
The increasing need for mineral resources is
driving an increase in underground mines.
Lower grade mineralization with larger
amounts of overburden  is becoming econom-
ically viable due to technological advances;
however, the software and tools available for
strategic underground mine planning are not
well developed. Advances in the methods used
to determine underground layouts and
scheduling must occur to ensure underground
mining is as optimized as open pit operations,
as underground mining involves many more
technical restrictions.

The process of determining stope
boundaries and scheduling is an example of an
aspect of underground mining amenable to
optimization (Topal and Sens, 2010). The
current industry standard for medium- and
long-term planning for sublevel stoping (SLS)
is to exclusively determine stope outlines and
then determine an appropriate sequence and
schedule accordingly. This process violates the
concept of optimality as integrating the

constraints imposed by pre-determining stope
outlines does not allow for considerations in
scheduling to influence boundary planning
(Ataee-Pour, 2005). An integrated planning
process that combines both stope outlines and
scheduling would approach the optimal
solution and hence generate more value for
operations. This investigation specifically deals
with the underground sublevel stoping (SLS).
Other underground mining methods such as
block caving, sublevel caving, and room and
pillar mining have unique characteristics and
therefore require specific stope
boundary/production scheduling consider-
ations.

This optimization problem has been the
subject of research, particularly over the past
five years, with current models requiring up to
31 hours for a solution to be found on
computer systems that have the typical
processing power of onsite technical services
systems, on standard size data-sets (Little,
2012). Complexities arising from the technical
constraints inherent to SLS include single
fillmass exposure, extraction level alignment,
and non-concurrent production. These
constraints must be appropriately reflected in
modelling this mining method. As such, the
increasing number and nature of variables
required to accurately model these constraints
has a dramatic effect on solution time.
Reducing the solution time by applying ideas
from the field of operations research and
mathematical programming would potentially
allow current models to be implemented in
industry and generate greater value for
resource projects. 
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The current industry practice is to manually create stope
boundaries and schedule extraction separately. The creation
of a model that decreases computation time while still
generating similar results to current models would drastically
improve the planning process for SLS. Increases in NPV in
comparison to manual methods have been quoted as high as
30% and with such a large margin for improvement, current
practices would benefit from the outcomes of this project
(Little, 2012). Increases in productivity for personnel
involved in long-term scheduling would also be expected as a
manual approach for a single scenario can take multiple
planners longer than three weeks (Wang and Webber, 2012).

Goldberg and Winston (2004) define seven steps for model
formulation. The process highlights the fact that all
mathematical models are idealized approximations of real-life
problems and hence solutions that are found must be
critically analysed, implemented, and evaluated. Taha (2006)
also notes that the added complexity of a model in attempting
to idealize as little as possible can be rewarding in respect of
increasing the validity of results. The seven steps outlined by
Goldberg and Winston (2004) are:

� Formulate the problem
� Observe the system
� Formulate a mathematical model of the problem
� Verify the model and use the model for prediction
� Select a suitable alternative
� Present the results and conclusions of the study
� Implement and evaluate recommendations.

Linear programming (LP) is an analysis technique that aims
to maximize or minimize a linear function with a number of
variables. These models consist of an objective, decision
variables, and constraints. Decision variables are represen-
tations of the choices to be made that affect the outcomes of
the problem approximated, while objectives are linear
functions of decision variables that are to be maximized or
minimized in order to determine the optimal solution.
Examples include maximizing profit by choosing how much
of a product of a particular type to make. Constraints are
inequalities that enforce some limit on the model so as to
ensure the solution to the model is applicable to real-world
situations. As the name implies, these must also be linear.
Scarcities of resources or machining capacity limitations are
examples of constraints in a production setting. LP models
can be represented in the general form:

[1]

Linear programs can be solved in multiple ways. Simple
programs containing two or three variables can be solved
graphically or analytically by substitution of equations;
however, more complex linear programs require more
specialized tools. The simplex method exploits the geometry
of a polytope which represents the feasible region of a
problem with the number of dimensions corresponding to the
number of decision variables (Noncedal and Wright, 2006). 

