
Owing to the extreme depths of the gold-
bearing reefs at the AngloGold Ashanti (AGA)
Witwatersrand operations and the prohibitive
expense and time involved in drilling
boreholes to the required depth, only limited
drilling and sampling data is available ahead
of the mining face. Whereas traditional
estimation techniques are interpolative, within
the Witwatersrand the estimation is primarily
extrapolative, with the majority of the data
being sourced from the mined-out areas. This
significant challenge to estimation resulted in
the development of a unique method of
Mineral Resource estimation and evaluation.

Macro cokriging (MCK) was first introduced in
1994 and has been is use for 20 years by
AGA. There are three key aspects to this
technique; namely a Bayesian approach to
estimation, the estimation of mixed support
size data (MCK), and the utilization of four-
parameter distributional models. 

(1)  The Bayesian process followed allows
for the integration of the limited
advanced data with the large data-set
from the previously mined-out areas.
Krige et al. (1990), and later Dohm
(1995), proposed the use of a
Bayesian geostatistical approach
where ‘the geological, statistical and
spatial characteristics observed in the
known population area hold for the
virgin areas’

(2)  Estimation by MCK of two different
sampling support sizes, one at block
support, representing the dense
underground chip sampling data and
the other cluster support, representing
the widely spaced borehole data
(Dohm, 1995; Chamberlain, 1997).
The MCK technique is not strictly
cokriging, but the modification of the
diagonal kriging matrix to reflect
different nugget effects related to
different data supports. The
methodology also assumes the same
spatial covariance structure for the
different data supports and thus does
not use cross-variograms

(3)  The continued development of distrib-
utional models beyond the use of the
two- and three-parameter lognormal
models led to the development of four-
parameter distributional models by
Sichel (1990) and Sichel et al. (1992)
that are more applicable for the gold
reefs of the Witwatersrand. Estimation
is done in natural logarithmic (Ln)
space because of the highly skewed
gold distribution. The final gold
estimates are calculated by back-
transforming the estimates using four-
parameter distribution models (Dohm,
1995; Chamberlain, 1997).  
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Many of the processes developed and used by AGA are
based on the work completed and detailed by Dohm (1995)
and Chamberlain (1997). 

The unique estimation method followed does not,
however, detract from the criticality of having a sound
geological model. It is imperative for this and any other
estimation process that the geological model accurately
represents the understanding of the deposit.

AGA’s TauTona Mine lies on the West Wits Line, just south
of Carletonville in North West Province, about 70 km
southwest of Johannesburg (Figure 1). Mining at this
operation commenced over 50 years ago and currently takes
place at depths ranging from 2000 m to 3640 m below
surface. The mine has a three-shaft system and employs a
sequential and/or scattered grid mining method to extract the
gold in the deep, narrow, tabular orebody. The grid is pre-
developed through a series of haulages and crosscuts.
Stoping takes place by means of breast mining using conven-
tional drill-and-blast techniques. The smallest mining unit
(SMU) is 100 m × 100 m.

The CLR is the principal economic horizon at TauTona.
The CLR is located near the base of the Johannesburg
Subgroup, which forms part of the Central Rand Group of the

Witwatersrand Supergroup. The CLR is a thin (on average 
20 cm thick) tabular, auriferous quartz pebble conglomerate.

The sampling data is comprised of underground chip
sample sections (425 917 points), underground boreholes,
and surface boreholes from TauTona and neighbouring
mines. Underground sampling is in the form of chip sampling
taken on the mining face using a hammer and chisel. All
sample locations are reported as a composite over a
mineralized width, resulting in a single channel width (cm)
and gold metal accumulation value (cm.g/t) (Figure 2). The
natural logarithms (Ln) of this metal accumulation is used in
the estimation. 

An upfront Bayesian assumption is made that the mined-out
areas are from the same statistical population as the areas yet
to be mined – these are generally down-dip or along strike.
The underlying assumption is that the Ln mean and Ln
variance of the metal accumulation of a deposit will vary from
locality to locality but the shape of the distribution will
remain constant (Dohm, 1995; Chamberlain, 1997). Thus,
with appropriate consideration of support differences, the
distribution of data for the mined-out area can be equated to
the unmined area, with the sparse surface boreholes being a
subset of the whole. 
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The geological model that underlies the estimation
process is crucial input to effective estimation and the validity
of the above assumptions. The individual domains
(geozones) within the geological model must not only be
geologically homogeneous but also define the gold grade
distribution. The geozones subdivide the data into distinct
populations and the parameters of these populations play a
critical role in the development of the estimates (Dohm, 1995;
Chamberlain, 1997). It is thus important to identify, separate,
and validate geozones on an ongoing basis so that the
geological model is robust and stationarity is maintained as
far as possible.

