
Introduction
A mineral deposit is defined as a concentration
of material in or on the Earth’s crust that is of
possible economic interest. This generic
definition is generally consistent across
international reporting guidelines, including
the South African Code for Reporting of
Exploration Results, Mineral Resources and
Mineral Reserves (SAMREC Code), Canadian
Securities Administrators’ National Instrument
43-101 (NI 43-101), and the Australasian
Code for Reporting of Exploration Results,
Mineral Resources and Ore Reserves (2012),
published by the Joint Ore Reserves Committee
(the JORC Code). Relative to its surroundings,

we can consider that a mineral deposit is itself
an outlier, as it is characterized by an
anomalously high concentration of some
mineral and/or metal. This presents an
obvious potential for economic benefit, and in
general, the higher the concentration of
mineral and/or metal, the greater the potential
for financial gain.

Indeed, many mining exploration and
development companies, particularly junior
companies, will publicly announce borehole
drilling results, especially when high-grade
intervals are intersected. This may generate
public and/or private investor interest that may
be used for project financing. Yet, it is
interesting that these high-grade intercepts
that spell promise for a mineral deposit present
a challenge to resource modellers in the
determination of a resource that will
adequately describe ultimately unknown in-
situ tons and grade.

Resource estimation in the mining industry
is sometimes considered an arcane art, using
old methodologies. It relies on well-established
estimation methods that have seen few
advancements in the actual technology used,
and it is heavily dependent on the tradecraft
developed over decades of application. Unlike
in other resource sectors, drilling data is often
readily available due to the accessibility of
prospective projects and the affordability of
sample collection. As such, the ‘cost’ of
information is often low and the relative
abundance of data translates to reduced
uncertainty about the project’s geology and
resource quality and quantity. It is in this
context that more advanced geostatistical
developments, such as conditional simulation
(see Chiles and Delfiner (2012) for a good
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summary of the methods) and multiple point geostatistics
(Guardiano and Srivastava, 1992; Strebelle and Journel,
2000; Strebelle, 2002), have struggled to gain a stronghold
as practical tools for mineral resource evaluation.

So we are left with limited number of estimation methods
that are the accepted industry standards for resource
modelling. However, grade estimation is fundamentally a
synonym for grade averaging, and in this instance, it is an
averaging of mineral/metal grades in a spatial context.
Averaging necessarily means that available data is accounted
for by a weighting scheme. This, in itself, is not an issue nor
is it normally a problem, unless extreme values are
encountered. This paper focuses on extreme high values,
though similar issues may arise for extreme low values,
particularly if deleterious minerals or metals are to be
modelled. High-grade intercepts are problematic if they
receive (1) too much weight and lead to a possible over-
estimation, or if kriging is the method of choice, (2) a
negative weight, which may lead to an unrealistic negative
estimate (Sinclair and Blackwell, 2002). A further problem
that is posed by extreme values lies in the inference of first-
and second-order statistics, such as the mean, variance, and
the variogram for grade continuity assessment. Krige and
Magri (1982) showed that presence of extreme values may
mask continuity structures in the variogram.

This is not a new problem. It has received much attention
from geologists, geostatisticians, mining engineers,
financiers, and investors from both the public and private
sectors. It continues to draw attention across a broad
spectrum of media ranging from discussion forums hosted by
professional organizations (e.g. as recently as in 2012 by the
Toronto Geologic Discussion Group) and online professional
network sites (e.g. LinkedIn.com). Over the last 50 years,
many geologists and geostatisticians have devised solutions
to deal with these potential problems arising from high-grade
samples. 

This paper reviews the various methods that geomod-
ellers have used or proposed to mitigate the impact of high-
grade data on resource estimation. In particular, the methods
are organized into three categories depending on the stage of
the estimation workflow when they may be invoked: (1)
domain determination; (2) grade capping; and (3) estimation
methods and implementation. Each of these stages is
reviewed, and the various approaches are discussed. It should
be stressed that dealing with the impact of high-grade data
should not lead to undue lowering of estimated grades. Very
often it is the high-grade data that underpins the economic
viability of a project.  

Two examples are presented, using data from gold
deposits in South America and West Africa, to illustrate the
impact of controlling high-grade data in different phases of a
study. We note that the review and examples are by no
means comprehensive; they are presented to illustrate the
place of each method and the manner in which it is possible
to mitigate the impact of high-grade data at various stages in
resource estimation.

