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Adaptive simultaneous stochastic 
optimization of a gold mining complex: 
A case study

Z. Levinson1 and R. Dimitrakopoulos1

Synopsis
An innovative strategic mine planning approach was applied to a multi-mine and multi-process 
gold mining complex that simultaneously considers feasible capital investment alternatives and 
capacity management decisions. The simultaneous stochastic optimization framework determines 
the extraction sequence, stockpiling, processing stream, blending, waste management, and capital 
investment decisions in a single mathematical model. A production schedule branches and adapts 
to uncertainty based on the likelihood of purchasing a number of feasible investment alternatives 
that may improve mill throughput or blending, or increase the tailings capacity. Additionally, the 
mining rate is determined simultaneously by selecting the number of trucks and shovels required 
to maximize the value of the operation. The mining complex contains several sources – two 
open-pit gold mines and externally sourced ore – stockpiles, waste dumps, tailings, and three 
different processing streams. The simultaneous optimization framework integrates the blending of 
sulphates, carbonates, and organic carbon at the autoclave for refractory ore while managing acid 
consumption. The production schedule generated branches over an investment in the autoclave 
expansion; the first branch undertakes a capacity expansion at the autoclave resulting in a 6.4% 
increase in NPV, whereas the second branch results in a 27.5% increase in NPV without the 
investment. The adaptive approach is compared to a base case production schedule generated using 
a non-branching two-stage stochastic integer program.
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Introduction
Mining operations are capital-intensive ventures that require smart decisions to strategically time each 
investment and sustainably produce valuable products. The simultaneous stochastic optimization 
approach generates an optimal production schedule for a mining complex, using a single mathematical 
formulation (Del Castillo and Dimitrakopoulos, 2019; Montiel and Dimitrakopoulos, 2015, 2017, 
2018; Goodfellow and Dimitrakopoulos, 2016, 2017). The optimized production schedule defines 
the extraction sequence, stockpiling, processing stream, blending, waste management, and capital 
investment decisions that maximize the net present value (NPV). These decisions are obtained by 
considering the interactions throughout the entire mining complex, which may consist of open pit 
and underground mines, several processing facilities, crushers, stockpiles, and waste destinations 
(Pimentel, Mateus, and Almeida, 2010). The stochastic approach also manages technical risk during 
the optimization by integrating a set of stochastic geostatistical simulations of the in-situ material 
supply, which reproduces the uncertainty and local variability of the material sourced from the mines. 
Selecting the appropriate time to undertake a capital investment during the life of mine is challenging 
due to a combination of supply uncertainty, high upfront costs, and prolonged payback periods for each 
investment. Nevertheless, investments in shovels, trucks, crushers, process plant upgrades, and waste 
facilities are critical for maximizing the NPV of the long-term production schedule. 

The uncertain aspects of mine planning and forecasting, which arise from supply uncertainty, 
indicate there is large risk in undertaking capital investments (Ajaka, Lilford, and Topal 2018; Asad and 
Dimitrakopoulos, 2013; Del Castillo and Dimitrakopoulos, 2014; Dowd, 1994; Githiria and Musingwini, 
2019; Khan and Asad, 2019; Groeneveld and Topal, 2011; Dimitrakopoulos, 2018; Groeneveld, Topal, 
and Leenders, 2012; Mai et al. 2018; Ravenscroft, 1992). In particular, supply uncertainty makes it 
challenging to produce an optimized production schedule with an investment plan that will satisfy the 
various futures that may unfold. The optimal investment decision for one future outcome may be very 
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different from another scenario. This gives rise to an interest in 
developing strategic mine plans that can adapt to uncertainty by 
considering feasible investment alternatives that directly impact 
the production rate of certain components in the mining complex 
and manage technical risk. 

Del Castillo and Dimitrakopoulos (2019) present an adaptive 
simultaneous stochastic optimization approach that considers 
a number of feasible investment alternatives and determines 
the optimal time to branch the production schedule in order to 
manage the potential risk of supply uncertainty. A set of orebody 
simulations is generated for each mine to quantify supply 
uncertainty. Then, an adaptive approach considers the probability 
of undertaking an investment in different groups of scenarios. If 
the decision is counterbalancing, where a representative group of 
simulations takes on an investment and another representative 
group does not, the production schedule splits or branches 
into alternative mine plans based on these investments. Each 
of these branching alternatives is fully optimized based on the 
investment that is undertaken; however, decisions made prior to 
the investment cannot be changed once branching occurs. This 
prevents the optimization model from anticipating the investment 
decisions and changing the decisions that were made prior to 
choosing to invest, as the future investment choices remain 
uncertain until they are executed. 