Determining and validating geozone boundaries is done
using a combination of statistical techniques such as classical
comparative statistics, histograms, and quantile-quantile
scatter plots as well as geostatistical techniques such as
trend, channel width, and boundary analysis. Many of these
techniques were described by both Dohm (1995) and
Chamberlain (1997). Comparative semivariograms and
bivariate statistical scatter plots are also used to further refine
geozones.

In recent years, extensive work has been done on refining
the geozone model for the CLR, supported by new thinking in
geochemistry and spectral scanning in addition to the
traditional geostatistical techniques. Five geozones have been
identified in the CLR (Figure 2). All geozone boundaries for
estimation are treated as ‘soft’, with a skin of overlapping
data being selected as the result of boundary analysis work. 

The prohibitive cost involved in deep drilling means that
boreholes are normally drilled on a wide spacing, resulting in
very low data support. To ensure that as much of this data as
possible is available for the estimation process AGA uses
‘clusterizing’ and ‘acceptorizing’ processes to try to optimize
its availability. The surface boreholes usually consist of
multiple reef intersections that are drilled from a single
parent diamond borehole. These intersections can range from
less than one metre apart up to tens of metres for ‘long
deflections’ (Figure 3). 

Borehole cluster analysis, also known as ‘clusterization’,
aims to determine whether the gold values within the original
cluster are sufficiently different from the gold values in the
long deflection of the same borehole and as such can be
treated independently (O’Brien, 1996; Chamberlain, 1997).
The borehole intersection clusters from long deflections are
compared to those obtained from original closely spaced
intersection values, using the standard statistical analysis of
variance approach (O’Brien, 1996). If the analysis of variance
shows that the samples from clusters under consideration are
not significantly different, then all samples are combined in a
‘super cluster’ for further use.

The acceptability of all cored borehole reef intersections is
classified according to their mechanical acceptability
(completeness of cut, identification of missing chips) and
geological acceptability (complete reef, presence of faulting or
shearing). The classification of mechanical acceptability is a
subjective process and traditionally, if a sample was classified
as mechanically unacceptable, the entire intersection would
not have been used in estimation. This significantly reduced
the number of intersections that could be used and reduced
the size of the very limited data-set even further. The
‘acceptorizing’ process aims to statistically identify which of
the unacceptable intersections can be retained and which
need to be removed, so as to maximize the number of
borehole samples used in the resource estimation process. 

The statistical basis of the ‘acceptorizing’ process is
derived from Heyns (1958) and also as expanded and
discussed in Dohm (1995), O’Brien (1996), and Chamberlain
(1997). Generally there is a mixture of acceptable and non-
acceptable intersections within any particular cluster. The
logarithms of the ratios of the non-acceptable to acceptable
intersection pairs are calculated and 95% confidence limits
are set up around the mean of the logarithms.  The individual
intersections are then plotted against the mean for each
cluster (Figure 4). Non-acceptable outliers are then reviewed
and removed and the process repeated until the amount of
acceptable data that lies outside these confidence limits is at
most 5%. Acceptable intersections are not discarded without

Resource estimation for deep tabular orebodies the AngloGold Ashanti way

603VOLUME 116                    �



Resource estimation for deep tabular orebodies the AngloGold Ashanti way

evidence of significant mechanical loss or geological
unacceptability (O’Brien, 1996). 

The CLR borehole data-set consists of 58 clusters after
the clusterizing and acceptorizing processes have been
carried out.

The underground chip sampling and surface boreholes are on
very different densities, with the chip sampling spacing
typically around 5 m × 5 m and the surface boreholes spacing
on anything up to 1000 m × 1000 m. The process of
preparing the data for estimation of two different sampling
support sizes is a critical aspect of the MCK process. The
process taken is to first regularize the chip sampling data into
a predetermined block size. The method used to calculate this
optimum block size is referred to as the variance size of area
analysis (VSOA). The approach ensures that the block size
selected is such that the within-block variance is effectively
maximized and the between-block variance minimized using
the linear extrapolation of dispersion variance. Regularization
of chip sampling data on the CLR is performed into 420 m ×
420 m-sized blocks as determined by the VSOA (Figure 5).