What constitutes a problematic high-grade sample?
Let us first identify which high-grade sample(s) may be
problematic. Interestingly, this is also the section where the
word outlier is normally associated with a ‘problematic’ high-

grade sample. The term outlier has been generally defined by
various authors (Hawkins, 1980; Barnett and Lewis, 1994;
Johnson and Wichern, 2007) as an observation that deviates
from other observations in the same grouping. Many
researchers have also documented methods to identify
outliers.

Parker (1991) suggested the use of a cumulative
coefficient of variation (CV), after ordering the data in
descending order. The quantile at which there is a
pronounced increase in the CV is the quantile at which the
grade distribution is separated into a lower grade, well-
behaved distribution and a higher grade, outlier-influenced
distribution. He proposes an estimation of these two parts of
the distribution, which will be discussed in the third stage of
dealing with high-grade data in this manuscript. 

Srivastava (2001) outlined a procedure to identify an
outlier, including the use of simple statistical tools such as
probability plots, scatter plots, and spatial visualization, and
to determine whether an outlier can be discarded from a
database. The context of these guidelines was for environ-
mental remediation; however, these practical steps are
applicable to virtually any resource sector.

The identification of spatial outliers, wherein the local
neighbourhood of samples is considered, is also an area of
much research. Cerioli and Riani (1999) suggested a forward
search algorithm that identifies masked multiple outliers in a
spatial context, and provides a spatial ordering of the data to
facilitate graphical displays to detect spatial outliers. Using
census data for the USA, Lu et al. (2003, 2004) have
documented and proposed various algorithms for spatial
outlier detection, including the mean, median, and iterative r
(ratio) and iterative z algorithms. Liu et al. (2010) devised an
approach for large, irregularly spaced data-sets using a
locally adaptive and robust statistical analysis approach to
detect multiple outliers for GIS applications.

In general, many authors agree that the first task in
dealing with extreme values is to determine the validity of the
data, that is, to confirm that the assay values are free of
errors related to sample preparation, handling, and
measurement. If the sample is found to be erroneous, then
the drill core interval should be re-sampled or the sample
should be removed from the assay database.
Representativeness of the sample selection may also be
confirmed if the interval is re-sampled; this is particularly
relevant to coarse gold and diamond projects. If the sample is
deemed to be free of errors (excluding inherent sample error),
then it should remain in the resource database and
subsequent treatment of this data may be warranted.

Stages of high-grade treatment
Once all suspicious high-grade samples are examined and
deemed to be correct, such that they remain part of the
resource database, we now concern ourselves with how this
data should be treated in subsequent modelling. For this, we
consider that there are three particular phases of the resource
workflow wherein the impact of high-grade samples can be
explicitly addressed. Specifically, these three stages are:

1.  Domaining to constrain the spatial impact of high
grade samples

2.  Grade capping or cutting to reduce the values of high-
grade samples
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3.  Restricting the spatial influence of high-grade samples
during estimation.

The first stage of domaining addresses the stationarity of
the data-set, and whether geological and/or grade domaining
can assist in properly grouping the grade samples into some
reasonable grouping of data. This may dampen the degree by
which the sample(s) is considered high; perhaps, relative to
similarly high-grade samples, any one sample appears as part
of this population and is no longer considered an anomaly.

The second phase is that which many resource modellers
consider a necessary part of the workflow: grade capping or
cutting. This is not necessarily so; in fact, some geostatis-
ticians are adamant that capping should never be done, that
it represents a ‘band-aid’ solution and masks the real
problem, which is likely linked to stationarity decisions
and/or an unsuitable estimation method.

The third phase, where the influence of a high-grade
sample may be contained, is during the actual estimation
phase. In general, this can occur in one of two ways: (1) as
an implementation option that may be available in some
commercial general mining packages (GMPs); or (2) a non-
conventional estimation approach is considered that focuses
on controlling the impact of high-grade samples.

The following sections discuss the various approaches
that may be considered in each of these three stages of
addressing high-grade samples. We note that these three
stages of treating high grades are not necessarily mutually
exclusive. For instance, grade domaining into a higher grade
zone does not pre-empt the use of grade capping prior to
resource estimation. In fact, most mineral resource models
employ at least one or some combination of the three stages
in resource evaluation. 

