple kriging,
because Equation [3] can be expressed as

n n n
Z¥x) = (1-22)m+2 2; Z(x;) = Amm +2 }; Z(x)) [8a]
R j1

Equations [7a-d] can also be used to deduce an additive
relationship among the error variances of the ordinary
kriging, the local mean, and simple kriging. As the error
variance o2, in estimating the mean is equal to -, (Ma and
Myers, 1994), the ordinary kriging variance 0% (Equation
[6b]) can be expressed as a function of the simple kriging
error variance and the estimation variance of the local mean:

Ozok: Ozsk+ ﬂtzm sz [8b]

Equations [7a-d] describe the relationship between the
simple kriging weights and ordinary kriging weights, and
Equation [8b] the relationship between the corresponding
error variances. The ordinary kriging weights are expressed
as the sum of the simple kriging weights and the ordinary
kriging weights for the local mean multiplied by the weight
for the mean in simple kriging. One obvious advantage of
this formulation is the explicit expression of the impact of the
constraint on the kriging weights. The error variance
increases when using ordinary kriging because it is
necessary to estimate both the local mean and the residuals.

Another advantage of Equations [7a-d] is the use of the
weighting vector for the mean. By using a local operator
under the local stationarity assumption, the local mean is not
assumed to be known, and the estimator given by Equation
[5] is equivalent to (see e.g., Matheron, 1971):

4 [9]
Z¥x) = m*x)+ 2 Li[Z(x;)- m*(x)]
j=I

with

n
m) =2 26) el

The kriging solution for the local mean is given in
Equation [7b]. Furthermore, the estimation for the random
function, Z(x), can be done with simple kriging using
Equation [9], which yields the same solution as in Equations
[7a-d]. In other words, the estimation of the random function
by ordinary kriging is identical to the combination of the
estimation of the mean using ordinary kriging and the
estimation of the residual by simple kriging. This is termed
the additivity theorem, which is also valid for universal
kriging (Matheron, 1971; Ma, 1987). In practice, as a result
of using a sliding window, m*(x) describes a low-frequency,
large-scale component of the multiscale RF Z(x), which is
related to factorial kriging.
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Although kriging has been used most commonly for spatial
interpolation, it can also be used for filtering. Typically,
filtering is a decomposition based on the multiple scales of
variations in a physical process. The filtering method in
geostatistics is termed factorial kriging (Matheron, 1982; Ma
and Royer, 1988). This method has been used in a variety of
scientific applications, including signal and image processing
(Ma and Royer, 1988; Wen and Sinding-Larsen, 1997; Van
Meirvenne and Goovaerts, 2002), petroleum exploration
(Jaquet, 1989; Du et al., 2011), soil description (Goovaerts
and Webster, 1994; Bocchi et al., 2000), geochemistry (Reis
et al., 2004), water resource monitoring (Yeh et al., 2006),
seismic data analysis (Yao et al., 1999; Abreu et al., 2005),
ecology (Lin et al., 2008), crime risk pattern analysis (Kerry
et al., 2010), and health risk analysis (Goovaerts et al.,
2005, 2009; Dubois et al., 2007). It assumes that the
observed physical process can be interpreted as a linear
combination of several sub-processes that generally exhibit
different scales with different spatial dependencies, such as
q
Z(x) =X a;Yi(x) + T(x) [11]
i=1

where Z(x) is the RF representing the observed (though often
only partially observed) physical process, Y;(x) represents a
component RF or a sub-process at a certain scale of variation,
a; are normalization coefficients, and 7'(x) is a trend function
which can be approximated using orthogonal or trigonometric
polynomials (Royer, 2008). The number of components ¢ can
be chosen according to the number of nested terms used in
this decomposition.

As such, factorial kriging can decompose the random
process, Z(x), into several sub-processes of different scales
linked with the spatial correlation structures. In theory, all
the RFs, Z(x) and Y;(x), can be an IRF-k (Matheron, 1982;
Ma, 1987). Kriging prediction of these RFs can then use a
generalized covariance, defined as conditionally positive
definite. The predictor of the component RFs Y(x), is formed
as a linear combination of known data of the original
(composite) RF, such as

n
Vi) = 2 4(20x) - T [12]

The trend function is estimated by the following linear
combination:

T*x) =_fz BiZ(x;) [13]
=

The kriging systems used to estimate the components and
the trend can be obtained by minimizing the sum of the
squared errors under the constraint using the least-square
and Lagrange methods, and they can be expressed in the
following block matrix equations (Ma, 1987, 1993):

c,' P Ay c
zz: Lyi vz [14]
""" T-==77 T T = _—————
P, 0 L p
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[15]

-____1_-__
Il

S

P, L P

where C(.) represents the generalized covariance; Cy, is the
nxn matrix of the spatial covariance of the data used for
prediction; C, is the nx1 vector of the spatial covariance
between Y;(x) and the data Z(x;) to Z(x,); P and p are,
respectively, the nxk matrix and k+1 vector of a chosen
analytical function p(x) for fitting the nonstationary
component; Ay; is the vector for the kriging weights; and L is
a vector of Lagrange multipliers. The zero vector on the right-
hand side of Equation [15] is a result of the non-randomness
of the trend, T'(x).

