
Introduction
Since the term ‘kriging’ was coined by Georges
Matheron in the early 1960s on the basis of
Krige’s master’s thesis dealing with interpo-
lation of point samples, geostatistics has been
rapidly developed as a branch of science and
relevant techniques have been commonly
applied in many fields of science for mapping,
estimation, simulation, and prediction (Journel
and Huijbregts, 1978; Goovaerts, 1997). The
International Association for Mathematical
Geosciences (IAMG) is proud of the invention
and further development of the subject by our
members. Kriging and other geostatistical
techniques have been widely applied outside of
geosciences, where users unaware of its
origins and mathematical evolution refer to it
simply as a type of spatial analysis. The
semivariogram, a function of distance between
locations, can measure the spatial autocorre-
lation between values at locations separated by
a distance. Models empirically fitted to

semivariograms are used for assigning weights
to linear equations whose solutions provide
weighted averages for kriging data with
stationarity (Goovaerts, 1997; Deutsch and
Journel, 2008).  Traditionally, kriging is for
interpolating data in the neighbourhood and
estimating values at locations where no data is
available. Interpolation algorithms have been
developed for a variety of simple, indicator,
and higher-order kriging as well as kriging
with transformed and compositional data.
Algorithms for interpolation of data with
anisotropic spatial association (e.g. Chiles and
Delfiner, 1999), mixed categorical and/or
continuous data (Journel and Huijbregts,
1978; Goovaerts, 1997), and compositional
data (Pawlowsky-Glahn and Olea, 2004), have
been created. 

Case studies comparing these methods are
available in the literature (e.g. Park and Jang,
2014). Application of kriging depends heavily
on stationarity of the mean and second-order
moments involving the variogram and
standard deviation of a regionalized random
variable. Simple kriging (SK) may be applied if
the mean of the data has a known but
constant trend, whereas ordinary kriging (OK)
may be applied if the trend is constant but
unknown. If the trend is unknown but follows
some polynomial model, other types of kriging
accounting for trends can be used (Hansen et
al., 2010). In most cases stationarity of second
order moments is also assumed. However, the
real data, especially exploratory data involved
in characterizing mineralization and
hazardous events, often does not meet
stationarity requirements because of
singularities. 
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A new approach is the multiple point geostatistics which
is a new field of spatial and temporal analysis (Mariethoz and
Caers, 2014). Multiple point geostatistics uses training
images to quantify and to include structural information into
stochastic simulation (Guardiano and Srivastava, 1993;
Strebelle, 2002).

The multifractal interpolation method (MIM) based on
multifractal theory (Cheng, 1999a, 2000) has been developed
for the analysis and interpolation of data with singularities.
Multifractal theory integrates both spatial association and
local singularities and can enhance and retain the local
structure properties (Cheng, 2006a,b). This paper introduces
a generalized binomial multiplicative cascade process to
demonstrate the generation of one- and two-dimensional
data with multi-scale singularities which can be modelled by
asymmetrical multifractal distribution. It will then introduce a
generalized moving average mathematical model for
analyzing and interpolating between data with singularities.
Finally the method will be demonstrated by a one-
dimensional example.

Multiplicative cascade processes and multifractal
distributions
Singular physical, chemical, and biological processes can
result in anomalous energy release, mass accumulation, or
matter concentration, all of which are generally confined to
narrow intervals in space or time (Cheng, 2007a). The end
products of these nonlinear processes can be modelled as
fractals or multifractals. Singularity is a property of nonlinear
natural processes, examples of which include, but are not
limited to, cloud formation (Schertzer and Lovejoy 1987),
rainfall (Veneziano 2002), hurricanes (Sornette, 2004),
flooding (Malamud et al., 1996; Cheng 2008; Cheng et al.,
2009), landslides (Malamud et al., 2004), forest fires
(Malamud et al.,1996), earthquakes (Turcotte 1997), mineral
deposits and related geochemical anomalies (Agterberg,
1995; Cheng et al., 1994; Xie and Bao, 2004; Cheng and
Agterberg, 2009), solar wind turbulence (Macek, 2007), DNA
series (Rosas et al., 2002), heat flow at the mid oceanic
ridges (to be published by the author elsewhere) and
landscape textures (Plotnick et al., 1993). Multifractal
modeling involves quantification of multi-scale singularities
and various types of properties associated with spatial distri-
bution of the singularities (Halsey et al., 1986; Feder, 1988;
Mandelbrot, 1989; Evertsz and Mandelbrot, 1992). This
section introduces an asymmetrical cascade process that
generates results with singularities characterized by
asymmetrical multifractal models. There are several
formalisms for describing multifractal distributions, one of
which is the multifractal model based on the partition
function (Halsey et al., 1986). This model involves three
functions: the mass exponent function or Renyi exponent
τ(q), the coarse Hölder exponent α(q), and the fractal
spectrum function f(α) (Halsey et al., 1986).