Stage 1: Domaining high-grade data
Resource modelling almost always begins with geological
modelling or domaining. This initial stage of the model
focuses on developing a comprehensive geological and
structural interpretation that accounts for the available drill-
hole information and an understanding of the local geology
and the structural influence on grade distribution. It is
common to generate a three-dimensional model of this
interpretation, which is then used to facilitate resource
estimation. In many instances, these geological domains may
be used directly to constrain grade estimation to only those
geological units that may be mineralized.

It is also quite common during this first stage of the
modelling process to design grade domains to further control
the distribution of grades during resource estimation. One of
the objectives of grade domaining is to prevent smearing of
high grades into low-grade regions and vice versa. The
definition of these domains should be based on an
understanding of grade continuity and the recognition that
the continuity of low-grade intervals may differ from that of
higher grade intervals (Guibal, 2001; Stegman, 2001).

Often, a visual display of the database should help
determine if a high-grade sample comprises part of a
subdomain within the larger, encompassing geological
domain.  If subdomain(s) can be inferred, then the extreme
value may be reasonable within the context of that subpopu-
lation.

Grade domains may be constructed via a spectrum of
approaches, ranging from the more time-consuming sectional

method to the fast, semi-automatic boundary or volume
function modelling methods (Figure 1). The difference
between these two extremes has also been termed explicit
versus implicit modelling, respectively (Cowan et al., 2002;
2003; 2011). Of course, with today’s technology, the former
approach is no longer truly ‘manual’ but commonly involves
the use of some commercial general mine planning package
to generate a series of sections, upon which polylines are
digitized to delineate the grade domain. These digitized
polylines are then linked from section to section, and a 3D
triangulated surface can then be generated. This process can
still take weeks, but allows the geologist to have the most
control on interpretation. The other end of the spectrum
involves the use of a fast boundary modelling approach that
is based on the use of radial basis functions (RBFs) to create
isograde surfaces (Carr et al., 2001, Cowan et al., 2002;
2003; 2011). RBF methods, along with other linear
approaches, are sensitive to extreme values during grade
shell generation, and often some nonlinear transform may be
required. With commercial software such as Leapfrog, it can
take as little as a few hours to create grade shells. In between
these two extremes, Leuangthong and Srivastava (2012)
suggested an alternate approach that uses multigaussian
kriging to generate isoprobability shells corresponding to
different grade thresholds. This permits uncertainty
assessment in the grade shell that may be used as a grade
domain.

In practice, it is quite common that some semi-automatic
approach and a manual approach are used in series to
generate reasonable grade domains. A boundary modelling
method is first applied to quickly generate grade shells, which
are then imported into the manual wireframing approach and
used, in conjunction with the projected drill-hole data, to
guide the digitization of grade domains.

Stegman (2001) used case studies from Australian gold
deposits to demonstrate the importance of grade domains,
and highlights several practical problems with the definition
of these domains, including incorrect direction of grade
continuity, too broad (or tight) domains, and inconsistency in
data included/excluded from domain envelopes. Emery and
Ortiz (2005) highlighted two primary concerns related to
grade domains: (1) the implicit uncertainty in the domain
definition and associated boundaries, and (2) that spatial
dependency between adjacent domains is unaccounted for.
They proposed a stochastic approach to model the grade
domains and the use of cokriging of data across domains to
estimate grades.

Dealing with high-grade data in resource estimation
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Figure 1—Spectrum of methods for grade domaining: from pure explicit
modelling (right) to pure implicit modelling (left)
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Stage 2: Capping high-grade samples
In the event that grade domaining is not viable and/or
insufficient to control the influence of one or more high-grade
samples, then more explicit action may be warranted in order
to achieve a realistic resource estimate.  In these instances,
grade capping or cutting to some level is a common practice
in mineral resource modelling.  This procedure is also
sometimes referred to as ‘top cut’, ‘balancing cut’, or a
‘cutting value’. It generally involves reducing those grade
values that are deemed to be outliers or extreme erratic
values to some lower grade for the purposes of resource
evaluation. Note that this practice should never involve
deletion of the high-grade sample(s) from the database.

Two primary reasons for capping high-grade samples are:
(1) there is suspicion that uncapped grades may overstate the
true average grade of a deposit; and (2) there is potential to
overestimate block grades in the vicinity of these high-grade
samples. Whyte (2012) presented a regulator’s perspective on
grade capping in mineral resource evaluation, and suggested
that the prevention of overestimation is good motivation to
consider grade capping. For these reasons, capping has
become a ‘better-safe-than-sorry’ practice in the mining
industry, and grade capping is done on almost all mineral
resource models (Nowak et al., 2013). 