Those 420 m × 420 m blocks that are not fully informed
by the chip sampling, whether due to having too few data
points or due to the chip sampling not having a good spatial
distribution within the block, are rejected. This data is not,
however, lost as it is then created in ‘pseudo’ boreholes
known as clusters. Clusters are created on a 30 m × 30 m
block size for the CLR (approximating a parent borehole and
its short deflections) by regularizing the samples within that
area. The cluster support data, which now approximates a
borehole, is then combined with the real borehole data.

In this way the total data-set is split into block support
data and cluster data (inclusive of the boreholes). 

Estimation in MCK is done in natural logarithmic space and
therefore the key components to allow the final back-
transform are Ln mean and Ln variance. The Ln mean and Ln
variance are compared on a scatter plot for the chosen block
support data in order to determine whether there is a
significant relationship between the two. Ln variance can be

estimated from the established relationship using the
estimated Ln mean value if a significant relationship is
demonstrated. The Ln variance is estimated independently,
however, if the relationship is poor. 

In some instances a linear relationship, although
significant, does not produce reliable results at the final
stages of reconciliation and thus it becomes necessary to
estimate Ln mean and Ln variance separately (Figure 6).
Both Ln mean and Ln variance are estimated for all geozones
of the CLR using MCK since the relationship between Ln
mean and Ln variance is poor. 

Two sets of variograms are required for estimation, one for
block support and one for cluster support. Both sets of
variograms are done on Ln mean (value) and Ln variance if
the relationship described above is poor. 

The block support (420 m × 420 m) data based on the
VSOA process therefore presumes that most or all of the
variance is constrained within the block and thus results in a
block support variogram model with zero nugget variance.
The block support variography is generally characterized by
longer ranges, in the order of 1000 m or more (Figure 7), due
to the large block sizes. 

�

604 VOLUME 116   



Cluster support variograms (inclusive of the boreholes)
are calculated and modelled to determine the nugget variance
(Figure 8), with the final cluster variogram used in MCK
being a combination of the nugget as modelled from the
cluster variogram and the sill and ranges from the block
variogram. 

MCK of the two support sizes is performed by modification of
the kriging matrix to allow different nugget effects; this
allows the weighting of the block data differently to the
clusters using the combined block and cluster variogram and
thus accounting for their support difference (Chamberlain,
1997). The estimation employed for MCK, while termed
cokriging, is not strictly cokriging as the data does not need
to be collocated nor does it require cross-variograms, with the
data for the two support sizes (blocks and clusters) not
existing at the same locations. The block size estimated is the
same as the block size determined by the VSOA process, in
this case 420 m × 420 m.

The number of samples used in MCK has a large
influence on the resulting estimate. If the number of samples
used is too small (i.e. from a restrictive search
neighbourhood), conditional bias could be introduced.
Conversely, too many samples could cause undesirable
smoothing levels and introduce significant amounts of
negative weights, which will also increase the processing
time. The amount of samples used in MCK is also controlled
by the search neighbourhood.  Search parameters used in the
MCK process are established through a process of
optimization similar to the quantitative kriging
neighbourhood analysis (QKNA) process described by Vann
et al. (2003). The discretization, numbers of samples, and
neighbourhood searches are determined by analysing the
kriging variance, regression slope, and percentage of negative
weights. This is an iterative process and usually needs to be
done for a number of iterations on spatially separated blocks. 

The 95% confidence limits are calculated using kriging
variance, i.e. Ln 95% lower limit = Ln mean – 1.96 * Ln
kriging variance. This methodology is used because the
distribution of variances within the 420 m × 420 m blocks is
assumed to approach normality. These values are then input
into the CLN model to calculate the limits (Chamberlain,
1997).

Traditional lognormal distributions have been found to be
sub-optimal. Sichel (1990) and Sichel et al. (1992) suggested
possible alternatives to lognormal distribution models. The
suggested four-parameter distributional models were tested
against more traditional models by Dohm (1995) and
successfully shown to be a more accurate estimation
technique than traditional techniques using lognormal theory
by Chamberlain (1997). 