The solution at which the algorithm is terminated is
proven to be optimal as the polytope is convex, and hence a
path along edges to the optimal solution will always have an
increase in the objective function. The representation of a
problem’s feasible region will always result in a convex
polytope if the problem is bounded and the matrix
representing the constraint coefficients is linearly
independent (Noncedal and Wright, 2006). The computation
time for this algorithm varies, as the number of edges that
must be traversed varies according to the dimension of the LP
problem, the location of the optimal solution, and the starting
point that is chosen. 

Variations of Dantzig’s simplex method exist. The revised
simplex method utilizes the same mathematical grounding
but involves maintaining a basis matrix representation of the
constraints. This reduces computation time due to the sparse
nature of the matrices involved (Noncedal and Wright, 2006).
Interior-point algorithms can be used on larger problems and
exploit the geometry of the feasible region differently (Taha,
2006).

The advantages of LP are stated by Tiwari and Shandilya
(2006), who highlight the fact that the range in which these
types of problems can be solved allows for fast computation.
The authors go on to state that the limitations of the method
result mainly from the difficulty in representing problems, as
many applications of mathematical programming require
integer values or are difficult to represent in continua. Hence
there is applicability to problems based in economics and
production where continuous variables are well suited to the
representation of real-world systems. 

Integer programming (IP) is similar to LP in that models are
formulated with objectives functions, constraints, and
decision variables. The difference exists in the nature of the
decision variables. IP problems require decision variables to
be integers and hence the ability to model discrete situations.
Integer variables are popular in modelling production
planning, scheduling, and networks (Karlof, 2006). IP
problems follow the general form outlined below.

[2]

Variables can also be limited to binary outputs. These
binary variables can be used to represent ‘yes or no’
decisions; an example from a popular application is the
Sudoku problem. Matrices of binary variables represent the
location of a particular number, creating expressions for the
puzzle’s constraints that are simple to capture mathematically
(Taalman and Rosenhouse, 2011). These problems are a
subset of IP and are termed binary integer programming
(BIP). 

Due to the discontinuous nature of the variables in both
BIP and IP, the feasible region of the problem cannot be
graphically represented as a polytope. The solving of IP
problems therefore requires the application of different
algorithms. If an IP problem’s variables are redefined to be
linear, the problem is termed a linear relaxation (LR). The
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feasible solutions of an IP problem are a subset of the LR and
hence many algorithms use the LR as a starting point for
iterations (Tiwari and Shandilya, 2006). 

The branch and bound method is an algorithmic approach
that uses a LR of an integer program to evaluate sub-
problems to determine the optimal solution of an IP problem.
The process starts with solving the LR of the IP problem. If
the solution consists of integers, then the process terminates
and the optimal solution is found. If not, a non-integer
variable is chosen and its bounding integers form constraints
for the next sub-problem to be solved. This process continues
until all possible solutions are investigated and the optimal
solution is found. Figure 1 shows a branch and bound tree
with the solutions of sub-problems from zero to ten forming
the possible solutions to the initial IP problem. 

Additional constraints can be added to an IP problem to
decrease the region discrepancy of the LR. Another method
for solving IP problems is the use of cutting planes. Cutting
planes are derived from the optimal solution of a LR.
Constraints in a Gaussian-reduced form are converted to
integers and fractional parts, with the fractional then forming
a new constraint. This constraint does not remove any
feasible points from the IP problem, and changes the current
optimal solution for the LR (Goldberg and Winston, 2004).
Gomory (1958) shows that this process yields the optimal
solution to the IP problem with a finite number of cuts.