Given the prevalence of this approach in mining, it is no
surprise that there are a multitude of tools available to help a
modeller determine what grade value is an appropriate
threshold to cap. These include, but are not limited to, the use
of probability plots, decile analysis (Parrish, 1997), metal-at-
risk analysis, cutting curves (Roscoe, 1996), and cutting
statistics plots. Nowak et al. (2013) compared four of these
approaches in an application to a West African gold deposit
(Figure 2).

Probability plots are likely the most commonly used tool,
due to their simplicity and the availability of software to
perform this type of analysis. Inflection points and/or gaps in
the distribution are often targeted as possible capping values
(Figure 2a). In some instances, legacy practice at a particular
mine site may dictate that capping is performed at some
threshold, e.g. the 95th percentile of the distribution. In these
cases, the initial decision to cap at the 95th percentile may

well have been reasonable and defensible; however, this
choice should be revisited and reviewed every time the
database and/or domains are updated.

Parrish (1997) introduced decile analysis, which assesses
the metal content within deciles of the assay distribution.
Total metal content for each decile and percentage of the
overall metal content are calculated. Parrish suggested that if
the top decile contains more than 40% of the metal, or if it
contains more than twice the metal content of the 80% to
90% decile, then capping may be warranted (Figure 2b).
Analysis then proceeds to split the top decile into percentiles.
If the highest percentiles have more than 10% of the total
metal content, a capping threshold is chosen. The threshold is
selected by reducing all assays from the high metal content
percentiles to the percentile below which the metal content
does not exceed 10% of the total. 

The metal-at-risk procedure, developed by H. Parker and
presented in some NI 43-101 technical reports, e.g. (Neff et
al., 2012), uses a method based on Monte Carlo simulation.
The objective of the process is to establish the amount of
metal which is at risk, i.e., potentially not present in a
domain for which resources will be estimated. The procedure
assumes that the high-grade data can occur anywhere in
space, i.e., there is no preferential location of the high-grade
data in a studied domain. The assay distribution can be
sampled at random a number of times with a number of
drawn samples representing roughly one year’s production.
For each set of drawn assays a metal content represented by
high-grade composites can be calculated. The process is
repeated many times, and the 20th percentile of the high-
grade metal content is applied as the risk-adjusted amount of
metal. Any additional metal is removed from the estimation
process either by capping or by restriction of the high-grade
assays.

Cutting curves (Roscoe, 1996) were introduced as a
means to assess the sensitivity of the average grade to the
capped grade threshold. The premise is that the average
grade should stabilize at some plateau. The cap value should
be chosen as near the inflection point prior to the plateau
(Figure 2c), and should be based on a minimum of 500 to
1000 samples.

▲
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Figure 2—Example of grade capping approaches to a West African gold deposit using (a) probability plot, (b) decile analysis, (c) cutting curves, and 
(d) cutting statistics plot (Nowak et al., 2013)



Cutting statistics plots, developed by R.M. Srivastava and
presented in some internal technical reports for a mining
company in the early 1990s, consider the degradation in the
spatial correlation of the grades at various thresholds using
an indicator approach (personal communication, 1994). The
capping values are chosen by establishing a correlation
between indicators of assays in the same drill-holes via
downhole variograms, at different grade thresholds.  Assays
are capped at the threshold for which correlation approaches
zero (Figure 2d).

Across the four approaches illustrated in Figure 2, the
proposed capping value ranges from approximately 15 g/t to
20 g/t gold, depending on the method. While the final
selection is often in the hands of the Qualified Person, a
value in this proposed range can generally be supported and
confirmed by these multiple methods. In any case, the chosen
cap value should ensure a balance between the loss in metal
and loss in tonnage.

Stage 3: Estimating with high-grade data
Once we have ‘stabilized’ the average grade from assay data,
we can now focus further on how spatial location of very
high-grade assays, potentially already capped, affects
estimated block grades. The risk of overstating estimated
block grades is particularly relevant in small domains with
fewer assay values and/or where only a small number of data
points are used in the estimation. The first step in reviewing
estimated block grades is to visually assess, on section or in
plan view, the impact of high-grade composites on the
surrounding block grades. Swath plots may also be useful to
assess any ‘smearing’ of high grades. This commonly
applied, simple, and effective approach is part of the good

practice recommended in best-practice guidelines, and can be
supplemented by additional statistical analysis. The statistical
analysis may be particularly useful if a project is large with
many estimation domains.