The adaptive optimization approach integrates non-
anticipativity constraints into the optimization formulation. The 
non-anticipativity constraints ensure that the same decisions are 
taken unless there is an investment alternative that branches 
the mine production schedule. If branching occurs, the resulting 
mine plan of each branch should be distinguishably different 
based on the investment choice. Otherwise, the non-anticipativity 
constraints are enforced and the same decision is taken over 
all the simulated scenarios. The single production schedule 
generated with feasible investment alternatives provides an 
advanced method for determining the optimal time to invest 
and identifies the risk of investing in new equipment, plant 
improvements, and other infrastructure purchases (Dixit and 
Pindyck, 1994). Evaluating feasible alternatives and the resulting 
mine plan creates opportunities to delay, pre-plan, or undertake 
sizeable capital investments (De Neufville and Scholtes, 2011). 

Boland, Dumitrescu, and Froyland (2008) also incorporate 
non-anticipativity constraints in a multistage optimization 
framework; however, this approach differs from the adaptive 
approach described above by Del Castillo and Dimitrakopoulos 
(2019). In the approach described by Boland and 
Dimitrakopoulos (2009), the simulated orebody scenarios are 
differentiated based on the spatial distribution of metal grades, 
which results in overfitting the production schedule to generate 
one mine plan per simulated orebody scenario. This method 
does not lead to an optimal production schedule, given that a 
single scenario does not represent the uncertainty and local grade 
variability of the deposit, thus resulting in erroneous production 
and financial forecasts that misrepresent reality. In contrast, in 
the case study presented herein, the adaptive approach leverages 
the ability to branch over several capital investments instead of 
each block’s simulated grades, leading to a practical production 
schedule with feasible investment alternatives.

Similar multistage frameworks have been applied to 
strategically time the purchase of capital investments and expand 
the production capacity in other industries (Ahmed, King, and 
Parija, 2003; Gupta and Grossmann, 2017; Li et al., 2008; 

Singh, Philpott, and Wood, 2009). These frameworks remain 
impractical for mine planning and design purposes as multistage 
frameworks lead to a production schedule with one plan per 
scenario, which misrepresents the ability to change capacities and 
is the major limitation of multistage approaches. Furthermore, 
when considering the execution of the long-term production 
schedule, operations cannot proceed without fixed guidance for 
the current year of production. Groeneveld, Topal, and Leenders 
(2012) suggest fixing the initial years of the mine production 
schedule to address this limitation, ensuring that operations have 
the appropriate production guidance and lead time to consider 
different mining and plant options for the future. 

The adaptive simultaneous stochastic optimization approach 
manages technical risk and delivers a mine production schedule 
that can identify synergies between different components of the 
mining complex. For example, in a Nevada-type gold mining 
complex, the metal recovery from refractory ore is influenced 
by the sulphate and carbonate contents in the material that 
is delivered to an autoclave processing facility (Montiel and 
Dimitrakopoulos, 2018; Thomas and Pearson, 2016). Blending 
the material from several sources in the mining complex to 
maximize recovery may lead to a higher NPV over the operating 
life and capture value that is unidentifiable using traditional 
sequential optimization methods (Gershon, 1983; Hustrulid and 
Kutcha, 2006; Whittle, 1999). Additionally, waste management 
considerations such as the production of acid-generating waste 
and tailings can be integrated into the optimization to minimize 
detrimental environmental consequences and ensure permitting 
constraints are satisfied (Levinson and Dimitrakopoulos, 2019; 
Saliba and Dimitrakopoulos, 2018). These advances are achieved 
by maximizing the value of the products sold (Goodfellow and 
Dimitrakopoulos, 2017; Montiel and Dimitrakopoulos, 2015), 
instead of the traditional approach that considers the economic 
value of a block determined a priori and sequentially optimizes 
the extraction sequence, cut-off grade and transportation of 
materials downstream (Hustrulid and Kutcha, 2006). 