The solution time for IP problems is highly dependent on
the number of integer variables and the existence of any
special structures instead of the number of constraints, as is
the case with LP problems (Little, 2012). Increasing the
number of constraints can actually decrease the solution time
for IP problems by reducing the number of branches that can
be investigated or reducing the feasible region (Hillier and
Lieberman, 2001). IP is usually only limited in application
due to the increased complexity of obtaining solutions, as
this form of programming can model many real-life problems
more accurately than LP. 

The combination of both continuous and integer decision
variables in a programming problem is termed mixed integer
programming (MIP). The applications of MIP extend to many
areas. The solving of MIP consists of a combination of
simplex-derived methods as well as IP problem-solving
techniques such as branch and bound and cutting planes
(Goldberg and Winston, 2004). 

Sublevel stoping is an underground mining method that
involves the excavation of large blocks of ore in an
unsupported fashion. This method is suited to steeply
dipping, tabular orebodies of thickness between 50 to 100 m
with strong, competent ore and host rock.  Initially, stopes
are developed with an extraction level and drill accesses,
known as crosscuts (Figure 2). These development drives are
offset vertically and are usually situated in the centre of a
stope. Longhole drills are then used to create rings of holes
within the stope envelope, which are then charged with
explosive and blasted to fracture the rock. Ore is drawn down
through the extraction level at the bottom of the stope. Once
extraction has been completed, the void is then backfilled
with material that may consist of waste, cement, and other
aggregates. This process can be performed on multiple stopes
simultaneously, within certain operational constraints
(Darling, 2011). 

The key aspects of underground mine layout that are pivotal
to the project revolve around the limitation of when stopes
are available for production. Haulage and access systems
dictate when development can occur at different areas of the
mine, and hence this should be reflected in modelling. 

The use of a decline as the primary means of accessing
the orebody favours production from stopes closer to the
surface earlier, as these drifts can be developed before lower
levels. If access is via conventional shaft-sinking, lower-level
stopes may be favoured due to their closer proximity.
Likewise, the choice of haulage system can also dictate these
parameters in a similar way. Truck haulage systems may
permit early production while other infrastructure is
constructed, while shaft haulage will require initial
construction of orepasses and underground crushers, hence
preferences would vary according to the development
method.

Stope shape also influences the value of underground
operations. For thicker orebodies, where multiple stopes exist
both along and across the strike, internal stopes may have
regular outlines. At the point at which cut-off grade is to be
defined, the profitability of a stope may influence its shape. A
cut-off grade is defined as the point at which mineral concen-
trations become too low to be considered valuable and hence
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material below the cut-off grade is waste. Boundaries can be
less regular to minimize dilution and as a result increase the
profitability in comparison to a more regular outline. The
level of geological confidence required in strategic planning to
account for this is high and hence is not as applicable to this
project, which seeks to maintain a more regular-shaped
stoping envelope.

SLS production processes involve multiple steps revolving
around development, preparation, extraction, and backfilling.
Initially, the extraction level and sublevel drill accesses are
developed. The number of sublevel drives should be
minimized as development is expensive in comparison to the
cost of production drilling. Once these developments are
completed, a slot raise or winze is driven at the initiating end
of the stope; this serves as the initial void for production
blasting (Sandvik, 2009). 

Drawpoints are then constructed by drilling funnel shapes
in the hangingwall of the extraction drive. Once the blasted
material is removed, this will serve as another void for
blasting and will channel broken ore from the stope (Nehring
et al., 2012). After this, an initial slot is blasted to initiate
breakage. The slot is smaller than future production blasts
due to the space available for movement and the natural
swell factor which occurs as material is broken. The stope is
then blasted in stages and the blasted material extracted
through the drawpoints. Ore can be transported by a
combination of load haul dump units, orepasses, conveyors,
rail systems, haulage trucks, and hoist skips (Darling, 2011). 

A stope may remain empty for a period in which
bulkheads are constructed within drives. These bulkheads
ensure that the backfill material does not breach drifts. The
fill mass is usually a combination of tailings and cement and
is transported from the surface via a pipeline (Darling, 2011).