Equations [14] and [15] are the kriging systems for
estimating the zero-mean component Y;(x) and the trend
T(x), respectively. Similar to the ordinary kriging system
discussed earlier, the weighting vector can be obtained by
using the block matrix inversion method (Appendix 1), and
the solutions are

Ayi = sz-IC'yz_sz-IP (Pz Cij_IP )-IP’ sz-lcyz

Ar=C.'P(PCi'P)"p
L, =(P'C;'P)'PC ¢y, [16a]
Ly = (PC.'P)'p

The estimation variances of the components, ¥;, and the
trend, T, are given by:

es Ozyi: o’z - (c'yiz Ay, +p' Ly) [16b]

»O17p' L1

For interpolation of the original RF, Z(x), the counterpart
to Equation [16a] is expressed as

A; = Cle~C.'P(PC' P PC e+ Ap [160]

As the components, Y;(x), are assumed to be orthogonal
in factorial kriging, the additive relationship of covariances is
such that ¢, = X'¢y;; (Ma and Myers, 1994). Thus, Equations
(16a) and (16b) verify the coherence condition in factorial
universal kriging and factorial kriging for IRF-k:

A, =Ar +2; Ay

These equations are valid for ordinary kriging but with a
simplified formulation (Ma, 1993). For most applications,
these components can be considered to be locally stationary.
The local stationarity eases the ergodicity hypothesis, and
makes the spatial prediction suitable to a local operation
(Matheron, 1989).

Moreover, assuming local stationarity, all the decomposed
sub-processes are estimated from the observed composite
process, such as:

V') =my () + 2 4[Z(x)-m." (x)] [17]
or in matrix form:

Y (%) = my'(x) + AIZ -m."u] [18]
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Where my;" (x) is the locally varying mean for the
component Y;(x), Z is the data vector, m; is the locally
varying mean of Z(x), and u is a unit vector with all the
entries equal to 1. Because the mean is estimated, Equation
[17] is not a true affine linear combination, despite its affine-
like form.

Discussion

It is noteworthy that kriging is an exact interpolator, meaning
that the kriging estimator is equal to the known value if the
latter is estimated, or the sample data are all honoured
(Armstrong, 1998, pp. 97-98). This is not the case for linear
regression. Because factorial kriging is a probabilistic
decomposition, not an interpolation by design, it is purely a
filtering process at the known locations; but in the unknown
locations it is also an interpolation, inherited from kriging
(Ma, 1993).

The estimation of the components by factorial kriging can
be considered as an ecological inference (Robinson, 1950;
Wakefield, 2004), since the component processes are
estimated using data from the composite or total process. It is
well known that ecological inference can cause a bias in
estimation (Gotway and Young, 2002; Ma, 2009). However,
it is possible to objectively identify sub-processes based on
the specific application by using the contextual information.
For example, in image processing it is commonly useful to
filter the noise and enhance the signal. The noise and signal
represent different scales of variations, or different frequency
contents from a viewpoint of spectral theory. Spatial filtering
by factorial kriging is generally based on a nested covariance
model. Some researchers have questioned the tenability of
nested models (Stein, 1999, pp. 13-14). A nested covariance
model may not gain much for the purpose of spatial interpo-
lation, because of the inherent uncertainty in empirical spatial
covariance or variogram for most applications. However, this
is an important step for random field decomposition and
signal filtering. 1t is tenable when combined with the
contextual information, especially if the sample data are large
enough. Two examples are discussed in the next section.

Application to signal analysis and noise filtering

In image processing, decomposition by factorial kriging is
sometimes used for visual interpretation, either for filtering
noise or extracting a specific feature (Ma and Royer, 1988;
Wen and Sinding-Larsen, 1997). Here, an example of
filtering noise and extracting signal illustrates how to
simultaneously model two differently-scaled spatial hetero-
geneities. The factorial kriging works for any number of
components for different scales as shown in Equation [11],
but the examples presented here include two components
only.

Kriging with an unknown mean, either stationary or
nonstationary, for a two-component model can be
represented by a signal plus an additive noise model:

Z(x) = S(x) + N(x) [19]

where S(x) represents a larger-scale-component random
function, N(x) represents a smaller-scale-component random
function, and Z(x) represents the composite random process.
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Modelling the three random functions can be performed
simultaneously using the sampling data of Z(x).

n n
7¥0) =2 MZ(x;), X A =1
F M [20]

n n
S*(x) = 2w;Z(x;), Xw; =1
j=1

Jj=1 [21]

n n
N*() = Zhi[Z(x)- m=(x)], Xh; =0
j=1 j=1 [22]

Note that as a result of non-bias constraint on the
estimators, the sum of the weights for all sample points and
the mean is equal to unity, whereas the sum of the weights
for the noise is equal to zero. The weighting function can be
considered as a transfer function.