Furthermore, the proceeding case study strategically 
determines the optimal production rate during the mine 
production scheduling process using an adaptive simultaneous 
stochastic optimization. Several frameworks directly integrate 
investments into the optimization to achieve a certain level of 
production and increase the value of the operation (Goodfellow, 
2014; Groeneveld and Topal, 2011; Groeneveld, Topal, and 
Leenders, 2012). These integrative frameworks allows the 
optimizer to decide the most suitable time to invest in capital 
investment, overcoming limitations of defining the optimal 
mining and processing rates prior to optimizing the production 
schedule (Del Castillo and Dimitrakopoulos, 2014; Godoy and 
Dimitrakopoulos, 2004).

This work presents a major case study of a multi-mine 
and multi-process gold mining complex, where an adaptive 
simultaneous stochastic optimization approach strategically 
considers investment alternatives. The main contribution of 
this study is the ability to simultaneously consider investments 
in process plant upgrades and the tailings management area, 
while allowing the model to adapt to uncertainty based on the 
corresponding investment decisions. In the following sections, 
the adaptive simultaneous stochastic optimization approach 
is outlined, followed by a comprehensive case study at a gold 
mining complex containing two open-pit mines, twelve material 
types, twelve stockpiles, three external sources (including an 
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underground mine), and three processing stream alternatives. 
Subsequently, the conclusions and recommendations for future 
work are presented.

Method
This section summarizes the method used for the adaptive 
simultaneous stochastic optimization approach proposed by Del 
Castillo and Dimitrakopoulos (2019), which allows the production 
schedule to branch on a set of feasible investment alternatives. 
All sets, parameters, and decision variables are defined in the 
following subsections and can be reviewed in Appendix A.

Definitions and notation
A mining complex is designed to include a set of open pit and 
underground mines (M), stockpiles (S), processors (P), and waste 
facilities (W) (Goodfellow and Dimitrakopoulos, 2016, 2017; 
Montiel and Dimitrakopoulos, 2015, 2017, 2018). There can be 
many material types that are either extracted from the mine or 
generated through blending and processing. Each material has 
a set of attributes which can be transferred through the mining 
complex (i.e. mass, metal content, etc.). Attributes are further 
divided into two sub-categories; primary attributes that define 
the composition of the material passed between various locations 
in the mining complex, and hereditary attributes which are a 
derived through linear and nonlinear expressions. Hereditary 
attributes track important information in the model, including the 
costs incurred at different locations, revenues from the various 
processing streams, and metal grade. Two variables vp,i,t,s and 
vh,i,t,s, quantify the value of primary (p ∈ P) and hereditary (h ∈ 
H) attributes at each location i ∈ M ∪ S ∪ P ∪ W in period t ∈ 
T under scenario s ∈ S, respectively. Hereditary attributes allow 
both nonlinear and linear functions to be incorporated into the 
model and are a function of the primary attributes, fh (p,i,k) 
for each primary attribute p ∈ P at location i ∈ M ∪ S ∪ P ∪ W 
and considering each available capital investment k ∈ K. The 
primary source of material for the mining complex is obtained by 
extracting a set of mining blocks b ∈ Bm from mine m ∈ M. Every 
block b has a set of simulated primary attributes βp,b,s (Goovaerts, 
1997; Boucher and Dimitrakopoulos, 2009) which are inputs 
into the optimization model. The recovery of each attribute p 
at location i ∈ P in each scenario s is defined as rp,i,t,s and is 
calculated using a nonlinear recovery function (Del Castillo, 2018; 
Farmer, 2016; Goodfellow, 2014).