The geotechnical stability of openings underground dictates
the way in which stopes can be extracted. There are a number
of constraints that must be recognized when sequencing
stope extraction so as to minimize the span of unsupported
openings, decrease stress concentration on weak areas, and
reduce the length of discontinuities in an attempt to

maximize the stability and safety of operations. In order to
accomplish these geotechnical goals, the following rules must
be adhered to during production. 

Stopes that overlie each other can create planes of
weakness by having extended interfaces between fill mass
and pillars. In order to avoid this hazard, stopes on adjacent
levels must have offset outlines, so that these planes cannot
form. Figure 4 demonstrates this. 

In order to minimize the span of unsupported voids,
stopes adjacent to a current production stope in any direction
cannot be mined until the backfill material has cured.
Concurrent production from stopes that are adjacent would
increase the unsupported span and hence increase the risk of
failure in the hangingwall, footwall, and backs. Production
from stopes that share corners should also be avoided (Little,
2012).

The strength of fill mass is much lower than that of the
surrounding country rock. As a result, if production from
stopes exposes multiple sides of a backfilled stope, failure can
be induced by the redistribution of stresses around the
excavations. Therefore in order to avoid this potential for
failure, production should allow only one side of a backfilled
stope to be exposed at any one time. 

While current industry practice is to perform this process
manually, numerous methods are employed for stope
boundary selection. Topal and Sens (2010) present a new
method for determining optimal stope outlines. The method is
rigorous and involves block model conversion, creating all
possible stope outlines, evaluating envelopes of stopes for
profitability, and choosing the most profitable stopes. The
effect of different selection criteria in regard to profitability
was investigated with total profit, profit per time unit, and
profit per square metre used to determine the list of stopes to
be mined.

The maximum value neighbourhood (MVN) algorithm is
a heuristic approach to determining stope outlines from a
block model. The method can be applied to three dimensions
and is suitable for many different mining methods. It aims to
find the maximum value for a stope that includes a block
being interrogated. The algorithm starts with a definition of
the largest stope size. Next, a set is populated that contains
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all the possible neighbourhoods, including the block in
question. The economic value of each neighbourhood is
determined by summing the profitability of each block in the
neighbourhood, and the maximum is chosen. This process is
repeated for other blocks with checks performed to ensure the
same block is not included in multiple neighbourhoods
(Ataee-Pour, 2005). 

The moving cone method for open pit limit optimization
is a widely used tool in the planning stages of surface
operations. The floating stope algorithm is analogous to this
method and aims to find the optimal limit of mineable ore in
a stope envelope. A block is selected, with the inputs required
being minimum stope outline and float increment. The
outline is floated around the block, creating an inner
envelope that consists of the highest grade stope and an
outer envelope that encompasses all possible stope outlines.
The stope outline to be chosen should be as close to the inner
envelope as possible and fall within the outer envelope. The
choice of stope outline is dictated by the optimization
objective, such as maximum ore tons, maximum grade, or
minimization of cut-off waste (Ataee-Pour, 2005).

The branch and bound technique utilizes type-two special
ordered sets to determine the optimal starting and finishing
locations for stope blocks in a row. Two piecewise linear
functions are used to determine which blocks along a row
should be included, and which should be excluded. The
approach is implemented by commercially available software
which includes data reduction, optimization, and graphical
presentation (Little, 2012). The algorithm can be utilized
only in one dimension, and hence the constraint of geometry
and location of the row must be predetermined. While this
tool is efficient, its limited application warrants the creation
models of that can better approach optimality.