In order to demonstrate the singularities and their distrib-
utions in one- or two-dimendional data, I introduce the
theories and concepts of multiplicative cascade processes
(MCPs), which play a fundamental role in quantifying
turbulent intermittency and other nonlinear processes
(Schertzer and Lovejoy 1985, Schertzer et al. 1997). MCPs
have been extensively discussed in the literature (e.g. Gupta

and Waymire 1993, Over and Gupta 1996, Menabde and
Sivapalan 2000; Serinaldi 2010). The model of de Wijs is a
simple two-dimensional multiplicative cascade model (de
Wijs 1951, Agterberg 2001, 2007a) described in terms of
multiplicative canonical cascade processes (Lovejoy and
Schertzer, 2007). Other modifications exist, e.g. a cascade
model with functional redistribution rate (Agterberg 2007b);
a two-dimensional cascade model with anisotropic partition
(Cheng 2005); a generalized two-parameter binomial
multiplicative model as proposed by Koscielny-Bunde et al.
(2006) and applied for describing multifractal spectra of
runoff time series; a three-parameter binomial multifractal
model proposed by Macek (2007) and applied to characterize
solar wind turbulence data based on a generalized two-scale
weighted Cantor set for characterizing asymmetrical
multifractal distribution; a two-dimensional cascade model
with variable and conditional dependence partition (Cheng,
2012); and a five-parameter binomial multiplicative cascade
model has been recently proposed by the author (Cheng,
2014) for describing fundamental multifractal indices charac-
terizing asymmetrical multifractal distribution of real-world
data. 

The five-parameter generalized multiplicative cascade
processes involve the partitioning of with a length L (e.g. in
unit of meter) into h equal segments of which m1 receive d1
(> 0) and m2 receive d2 (> 0) proportion of mass in the
previous segment, respectively, where m1 + m2 ≤ h. For a
closed system with preservation of unit measure (e.g. with
total mass M), d1 + d2 = 1. Otherwise, d1 + d2 < 1 or d1 + d2
> 1, corresponding to a loss or gain of mass during the
cascade process, respectively. At the nth partition, the
segment length will be εn = L(1/h)n; the segments are subject
to k times segments with measure d1/m1 and n - k times
segments with measure d2/m2, and thus the measures of
these segments are ′κ = M(d1/m1)k(d2/m2)n-k. Therefore, the
numbers of segments with ′k will be Nk = m1

k m2
n-k(k

n).
Letting n →∞, we can find series of n and k with k = ξn, 0 ≤ ξ
≤ 1, where ξ is independent of n or k. We then obtain the
following relationships

[1]

where α is the coarse Hölder exponent which quantifies the
singularity of the distribution of ′

[2]

and the subset of segments with singularity α is an
intertwined set which is a fractal with fractal dimension f(α).
The number of segments in each of the intertwined fractals
can be expressed as 

[3]

where f(α) is the fractal dimension spectral function, which
can be expressed as  

[4]
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It can be seen from Equations [1] to [4] that both the
measure ′κ and Nk follow power-law relationships at scale εn.
Since the value of ξ falls within the range [0, 1], the value of
the singularity index takes any value between αmin and αmax
following the linear relationship between α(ξ) and ξ:  

[5]

where the maximum and minimum values of singularity α
are 

[6]

assuming d1/m1 > d2/m2; otherwise, the two extremes
will be reversed. Accordingly, the corresponding fractal
dimensions with special singularities are shown to be 

[7]

The multifractality and symmetry of the multifractal
distribution can be characterized by the asymmetry and
multifractality indices 

[8]

The asymmetry index corresponds to the ratio of the
values m2 and m1; whereas the multifractality is proportional
to the ratio of average measures, (d1/m1)/(d2/m2). 

Singularities and nonstationarity
The singularity in the multifractal model introduced in the
previous section characterizes how the statistical behaviour
varies as the measuring scale changes. For example, at some
locations the mean value calculated from the neighbourhood
values might be independent of the size of the vicinity within
which the values are averaged. In other cases, the mean
value might proportionally depend on the size of the vicinity.
The former case represents nonsingular location but the latter
is for singular location. Singularity property has been
commonly observed in geochemical and geophysical
quantities (Cheng et al., 1994). Generally speaking, as the
size of segment εn → 0 (n →∞), then the measure defined for
each segment (Equation [1]) tends to zero and the number of
segments tends to infinity. In order to explain the singularity
of geochemical and geophysical quantities according to the
notation of the multifractal model shown in Equations
[1]–[7], the ‘fractal density’ of measure with singularity (α)
is defined by the author as the ratio of mass ′(εn) over scale
εn

α which can be calculated as follows:

[9]

the new fractal density ρα has a unit of M over the unit of
Lα, for example, g/m0.3. 