One simple way to test for potential of overestimation in
local areas could be a comparison of cumulative frequency
plots from data and from estimated block grades. Let us
consider two domains, a larger Domain D, and amuch smaller
Domain E, both with positively skewed distributions which
are typically encountered in precious metal deposits. A typical
case, presented in Figure 3(a) for Domain D, shows that for
thresholds higher than average grade, the proportion of
estimated block grades above the thresholds is lower than the
proportion of high-grade data. This is a typical result from
smoothing the estimates. On the other hand, in Domain E, we
see that the proportion of high-grade blocks above the overall
average is higher than the proportion from the data (Figure
3b). We can consider this as a warning sign that those
unusual results could potentially be influenced by very high-
grade assays that have undue effect on the overall estimates.

Cutting curve plots can be also quite helpful; however, in
this instance we are not focused on identifying a capping
threshold, but rather the impact of high-grade blocks on the
overall average block grade. Figure 4 shows the average
estimated block grades below a set of thresholds in domains
D and E. In Domain D (Figure 4a) there is a gradual increase
in average grades for increasing thresholds, eventually
stabilizing at 2. 7 g/t Au. On the other hand, in Domain E
(Figure 4b) there is a very abrupt increase in average grade
for very similar high-grade block estimates. This indicates a
relatively large area(s) with block estimates higher than 
6 g/t.

Dealing with high-grade data in resource estimation
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Figure 3—Cumulative frequency plots for original data and estimated block grades in (a) Domain D, (b) Domain E

Figure 4—Extreme value plots from estimated block grades in (a) Domain D, (b) Domain E 
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Limiting spatial influence of high-grade samples
If the result of these early estimation validation steps reveals
that high-grade composites may be causing over-estimation
of the resource, then we may wish to consider alternative
implementation options in the estimation that may be
available within software. Currently, a few commercial
general mining packages offer the option to restrict the
influence of high-grade samples. That influence is specified
by the design of a search ellipsoid with dimensions smaller
than that applied for grade estimation. 

Typically the choice of the high-grade search ellipsoid
dimensions is based on an educated guess. This is based on a
notion that the size of the high-grade search ellipsoid should
not extent beyond the high-grade continuity. There are,
however, two approaches that the authors are aware of that
are potentially better ways to assess high-grade continuity. 

The first approach involves assessing the grade
continuity via indicator variograms. The modeller simply
calculates the indicator variograms for various grade
thresholds. As the focus is on the high-grade samples, the
grade thresholds should correspond to higher quantiles, likely
above the 75th percentile. A visual comparison of the
indicator variograms at these different thresholds may reveal
a grade threshold above which the indicator variogram
noticeably degrades. This may be a reasonable threshold to
choose to determine which samples will be spatially
restricted. The range of the indicator variogram at that
threshold can also be used to determine appropriate search
radii to limit higher grade samples.

The second approach is also quantitative, and relies on a
p-gram analysis developed by R.M. Srivastava (personal
communication, 2004). The p-gram was developed in the
petroleum industry to optimize spacing for production wells.
To construct p-grams, assay composites are coded with an
indicator at a threshold for high-grade population. Using a
process similar to that for indicator variography, the data is
paired over a series of lag distances. Unlike the conventional
variogram, the p-gram considers only the paired data in
which the tail of the pairs is above the high-grade threshold.
The actual p-gram value is then calculated as the ratio of
pairs where both the head and tail are above the threshold to
the number of pairs where the tail of the pair is above the
threshold. Pairs at shorter lag distances are given more
emphasis by applying an inverse distance weighting scheme
to the lag distance. Figure 5 shows an example of a p-gram
analysis for a series of high-grade thresholds. The curves
represent average probability that two samples separated by a
particular distance will both be above the threshold, given
that one is already above the threshold. In this specific
example, up to a threshold of 15 g/t gold, the range of
continuity, i.e., the distance at which the curve levels off, is
30 m. This distance can be applied as search ellipsoid radius
to limit high-grade assays. 