Decision variables
Considering a life-of-mine of T time periods, the adaptive 
simultaneous stochastic optimization approach aims to 
maximize the NPV of a mining complex and minimize deviations 
from the annual production targets. This is accomplished by 
simultaneously determining the optimal decisions for four 
decision variables: (i) the mining block extraction sequence, 
(ii) destination policy, (iii) processing stream, and (iv) capital 
investment decisions. The method uses a set of binary decision 
variables xb,t,s that denote whether a block b is extracted in 
period t, in simulation s. The destination policy is then defined 
by discretizing the range of metal grades into a set of bins 
to determine the cut-off grade policy during the optimization 
process (Menabde et al., 2007). Bins or groups g ∈ G are defined 
using k-means++ clustering algorithm for the primary block 
attributes βp,b,s ∀p' ⊆ P, b ∈ Bm, m ∈ M, s ∈ S of each material 
type (Goodfellow and Dimitrakopoulos, 2016). The destination 

policy decision variable zg,j,t,s ∈ {0,1} determines if the blocks 
in group g are sent to destination j ∈ O(g) in period t, where 
O(g) is the set of locations where the group of materials can be 
delivered in scenario s. After the material reaches the first set 
of destinations, based on the extraction sequence decisions, the 
downstream material flow is controlled by the processing stream 
decision variables yi,j,t,s ∈ [0,1]. The processing stream variable 
defines the portion of product that is sent from destination i ∈ S 
∪ P to destination j ∈ O(i) ⊆ S ∪ P in period t ∈ T and scenario s 
∈ S. Lastly, the capital investment decision variable ωk,s,t defines 
whether a capital investment k ∈ K is executed in period t ∈ T 
and scenario s ∈ S. This is explained more fully in the following 
section.

Branching the production schedule
Two different sets are used to describe the different types of 
investments: branching (K*) and non-branching (K =), where K* 
∪ K = = K. Branching alternatives are large capital investment 
decisions that are made only once during the life of the mining 
complex, for example, purchasing large crushers or constructing 
a new tailings facility. The non-branching investments may occur 
multiple times over the planning horizon, for instance truck and 
shovel purchases. The decision tree outlines the optimal timing 
of the branching investments and a new node n is created for 
each branching decision; this is defined as a stage. An optimized 
mine plan is produced for each branch that is created. The 
representative measure R ∈ (0,0.5) is a user-defined parameter, 
which is used to describe the confidence interval for branching. 
R defines the probability threshold required to invest over all 
scenarios, branch the production schedule, or not invest in each 
capital investment (Equation [1]).

	 [1]

The branching mechanism is described in the subsequent 
steps:

	 ➤	� Calculate the probability of investing in all alternatives k* ∈ 
K* in each time period t.

	 ➤	� If there are a representative number of scenarios that choose 
to purchase the investment alternative, within an allotted 
time window, the solution branches and a new stage is 
created. However, if the probability of investing is less 
than the threshold then the optimization will not branch, 
and the investment is not purchased. On the contrary, if 
the probability is greater than (1–R) there is no branching 
and the investment is made over all scenarios. This is 
mathematically described in Equation [1].

	 ➤	� Given there are Sn ⊆ S scenarios that belong to the root, 
these scenarios are partitioned into Sn1 and Sn2 when 
branching occurs. Therefore, when combined all the 
simulations from each branch are at the root (Sn1 ∪ Sn2 = Sn), 
and when the simulations are partitioned each simulation 
can only report to one of the two partitions (Sn1 ∩ Sn2 = ∅).

A time window, tω = {t - ω, t + ω}, is used to stabilize the 
solution as often there may be a representative number of 
scenarios between one or two consecutive periods, making it 
more desirable to invest in one of those two years rather than 
completely ignore the investment opportunity. ω is set as an 
integer value that allows the model to expand the time window 
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of the branching mechanism. The branching or new stage will 
begin during the floor of the expected time period of investment 
k* and is denoted as t*. Lastly, N defines the minimum number of 
scenarios in a branch required to allow for further branching in 
periods t + 1 ∈ T. 

Capital investments
Capital investments are critical decisions that require a lead time 
(τk ) to assemble or construct. For each investment alternative 
k ∈ K there is a life expectancy (λk) and a unitary increase in 
capacity (κk,h) that comes at a discounted purchase cost (pK

k,t) for 
each period t ∈ T. The periodicity (ψk) of the investment decisions 
is also incorporated into the optimization model to simplify the 
optimization process and ensure a practical plan. The number of 
investments undertaken is denoted by σk,t,s for each investment k 
∈ K in period t ∈ T and scenario s ∈ S.