[10]

where ′α = 1- α represents an index quantifying the local
singularity of the measure at locations with singularity α.
The ordinary density ρ can be decomposed into two
components: fractal density ρα and ε-′α, the former is
independent of scale ε whereas the latter dependent on the

scale. The former component is a non-singular component
and the latter is singular component if the singularity index
′α ≠ 0. The inconvenience property of the measure with
following singularity properties implies nonstationarity of the
measure or the density (Cheng, 1999a):

(1) α = 1 or ′α = 0, if ρ(ε) = constant, independent of
scale size ε
(2) α < 1, ′α > 0, if ρ(ε) is a decreasing function of ε,
which normally implies the ‘convex’ property of ′(ε) at the
location with α
(3) α > 1, ′α < 0, if ρ(ε) is an increasing function of ε,
which normally implies the ‘concave’ property of ′(ε) at
the location with α.

Therefore, the α-values as the fractal dimension of the
fractal density (Δα – value as the co-dimension) can be used
to characterize the nonlinear structural property of the
measure ′(ε). This approach has already been used for
texture analysis of remote sensing Landsat TM images
(Cheng, 1997b, 1999c), in multifractal interpolation of
geochemical concentration values for mineral exploration
(Cheng, 1999a, 2000a, 2000b), in well log curve
reconstruction (Li and Cheng, 2001), flood event modelling
(Cheng et al., 2009), in hyperspectral image analysis (Neta et
al., 2010), faults and geochemistry (Wang et al., 2013), and
in geochemical element concentration mapping (Chen et al.,
2007; Zuo et al., 2009).

In order to introduce how singularities can be included in
data interpolation, we here introduce the following scale-
invariant property of the measure, ′(ε) and density, ρ(ε). Due
to the properties of power-law type functions we can
associate the densities at two different scales (εn and εm) as
follows

[11]

The MIM to be introduced in the next section is developed
according to the scale invariance property (Equation [11]). 

MIM incorporating spatial association and singularity
Statistical properties derived at one scale may be used to
estimate properties at another scale on the basis of the
scaling property (Cheng, 1999a, 2000). The main purpose of
data interpolation, including kriging, is to estimate values at
unknown locations based on the neighbourhood values and
their spatial association with the value being estimated.
Spatial association represents a type of statistical dependency
of values at separate locations. If the value at a location (x) is
considered as the realization of a regionalized random
variable Z(x), the spatial association or variability can be
measured by means of the variogram

[12]

where the semivariogram γ(x, h) is a function of vector
distance h separating locations x and x + h, measuring the
symmetrical variability between Z(x) and Z(x + h). Under an
assumption of second-order stationary, the semivariogram
(Equation [12]) becomes a function of h that is independent
of location x. This strong assumption on the nature of the
regionalized random variable is generally required in kriging.
Equation [12] has been commonly used for structural
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analysis and interpolation in geostatistics (Journel and
Huijbregts, 1978). It has also been applied for texture
analysis in image processing (Atkinson and Lewis, 2000;
Herzfeld and Higginson, 1996).  

To incorporate both spatial association and singularity in
supporting the interpolation model based on Equation [11],
the following average density within a small vicinity ⏐ (x0, ε)
around location x0 with linear size ε was defined by Cheng
(2006)

[13]

Assume that Equation [11] holds true within a range of
window sizes, ε ≤ ε ≤ εmax. Then the average density ρ(ε, x0)
within the window ⏐ (x0, ε), where it may not contain
samples with observed values, can be associated with the
average density within the larger window ⏐ (x0, εmax) where
it contains samples with observed values and can be
estimated by kriging as follows:

[14]

Equation [14] is a general weighted average model that
can be used to estimate the value at the centre of ρ(ε, x0)
from the neighbourhood values within ⏐ (x0, εmax) (Cheng,
1999a, b, 2006). Since the above discussions are valid for all
dimensions and here we will use E to present the dimension
of problem, E=1, 2, 3 stand for 1D, 2D and 3D problems. It
has the following properties :

(1) If it does not show singularity, α = E or ′α = 0, then
Equation [14] reduces to the ordinary moving
average function that has been used commonly in
kriging and other data interpolation methods

(2) If all locations show the same singularity strength
with α = constant or ′α = constant, then Equation
[14] becomes the same as the ordinary moving
average function used in kriging and other methods