Alternative estimation approaches for high-grade
mitigation
While the above methods work within the confines of a
traditional estimation framework for resource estimation,
there are alternative, lesser known estimation methods that
were proposed specifically to deal with controlling the
influence of high-grade samples. Journel and Arik (1988)

proposed an indicator approach to dealing with outliers,
wherein the high grade falls within the last class of indicators
and the mean of this class is calculated as the arithmetic
average of samples in the class. Parker (1991) pointed out
that using the arithmetic average for this last class of
indicators may be inefficient or inaccurate. Instead, Parker
(1991) proposed a procedure that first identifies which
threshold should be chosen to separate the high grades from
the rest of the sample population (discussed earlier), and
secondly proposes an estimation method that combines an
indicator probability and the fitting of a lognormal model to
the samples above the threshold to calculate the average
grade for this class of data, Zh*. A block grade is then
obtained by combining estimates of both the lower and
higher grade portions of the sample data: Z* = I*Zl* +
(1−I*)Zh*, where the superscript * denotes an estimate, I* is
the probability of occurrence of lower grades below the
threshold, and Zl* is the kriged estimate of the block using
only those samples below the threshold. The implicit
assumption is that there is no correlation between the
probability and grade estimates.

Arik (1992) proposed a two-step kriging approach called
‘outlier restricted kriging’ (ORK). The first step consists of
assigning to each block at location X the probability or the
proportion Φ(X, Zc) of the high-grade data above a
predefined cut-off Zc. Arik determines this probability based
on indicator kriging at cut-off grade Zc. The second step
involves the assignment of the weights to data within a
search ellipsoid. These weights are assigned in such a way
that the sum of the weights for the high-grade data is equal
to the assigned probability Φ(x, Zc) from the first step. The
weights for the other data are constrained to add up to 1 -
Φ(X, Zc). This is similar to Parker’s approach in the fact that
indicator probabilities are used to differentiate the weights
that should be assigned to higher grade samples and lower
grade samples.

Costa (2003) revisited the use of a method called robust
kriging (RoK), which had been introduced earlier by Hawkins
and Cressie (1984). Costa showed the practical implemen-
tation of RoK for resource estimation in presence of outliers
of highly skewed distributions, particularly if an erroneous
sample value was accepted as part of the assay database. It is
interesting to note that where all other approaches discussed
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Figure 5—p-grams for different data thresholds



previously were concerned with the weighting of higher grade
samples, RoK focuses on directly editing the sample value
based on how different it is from its neighbours. The degree
of change of a sample value is controlled by a user-specified
c parameter and the kriging standard deviation obtained from
kriging at that data location using only the surrounding data.
For samples that are clearly part of the population, i.e. not
considered an outlier or an extreme value, then the original
value is left unchanged. For samples that fall within the
extreme tail of the grade distribution, RoK yields an edited
value that brings that sample value closer to the centre of the
grade distribution.

More recently, Rivoirard et al. (2012) proposed a
mathematical framework called the top-cut model, wherein
the estimated grade is decomposed into three parts: a
truncated grade estimated using samples below the top-cut
grade, a weighted indicator above the top-cut grade, and an
independent residual component. They demonstrated the
application of this top-cut model to blast-hole data from a
gold deposit and also to a synthetic example. 

Impact of various treatments – examples
Two examples are presented to illustrate the impact of high-
grade samples on grade estimation, and the impact of the
various approaches to dealing with high-grade data. In both
cases, data from real gold deposits is used to illustrate the
results from different treatments. 

Example 1: West African gold deposit
This example compares the estimation of gold grades from a
West African gold deposit. Three different estimations were
considered: (1) ordinary kriging with uncapped data; (2)
ordinary kriging with capped data; and (3) Arik’s ORK
method with uncapped data. Table I shows an example of
estimated block grades and percentage of block grades above
a series of cut-offs in a mineralized domain from this deposit.
At no cut-off, the average estimated grade from capped data

(2.0 g/t) is almost identical to the average estimated grades
from the ORK method (2.04 g/t). On the other hand, the
coefficient of variation CV is much higher from the ORK
method, indicating much higher estimated block grade
variability. This result is most likely closer to actually
recoverable resources than the over-smoothed estimates from
ordinary kriging. Once we apply a cut-off to the estimated
block grades, the ORK method returns a higher grade and
fewer recoverable tons, which is in line with typical results
during mining when either blast-hole or underground
channel samples are available.

It is interesting to note that locally the estimated block
grades can be quite different. Figure 6 shows the estimated
high-grade area obtained from the three estimation methods.
Not surprisingly, ordinary kriging estimates from uncapped
data result in a relatively large area with estimated block
grades higher than 3 g/t (Figure 6a). Capping results in the
absence of estimated block grades higher than 5 g/t 
(Figure 6b). On the other hand, estimation from uncapped
data with the ORK method results in block estimated grades
located somewhere between the potentially too-optimistic
(uncapped) and too-pessimistic (capped) ordinary kriged
estimates (Figure 6c).  