Objective function and constraints

	 [2]

The objective function (Equation [2]) maximizes the expected 
profit obtained by summing the revenues generated from the 
metal produced and subtracting the various costs, for example, 
transportation, mining, processing, and refining costs (Part I). 
In addition, the objective aims to minimize the costs of investing 
in trucks and shovels (Part II), and one-time capital investments 
(Part III). Part IV minimizes the deviation from production 
targets, actively managing uncertainty. The adaptive optimization 
approach will purchase investments only when they lead to an 
increase in overall profitability and/or improve the capability to 
meet production targets in the mining complex.

Integrating the feasible investment alternatives into the 
optimization model changes the standard formulation of capacity 
constraints, from static upper (Uh,i,t) and lower (Lh,i,t) bounds in 
Equations [3] and [4], respectively, to dynamically changing 
capacities that are determined during the optimization. The 
capacities reflect changes in the corresponding investment 
decisions ωk,s,t. κk,h represents the unitary increase in production 
capacity: 

	 [3]

	 [4]

	 [5]

When investments are activated the capacity expansions 
and contractions can be explored, allowing for changes to 
the extraction rate, processing capacity, and storage of waste 
materials. 

In addition, non-anticipativity constraints (Equations. [7], 
[8], and [9]) ensure that all scenarios within the same branch 
undertake the same decisions. The problem is initialized with the 
solution from a two-stage stochastic integer program and then 
non-anticaptivity constraints are enforced for the first period. 
Subsequently, the mechanism for branching iteratively solves a 
series of sub-problems to determine the optimal period to invest. 
The non-anticipativity constraints are then dynamically enforced 
over an iteratively increasing time frame T α when a branching 
investment is undertaken. For example, once the first branching 
period is established non-anticipativity constraints become 
active for all periods up to t*, the period in which a branching 
investment is undertaken. This ensures that the optimization 
framework will not change earlier decisions in anticipation of 
the investments made in future periods. A binary variable un

k*,t 
equals unity when the design branches over option k* ∈ K* in 
node n in period t ∈ T and zero otherwise. Therefore, the variable 
A determines whether the non-anticipativity constraints are 
activated (0) or not (1) for a given partition of scenarios in a 
single branch: 

	 [6]

When there is no branching all decision variables must be 
the same for all scenarios. However, when branching occurs 
the scenarios partition Sn1={s:wk*,t*,s = 1, ∀s ∈ Sn}, Sn2 = Sn \ Sn1. 
Examples of the non-anticipativity constraints are given below:

	 [7]

	 [8]

	 [9]

The destination policy, extraction sequence, and capital 
investment decisions are the same for all scenarios within each 
branch of the decision tree. Lastly, in order to ensure stochastic 
solution stability there must be a minimum number of simulated 
scenarios in each partition.

Solution method
A multi-neighbourhood simulated annealing metaheuristic 
is used to solve the optimization model. Metaheuristics are 
required as the number of decision variables is in the order of 
hundreds of millions when considering a multi-mine, long-
term production schedule. The metaheuristic used in this work 
explores a neighbourhood or class of perturbations that are used 
to change decision variables and arrive at near-optimal solutions 
in a short period of time (Goodfellow and Dimitrakopoulos, 2016, 
2017; Montiel and Dimitrakopoulos, 2015, 2017). Del Castillo 
(2018) introduces perturbations that change capital investment 
decisions, including adding or removing multiple investments 
in a period and swapping two investments between periods. 
The simulated annealing algorithm then uses an acceptance 
probability to determine whether the new solution is accepted or 
rejected to further explore the solution space (Kirkpatrick, Gelatt, 
and Vecchi, 1983). The modified simulated annealing approach, 
used in the subsequent case study, updates the probability of 
choosing a neighbourhood depending on its ability to improve 
the objective function (Goodfellow and Dimitrakopoulos, 2016).
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Case study at a gold mining complex
The adaptive simultaneous stochastic optimization approach is 
applied to a gold mining complex that consists of two large 
open-pit mines with twelve different material types. These 
materials can be transported to a number of destinations: an 
autoclave processing facility, oxide mill, oxide leach, twelve 
stockpiles (one for each material type), waste facility, and a 
tailings management area. Each mine exploits a mixture of 
sulphide ores, which must be pretreated at the autoclave before 
processing, and oxide ores that can be sent to the oxide processor 
or oxide leach. The mining complex, including each of its 
component, and the allowable material routing, is presented in 
Figure 1. Sulphide materials, a refractory ore type, can be 
extracted from either of the open pit mines and sent to the 
autoclave, stockpile, or waste dump facility. Stockpiles are 
separated for each material type to provide accessibility to 
materials of certain chemical compositions, shown in Table I. 
Material that is sourced externally is used to supplement the ore 