(3) If the singularity varies from location to location, 
α ≠ constant or ′α ≠ constant, then Equation [14] is
equivalent to the ordinary moving average function
multiplied by a scale ratio factor, (ε / εmax)-Δα, with
three possible situations given ε < εmax:

[15]

These properties indicate that if the data used for interpo-
lation satisfies a multifractal distribution, then Equation [14]
must be used as an extended form of the ordinary weighted
averaging model. In this case, the scale ratio factor modifies
the ordinary average in such a way that if there is positive
singularity with ′α > 0, then the new result is to be increased
by a factor (Equation [15]), whereas if ′α < 0, then the new
result is reduced by a factor (Equation [15]). This modifi-
cation is reasonable because ′α > 0 and ′α < 0 correspond to
convex and concave properties of the surface ρ(ε, x0) around
the location x0, respectively. 

The new model (Equation [14]) not only describes the
spatial association reflected in the calculation of the weight λ,
but also incorporates the singularity characterized by the
singularity index α. The new model therefore has two

obvious advantages: it not only improves the accuracy of the
interpolated results but also retains the local structure of the
interpolation map. The latter property is essential for
geochemical and geophysical data processing and for pattern
recognition. This will be demonstrated using the assay values
from the Pulacayo sphalerite-quartz vein in Bolivia studied
by De Wijs (1951).

Analysis of de Wijs’s Bolivia sphalerite data 
De Wijs (1951) studied assay values from the Pulacayo
sphalerite-bearing quartz vein in Bolivia. Along a drift 118
channel samples had been collected at 2.00 m intervals
(Figure 1A). These values have been analysed by multifractal
modeling and spatial analysis (Cheng and Agterberg, 1996;
Cheng, 1997b) and they can be approximated by five-
parameter binomial multiplicative cascade models (Cheng,
1999c, 2014). The fractal dimension spectra of the distri-
bution of de Wijs's zinc values are estimated by the gliding
window method with order of moment ranging from -20 to
20 and cell size ε ranging from 2 m to 30 m (Cheng, 1999c)
(Figure 2) and fitted by the five-parameter binominal
multiplicative cascade model (Cheng, 2014) (seen in 
Figure 2). The estimated values of f(α) are as follows

Therefore,

�
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Figure 1—Multifractal interpolation of de Wijs’s zinc values (de Wijs,
1951). (A) Observed values %Zn; (B) singularity α-values estimated by
multifractal interpolation method; (C) correlation coefficients associated
with the estimation of the α-values; and (D) interpolated results for zinc
values. Blue dots represent the observed values; red and yellow lines
present the results obtained by moving averaging method and the
multifractal interpolation method, respectively



The results indicate that the distribution follows a
multifractal model that is nearly symmetrical (Δαmax - min
> 0). 

In order to show the distribution of singularity and the
data interpolation results, Figure 1B shows the resulting
distribution of singularity values calculated for the data and
the correlation coefficients associated with the linear model
fitted after double log-transformation of measure and scale. It
shows that the estimated values of α are within a range from
0.6 to 1.4 with correlation coefficients greater than 0.975
(Figure 1C). Figure 2D illustrates the interpolated and
reconstructed results obtained by means of MIM and moving
averaging. The yellow line represents the results obtained
using MIM with window size 20 m (10 point values) and the
thicker red line represents the results obtained using the
averaging technique with window size 6 m (two to three
point values). The blue dots represent the observed data.
Comparing the results obtained using MIM and moving
averaging shows that MIM provides better results not only
with smaller fitting errors for the observed data, but also that
localized multifractality of the data is preserved. 

Discussion and conclusions
It has been demonstrated that the multifractal distribution
generated by binomial multiplicative cascade processes has
multiple singularities that can be quantified by singularity
index and fractal dimension spectrum. According to MIM, the
singularity of multifractally distributed data can be used in
data interpolation for mapping purposes with the localized
structural properties (multifractality) preserved. The model
used in MIM can be considered as an extended form of the
ordinary moving average or weighted average used in
various data interpolation methods, including inverse
distance weighting and kriging. For most quantities in
exploration geochemistry showing singularities, in order to
retain the localized structural property, the multifractal
interpolation method can be used to extend the ordinary
moving average techniques, including ordinary kriging. 

Since the singularity can be estimated using various
methods, for example, integration of multiple patterns by
weights of evidence method (Cheng, 2012) and other

anisotropic cascade processes (Cheng, 2004), more general
structural property and generalized self-similarity charac-
terized by the singularity can be incorporated in the data
interpolation. The multifractal interpolation based on prior
knowledge and training images should be further explored 
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