Example 2: South American gold deposit
This second example compares five different approaches to
grade estimation on one primary mineralized domain from a
South American gold deposit. This one domain is considered
to generally be medium grade; however, an interior,
continuous high-grade domain was identified, modelled, and
considered for resource estimation.

The first three methods consider a single grade domain,
while the last two cases consist of two grade domains: the
initial medium-grade shell with an interior high-grade shell.
Therefore, the last two cases make use of grade domaining as
another means to control high-grade influence. Specifically,
the five cases considered for comparison are:
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Table I

Example 1. Estimated block grades and tonnes for three estimation methods

Cut-off Block grade estimates

Uncapped Capped ORK method with uncapped data

Grade Tons (%) CV Grade Tons (%) CV Grade Tons (%) CV

0 2.44 100 0.66 2 100 0.52 2.04 100 0.85
0.5 2.77 87 0.53 2.25 87 0.38 2.55 79 0.63
1 2.95 80 0.47 2.41 79 0.3 2.77 70 0.56

Figure 6—Estimated block grades from (a) uncapped data, (b) capped data, (c) uncapped data and ORK method
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(a)  One grade domain, uncapped composites
(b)  One grade domain, capped composites
(c)  One grade domain, capped composites with limited

radii imposed on higher grade values
(d)  Two grade domains, uncapped data with a hard

boundary
(e)  Two grade domains, capped data with a hard

boundary.

In all cases, estimation is performed using ordinary
kriging. Case (a) is referred to as the base case and is
effectively a do-nothing scenario. Case (b) considers only the
application of grade capping to control high-grade influence.
Case (c) considers a two-phase treatment of high-grade data,
namely capping grades and also limiting the influence of
those that are still considered to be high-grade samples but
remain below the cap value. The limiting radii and threshold
were chosen based on a preliminary assessment of indicator
variograms for various grade thresholds. The last two cases
introduce Phase 1 treatment via domaining as another
possible solution, with uncapped and capped composites,
respectively.

Table II shows a comparison of the relative tons for this
mineralized domain as a percentage of the total tons, the
average grade of the block estimates, and the relative metal
content shown as a percentage of the total ounces relative to
the base case, at various cut-off grades. At no cut-off and
when only a single grade domain is considered (i.e. cases (a)
to (c)), we see that capping has only a 4% impact in reducing
the average grade and consequently ounces, while limiting
the influence of high grade with capping reduces the average
grade and ounces by 15%. Results from cases (d) to (e) show
that the impact of the grade domain is somewhere between
that of using capped data and limiting the influence of the

high-grade data. At cut-off grades of 1.0 g/t gold and higher,
cases (d) and (e) show a significant drop in tonnage
accompanied by much higher grades than the single domain
case. In ounces, however, the high-grade domain yields
global results similar to the high-grade limited radii option.

To compare the local distribution of grades, a cross-
section is chosen to visualize the different cases considered
(Figure 7). Notice the magnified region in which a composite
gold grade of 44.98 g/t is found surrounded by much lower
gold grades. Figures 7a to 7c correspond to the single grade
domain, while Figures 7d and 7e correspond to high-grade
treatment via domaining, where the interior high-grade
domain is shown as a thin polyline. From the base case
(Figure 7a), it is easy to see that this single high-grade
sample results in a string of estimated block grades higher
than 3 g/t. Using capped samples (Figure 7b) has minimal
impact on the number of higher grade blocks. Interestingly,
limiting the high-grade influence (Figure 7c) has a similar
impact to high-grade domaining (Figures 7d and 7e) in that
same region. However, the high-grade domain definition has
a larger impact on the upper limb of that same domain, where
a single block is estimated at 3 g/t or higher, with the
majority of the blocks surrounding the high-grade domain
showing grades below 1 g/t.