The approach formulated by Manchuk (2007) demonstrates
scheduling methods used in SLS operations once stope
boundaries are determined. The process includes parameteri-
zation of stope attributes as well as of operations. Stope
attributes include location, size, neighbouring stopes, and
other economic factors, while operations are parameterized
by task and the rate at which these tasks can be completed.
Constraints in production are then applied.  These include
constant production, adjacency constraints, and resource
allocation. The problem is then solved by a combination of
simulated annealing and probabilistic decision-making. 

As optimization over different horizons can provide only
local optima, Nehring et al., 2012) investigated how an
integrated schedule affects the NPV of an operation. Three
models were derived – a medium-term schedule that
optimizes production with the aim of maximizing NPV, a
short-term production schedule allowing for machine
allocations with the aim of minimizing deviation from a
target grade to mill, and an integrated production schedule.
The combination of both short- and medium-term
optimization models showed significant results with an
increase in NPV of 10% compared with manual scheduling
methods, while the integrated model increased the NPV by
11% for a 100-stope conceptual study. The solution time for
the non-integrated models is 110 seconds on a 2.40 GHz
computer with 8 GB of random access memory. 

Creating a conceptual model that uses pre-processed stope
data as opposed to generating stope data from blocks is a
necessary step to reduce solution time. In doing so,
purposefully structuring data to allow easy interpretation by
the model minimizes processing time. The following steps
outline the different aspects of creating the binary integer
program inputs from block model parameters. Visual Basic
for Applications (VBA) was used to perform this data
processing. 

The following initial parameters are required to be filled
before calculations can be done. These vary from financial to
technical. Table I shows the required data.

Each possible stope is investigated by evaluating the range of
possible stope sizes and iterating through all the possible
locations. The smallest increment that was investigated was
the size of the blocks. Starting at the origin block of the
model and with the smallest stope size, the boundary is
stepped in a single direction until the extent of the block
model is reached. Following this process in all directions, all
possible stopes outlines are found. This is then repeated with
as many stope sizes as input with beginning and end blocks
written. 

Once all possible stopes are determined, the block data is
aggregated for each stope. Tonnage is calculated by summing
individual block tonnages. Grade is calculated from a mass-
weighted average of the blocks with value determined from
the stope’s containing metal. These are calculated using fixed
and variable parameters. Stopes of negative value are
removed in order to reduce model load. Removing the
negatively valued stopes would not reduce the optimality of
the solution as there is no way to increase NPV by including
these stopes. 

After removing negatively valued stopes, inter-stope data
is formulated. Binary matrices are calculated according to a
set of rules that determine which stopes are adjacent or
cannot be in production with other stopes. A stope is chosen
and compared to all other stopes. If the stopes being
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Table I 

Number of time periods -
Block model dimensions Blocks
Stope dimensions Blocks
Metal prices $/ton
Recovery %
Discount rate %
Fixed preparation  costs $
Fixed extraction costs $
Fixed backfilling costs $
Variable extraction costs $/ton
Variable backfilling costs $/m3

Minimum grade requirement %
Maximum grade requirement %
Mine's ore handling capacity per time period Tons
Cost of level development/level $
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compared are on the same level, share an adjacent boundary,
and do not have any common blocks, then the stopes are
written as adjacent. For violation relationships, if the
compared stopes have offset extraction layers, align for
vertical planes of weakness, or share common blocks the
stopes are written as violations. Supplying this data to the
model allows for simple and systematic constraint
application. From a computing point of view, the binary input
of variables allows for faster computing than reading and
referencing larger data labels. 

After the data processing, stope data is amalgamated and
saved. Each entry involves an identification index number,
tonnage, grade, value, and extraction level. The value of each
stope is output as a set of values corresponding to production
in each time period. This allows for simple formulation of
NPV and ensures the objective function remains linear. All
data is written to a text file.

Mathematical formulation of the model involves multiple
stages of compilation in order to optimize stope outline and
scheduling simultaneously. The model aims to replicate real-
world scenarios by selecting the most appropriate stope
boundaries and locations in combination with time to produce
and when level access should be developed. This is
demonstrated in the way of binary decision variables. 