Figure 1 shows an example of filtering the noise in image
processing. The Lena picture is widely used in 2D signal
analysis for noise filtering and feature detection. First, the
variogram of the noisy digital picture (Figure 1a) was
calculated, and then the calculated variogram was fitted into
a theoretical model (Figure 1b), including a nugget effect of
365 intensity in square (IIS), an exponential variogram with
the sill equal to 570 IIS and the range equal to 10 pixels, an
exponential variogram with the sill equal to 1270 IIS and the
range equal to 27 pixels, and a spherical variogram with the
sill equal to 620 IIS and the range equal to 36 pixels. The
nugget effect component in the variogram at the origin is due
to the presence of white noise. Factorial kriging is used to
filter out the noise by eliminating the nugget effect.
Specifically, using the matrix notation under the local
stationary model (Equation [18]), the signal weighting vector

(©

1000

is simply a combination of the two forms in Equation [16],
but with simplification to a locally stationary model, such as

-1 -1 t -1 -1
Ws=C; e—Cy; u(uCy; u
o -1 A ot -l -
uCy;cg+Cypu(mCy u

where Cy, represents the spatial covariance matrix for the
noisy picture, and c; is the vector of spatial covariance
between the noisy picture and the signal. All other terms are
defined in Equations [7a-d]. The spatial covariance or
correlation terms are calculated from the variogram in Figure
2b using the following relations (Journel and Huijbregts,
1978):

C(h) =C) - nh)

where C(h) is the covariance, C(0)) = 02 the variance, and
y(h) the variogram of the spatial variable Z(x).

Figure 1c shows the denoised picture (i.e., the signal
component of the noisy picture in Figure 1a). In this
application, the noise is not of interest, and thus is not
shown. The signal contains several different scales of
information related to not only the two exponential
variograms and one spherical variogram stated above, but
also the locally varying mean or the trend that is expressed
by Equation [10] or [13]. In other words, the signal itself still
has several scales of information.

Another example of filtering noise, in a seismic attribute,
is shown in Figure 2. The noisy attribute had a correlation
coefficient of 0.53 with the measured porosity. After filtering
out the noise using factorial kriging by eliminating the
nugget-effect component, the correlation was improved to
0.79. This is because the noise component had no correlation
to the porosity as the noise represents the smallest-scaled

10 20 30 40
Lag distance

(b)

Figure 1—Example of filtering noise in image processing using factorial kriging. (a) Noisy Lena picture, (b) variogram of the noisy picture, (c) the picture
after noise filtering by factorial kriging. The variogram of the denoised picture has no nugget effect
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component, and removing it is equivalent to matching the
more correlated parts of the two variables. In this sense,
factorial kriging is a disaggregation that enables the identifi-
cation of the scale of information and thus provides a means
for matching the scale between the two variables.

Concluding remarks

Kriging was initially developed as an interpolation method
dealing with stationary or mild non-stationary (IRF-0)
processes. With many extensions, there are now a variety of
kriging methods to deal with multiscale problems of natural
phenomena, including universal kriging, IRF-k, and factorial
kriging. Although IRF-k is theoretically elegant, it is often
difficult to use, and does not always give good results, often
because of an inadequate identification of the complexity of
heterogeneities (Ma, 2010). Defining a multilevel model
based on the hierarchy of scales can deal with multiscale
problems more effectively for many applications (Ma et al.,
2009). In such a framework, factorial kriging offers a filtering
technique that explicitly decomposes the composite
phenomenon of multiple scales into component processes. In
some cases, even ordinary kriging, if a local neighborhood is
utilized, can be used to deal with two-scale problems as
shown by Equation [7]. These methods are also applicable to
multivariate geostatistics that involves multiple physical
variables (Wackernagel, 2003).
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Appendix 1. Block Matrix Inversion
Consider a block matrix, such as

Where Ay; and Ay, are square matrices, and A;, and Ay;
are matrices or vectors.
Its inverse is

Where By and By, are square matrices, and By, and By;
are matrices or vectors. They are of the same sizes as their
corresponding A;;.

Two solutions exist. The first solution is:

By=(An-AuAn"A1)”

B =- (A2 —AyA"A12) "A2A1"= -BnAyA”

Bip=-Ay" A (A —AnAi A1) " =- A" A2 B

B =Au"+ A" A (A2 = AnAy " A) " AnAn” = Ay +B Ay A
The second solution is

B =(An-ApAx'Ay)”’

By =-An"Ay (A - ApAnAz) '=-A:7"4B,,

Biy=- (A1 —ApAxn'Ay) " ApAy'=-BuApAs”

By =Ap+ Ay Ay (A — ApAz ' A2) T ApAn = A5 42745 B,

The matrices A11 - A12A22_1 A21 and A22 - A21A1 1_1A12
are sometimes referred as the Schur complements
(Haynsworth, 1968). In ordinary kriging, A, is the scalar 0.

Therefore, its inverse does not exist and the first solution is
used. @
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