In this particular example, the main issue lies in the over-
arching influence of some high-grade composites. Capping
accounted for a reduction of the mean grade of approximately
7%; however, it is the local impact of the high grade that is of
primary concern. A high-grade domain with generally good
continuity was reliably inferred. As such, this more
controlled, explicit delineation of a high-grade region is
preferred over the more dynamic approach of limiting high-
grade influence.
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Table II

Example 2. Comparison of HG treatment scenarios

Cutoff Tons (% of total)

grade (g/t) Single grade domain Medium- and high-grade domain

(a) Uncapped (b) Capped (c) Limited HG influence, capped (d) Hard boundary, uncapped (e) Hard boundary, capped

0.0 100% 100% 100% 100% 100%
0.5 98% 98% 97% 95% 95%
1.0 74% 74% 71% 57% 57%
1.5 46% 46% 41% 36% 36%

Cutoff Average block grade estimates (g/t)
grade (g/t) Single grade domain Medium- and high-grade domain

(a) Uncapped (b) Capped (c) Limited HG influence, capped (d) Hard boundary, uncapped (e) Hard boundary, capped

0.0 1.79 1.71 1.53 1.67 1.61
0.5 1.83 1.74 1.55 1.74 1.67
1.0 2.17 2.06 1.84 2.40 2.29
1.5 2.73 2.56 2.29 3.08 2.90

Cut-off Quantity of metal (% of total)

grade (g/t) Single grade domain Medium- and high grade domain

(a) Uncapped (b) Capped (c) Limited HG influence, capped (d) Hard boundary, uncapped (e) Hard boundary, capped

0.0 100% 96% 85% 93% 90%
0.5 99% 95% 84% 92% 88%
1.0 89% 85% 73% 76% 73%
1.5 70% 65% 52% 62% 59%



Discussion
Many practitioners, geologists, and (geo)statisticians have
tackled the impact of high-grade data from many
perspectives, broadly ranging from revisiting stationarity
decisions to proposals of a mathematical framework to
simple, practical tools. The list of methods to deal with high-
grade samples in resource estimation in this manuscript is by
no means complete. It is a long list, full of good sound ideas
that, sadly, many in the industry have likely never heard of.
We believe this is due primarily to a combination of software
inaccessibility, professional training, and/or time allocated to
project tasks.

There remains the long-standing challenging of making
these decisions early in pre-production projects, where an
element of arbitrariness and/or wariness is almost always
present. The goal should be to ensure that the overall
contained metal should not be unreasonably lost. Lack of
data in early stage projects, however, makes this judgement
of representativeness of the data challenging. For later stage
projects where production data is available, reconciliation
against production should be used to guide these decisions.

This review is intended to remind practitioners and
technically-minded investors alike that mitigating the
influence of high-grade data is not fully addressed simply by
top-cutting or grade capping. For any one deposit, the
challenges of dealing with high-grade data may begin with
an effort to ‘mine’ the different methods presented herein
and/or lead to other sources whereby a better solution is
found that is both appropriate and defensible for that
particular project.

Conclusions
It is interesting to note the reaction when high-grade

intercepts are discovered during drilling. On the one hand,
these high-grade intercepts generate excitement and buzz in
the company and potentially the business community if they
are publicly announced. This is contrasted with the reaction
of the geologist or engineer who is tasked with resource
evaluation. He or she generally recognizes that these same
intercepts pose challenges in obtaining reliable and accurate
resource estimates, including potential overestimation,
variogram inference problems, and/or negative estimates if
kriging is the method of estimation. Some mitigating
measure(s) must be considered during resource evaluation,
otherwise the model is likely to be heavily scrutinized for
being too optimistic. As such, the relatively straightforward
task of top-cutting or grade capping is almost a de facto step
in constructing most resource models, so much so that many
consider it a ‘better safe than sorry’ task.

This paper reviews different approaches to mitigate the
impact of high-grade data on resource evaluation that are
applicable at various stages of the resource modelling
workflow. In particular, three primary phases are considered:
(1) domain design, (2) statistical analysis and application of
grade capping, and/or (3) grade estimation. In each stage,
various methods and/or tools are discussed for decision-
making. Furthermore, applying a tool/method during one
phase of the workflow does not preclude the use of other
methods in the other two phases of the workflow.

In general, resource evaluation will benefit from an
understanding of the controls of high-grade continuity within
a geologic framework. Two practical examples are used to
illustrate the global and local impact of treating high-grade
samples. The conclusion from both examples is that a review
of any method must consider both a quantitative and
qualitative assessment of the impact of high-grade data prior
to acceptance of a resource estimate from any one approach.
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Figure 7—Comparison of high-grade treatment methods: (a) single grade domain, uncapped data; (b) single grade domain, capped data; (c) single grade
domain, capped data plus HG limited radii; (d) interior HG domain, uncapped and hard boundaries; and (e) interior HG domain, capped and hard
boundaries
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