The following sets and data are used in model
formulation:

Nn Set of all stopes indexed by n (or s)
Tt Set of all time periods indexed by t (or a)
Ll Set of all levels indexed by l
Gg Set of all metals contained by orebody indexed by g
Tmt Set of all time periods less one
Lml Set of all levels less one
Adjns Binary collection of data, 1 if stope s is adjacent to

stope n, else 0
Violns Binary collection of data, 1 if stope s cannot be

produced with stope n, else 0
Tonn Set of tonnage of stope n
ZZn Level of stope n’s extraction layer
LVl t Cost of level development in time period t
MGn g Grade of stope n for metal g
TonLim Tonnage throughput limit per time period
MMaxg Maximum  mill feed grade for metal g
MMing Minimum mill feed grade for metal g

The model consists of four types of decision variable, all
with a binary nature. Two represent the production of stopes
while two are used to demonstrate level access. The
production variables are shown as: 

The two variables used in level development are
structured in a similar way: 

The objective function of the BIP is to maximize profit as
shown in Equation [3]. This considers the profit from stopes
and costs of level development. Equations [4] and [5] ensure
that stopes are produced only once and that the summary
variables are linked to the time-dimensioned variables.
Equation [6] ensures no stopes that violate geotechnical
constraints are produced or stopes with common blocks.
Equations [7] and [8] constrain single fill mass exposure and
non-concurrent production of adjacent stopes respectively.
Equation [9] ensures production tonnage limits are not
violated per time period, with Equations [10] and [11]
ensuring blended metal grades are within specifications.
Equation [12] ensures that production occurs only after level
access is established, and Equation [13] ensures sequential
development of levels from the surface. 

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[12]

[13]

The model was verified by analysing the results of a 38-stope
model with randomly generated financial parameters. A
diagram demonstrating outlines is shown in Figure 5, with
the production. This simulation had an NPV of $5.7 million.
No violation of constraints was found, with visual verification
of the production sequence showing that with the given
development costs, stopes closer to the surface were more
favourable for production. 
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The results of the model were compared to constraints
previously outlined to ensure the selected stope boundaries
and production schedule were valid. Systematically moving
through the constraints:

� Stopes are produced only once if selected for production
throughout the scheduling period

� No adjacent stopes are produced concurrently (this was
further tested with a larger, tabular body and still held
true)

� Single fill mass exposure is not exceeded
� No stopes have offset extraction levels
� No stopes cause vertical planes of weakness
� No stopes share common blocks
� Production tonnages are not exceeded
� Mill feed grade is kept within maximum and minimum

requirements
� Level access is developed before stope extraction as

required
� Level access occurs sequentially from the surface. 

The implementation of the level constraint does not allow
stope production to occur until after the level access is built.
This is realistic in respect that it allows parallel production
and development in the time periods after access and requires
full development of a level before access. Table II shows the
production and development schedule determined by the
model to be optimal for the validation data-set. It shows that
the level access constraint is not violated and production of
stopes occurs in the time period after access has been
established. It also shows that the production tonnage
limitation was not violated.

The model was run with varying stope numbers to predict
solution time according to the input number of stopes to be
solved. Solutions were obtained by using Python 2.7 with
Gurobi Optimizer running on a computer with 8 GB of
random access memory (RAM) and a processor speed of 2.00
GHz, utilizing all four of the processor’s cores.  

Figure 6 shows the number of stopes per model and the
run time in minutes. Two variations of each model were run,
one with a summary variable for stopes and levels and one
without in order to compare processing times. A third
reference from previous literature is included as a
benchmark. This model (Little, 2012) was run with 4 GB of
RAM and a 2.4 GHz processor and had a similar model
complexity with regard to constraints and data. 289 stopes
containing gold were evaluated with pre-processed physical

and economic data with identical constraints in regards to
mining, grade, and geotechnical limitations. The value of
stopes was considered over multiple periods, however, and
did not include level constraints. 