The distribution needs to be defined and fitted once the
most appropriate model is determined. Either a four-
parameter compound lognormal (CLN) or logarithmic
generalized inverse Gaussian distribution (LNGIG) model is
used, depending on which distribution model best fits the
gold grades and a theoretical test on the shape parameters of
the log-transformed values. A theoretical test to differentiate
between the two was detailed by Dohm (1995) and can be
graphically represented. All the geozones of the CLR follow
the CLN distributional model (Figure 9). 

The process of distributional fitting is followed by using
classical statistics on the observed data and modelling the
distribution using both the histograms of Ln(value) as well
as the value (Figure 10). Generally, the fitted CLN model
maximum difference (from the observed frequency of the
data) needs to be less than the test value for the model fit to
be acceptable and so that the Kolmogorov-Smirnov test for
goodness of fit does not reject the null hypothesis that the
model describes the distribution of the data at the 1% level of
significance. The model parameters in the case of the CLN
calculated from fitting the distribution used in back-
transforming are location (mean), spread (variance),
skewness, and kurtosis.
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Estimation is done in natural logarithmic (Ln) space
because of the highly skewed gold distribution. The final gold
estimates are calculated by back-transforming the estimates
using the CLN model in the case of the CLR. The value is
estimated by MCK, as is the variance. The skewness and
kurtosis parameters are derived from the distribution model
of the a priori data as per the Bayesian assumptions.

The mean block value of the actual input sampling data at
block support is then compared with CLN estimated block
values in mined-out areas to determine if a regression effect
is present. There is generally a small regression effect still
present (Figure 11), thus the back-transformed estimates 
are regressed using the linear regression observed. Upper 
and lower limits of the linear regression are identified and 
the regression is applied to the range of estimates over which
the regression is valid. The regression-corrected block
estimates are used further in the long-range forecasts of
value for the CLR.
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Numerous methods of reconciliation performed by
Chamberlain (1997) validated and demonstrated the
effectiveness of MCK. As a final step in the validation
process, a similar exercise was followed for the CLR by
comparing block estimates over a ten-year period. 

The underground chip sample database from TauTona
and neighbouring mines in 2005 consisted of 353 072
points, and 425 917 points in 2015 (Figure 12), reflecting a
notable 72 845 increase in samples. The 420 m × 420 m
block estimates were compared for the two periods for a
selected number of blocks where there had been the largest
change in data (Figure 12). There was an initial need to
ensure that the estimates used the same geozones, as there
has been extensive work on the geological model over time.
Thus the 2005 data was re-estimated using the variography,
estimation parameters, and distributional models from 2015.
This again highlights the importance of accurate and
appropriate geological modelling. The 420 m × 420 m blocks
for the two periods are compared in Figure 13. There is a very
close correlation between the 2005 and 2015 block estimates
for the 18 blocks. 

As this reconciliation process provides common critical
parameter inputs into the two estimates for 2005 and 2015, it
would be a best-case result and could bias the 2005
estimates. Therefore a further reconciliation was done taking
the 2005 estimates as done in 2005 vs the 2015 estimates.
Figure 14 shows the comparison between the two sets of
results, together with the 95% confidence limits from 2005.
The MCK estimates from 2015 are well within the 95%
confidence limits for the 2005 estimation, indicating that the
estimation process used is acceptable and robust for un-
informed areas. 

MCK has a proven and reliable track record and the estimates
have been shown to reconcile well over a long timeframe and
distance from mining area. Adopting and using a Bayesian
approach together with MCK and an appropriate distribution
model has resulted in effective and appropriate long-range
value forecasts for the CLR. The process is still highly
dependent, however, on an accurate geological model as well
as a full understanding of the statistical and spatial
parameters of the known data. The MCK estimation method
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has undergone intense scrutiny by a number of external
auditors over the past couple of years and proved to be
appropriate for the CLR.

While some of the views expressed in this paper are those of
the authors, these opinions have been developed through the
wisdom shared by many experienced Mineral Resource
professionals over the years. In particular, we are indebted to
Christina Dohm, Vaughan Chamberlain, Mike O’Brien, Patrick
Rice, and Robert Lavery on their work leading to the
established practice of MCK and training therein.
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