Both models, with and without summary variables,
produced the same solutions for each data-set. This verifi-
cation is required to ensure constraint spelling is correct. As
models increase in complexity, it is expected that the results
found for each model will begin to deviate. More intensive
processing will be required for the model without summary
variables and hence investigations may not reach a gap of
0%, whereas the other model will do so up to a certain
number of stopes. Hence an improvement in model solution
time is also an improvement in the size of models that can be
investigated. The branch and cut algorithm used to find
optimality demonstrates the number of solutions investigated
in Table III. 

Table II 

1 1
2 2
3 3 1st 31 351
4 4 2nd 27 595
5 5 3rd 29 380
6 6 4th 30 647
7 5th 28 892

Table III

24 2 058 10 778
38 3 683 18 274
64 3 805 68 036
90 5 087 175 145
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The key findings include proof of optimality, reduction in
solution time, and increases in applicability of model results.
These are significant in mobilizing BIP as a method of
planning and scheduling. 

The model found the optimal solution for each case,
solving each with a gap in solution space of less than 0.5%.
Reaching optimality in a short time period is significant as it
allows for higher NPVs to be obtained without reliance on
manual methods. This allows multiple models to be run in
different scenarios to investigate optimality, which cannot be
done when manual methods are employed.  It also removes
the possibility for errors. 

The methods of reducing solution time were successful in
two ways. Firstly, by structuring data in ways that combine
sets and allow for simple access by the model, processing
time is reduced  The use of binary sets to represent adjacency
and violating relationships between stopes allowed for fewer
constraints in the BIP and quicker data accessing as opposed
to labels. 

The second method of reducing solution time involves
employing a summary variable to allow for constraints
involving the whole production time-horizon to reduce the
range of solutions to be investigated. It is more suitable for
the violation constraint; for example, to consider the
production schedule holistically rather than on a time period
basis. Continuing with the violation constraint, a summary
variable spelling would consider the subject stope variable in
addition to a variable for all the stopes that cannot be
produced. Without summary variables, the number of consid-
erations increases by a factor of the time periods. Hence in
the context for run solutions, the constraints could involve up
to 25 times less variables. 

The reduction in solution time as a result of using
solution variables increased as data complexity increased. For
the smallest models, nodes processed were reduced from 10
778 to 2058, reducing solution time from 13.09 seconds to
6.97 seconds. For the largest data-set assessed by both
models, nodes were reduced from 175 145 to 5 087 for a
solution time reduction of 5 664.38 seconds to 84.74
seconds. In comparison to previous work, a model run with
similar computing hardware and stope numbers took 31
hours of processing time whereas with summary variables
this was reduced to 135 minutes. The difference in these
times increases the relevance of the project to industry as
solution times approach acceptable limits for implementation
in commercial software. A solution time of 31 hours would
only be acceptable for academic investigations.  While both
processes reduce the risk of human error and allow for more
iterations and scenarios to be tested, having up to 14
simulations in the space of one would allow for much greater
productivity. Reducing the complexity of the model and nodes
investigated would also mean that the limitations of
computing hardware would affect only much larger models
with the use of summary variables. 

The addition of a level constraint allows for the results of
the model to be more relevant to real-life applications.
Although how this influences the relevance of model results
cannot be quantitatively assessed, consideration for stope

elevation adds valuable credibility and is a crucial factor in
determining the optimal order in which stopes should be
mined. 

The implementation of this model or similar approaches
would be an improvement on the current methods of manual
formulation. The optimal solution is not guaranteed when
relying on the experience of personnel and when stope
outline and scheduling occur independently. Secondly, this
work is an addition to the limited body of software for
underground optimization. Its implementation would
decrease the lag in development between surface and
underground planning methods. Lastly, the model provides a
basis for future work in the application of integer
programming to other areas of underground optimization.
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