feed that is produced at the two open pit mines and sent to the 
autoclave to help meet blending requirements. The optimizer 
seeks opportunities to increase value and more effectively blend 
materials to obtain a satisfactory product quality for effectively 
running the autoclave. Sulphide or refractory ores must be 
blended to achieve the permissible operating criterion for the 
autoclave, by controlling the grades of sulphide sulphur (SS), 
carbonate (CO3), organic carbon (OC), and the SS/CO3 ratio. 
Therefore, these deleterious attributes must be managed within 
the optimization framework to ensure blending requirements will 
be met. A constraint is added to the model to maintain the grades 
of SS and CO3 between 3.8–4.2% and 4.5–6.5%, respectively. 
Deviations from these targets are penalized in the objective 
function to manage the risk similar to all the other production 
targets. Acid is used to pretreat the ore by neutralizing CO3 and 
ensuring the appropriate SS/CO3 ratio (0.8–1.2) enters the 
autoclave circuit. This becomes critical as there is variability in 
the material received from the different sources and often there 
are not enough materials with the desired qualities readily 
available. There is a maximum amount of acid (38 400 t) that 
can be used on an annual basis, which introduces a constraint in 
the optimization process. The autoclave’s target production is 2.5 
Mt/a. Oxide materials can report to either the oxide mill, leach, or 
stockpile and there are no constraints on the blending 
requirements for the oxide ore material. The oxide mill has a 
production target of 1.4 Mt/a and the leach pad is not 
constrained. After processing, the volumes of mine tailings that 
are generated from the processing facilities are continuously 
examined to ensure there is a large enough containment area to 
continue processing, which then introduces a constraint on the 
available tailings capacity. Stockpiling facilities are used as 
intermediate locations to assist with blending and can be 
extracted from throughout the mine life. Lastly, any material that 
does not positively contribute to the NPV of the mining complex 
is sent to the corresponding waste dump facility. 

In this case study, there are three one-time feasible 
investment alternatives considered throughout the optimization 
process to test the adaptive optimization approach. First, the 
annual autoclave processing throughput may be expanded 
by investing in two additional positive-displacement piston-

Table I

Material classification for blending and material routing
Material Chemistry

Type CO3 SS OC Oxide
1 Med-low Low - -

2 Med-low High - -

3 Low Med - -

4 Low Low - -

5 Low Med-high - -

6 High - - -

7 Med-high Low - -

8 Low High - -

9 Very high - - -

10 High - Med-high -

11 - - High -

12 - - - High

Figure 1—The mining complex and allowable material routing
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diaphragm pumps (Eichhorn et al., 2014). Secondly, an 
investment in the process plant autoclave circuit is evaluated 
to increase the allowable acid consumption and manage 
blending. Thirdly, an investment alternative that considers 
the construction of a new tailings storage area to increase the 
life of mine by allowing the processors to continue operating. 
The pump installation increases throughput at the autoclave 
by 25%. which allows for more refractory ore to be processed. 
The capital cost of this expansion is minimal; however, the 
cost of implementation and loss of production during the pump 
installation is also considered in the capital investment decision, 
resulting in a $1 million investment. Acid is ordered annually 
to satisfy production requirements, but storage areas and 
adaptations to the autoclave pretreatment circuit are required 
to safely utilize the additional acid. The expected investment is 
$0.2 million. The most significant investment decision is related 
to the addition of a new tailings containment area, which is 
expected to cost $200 million to construct completely. The new 
tailings area results in a 33% increase in tailings storage capacity 
for the mining complex. Once any of the three investments are 
purchased, they can be continuously used for the remainder 
of the mine life. Additionally, these three capital investment 
decisions can potentially allow the production schedule to branch. 
In this case study, a representativity measure R = 0.3 is used 
based on the acceptable risk of investing in capital at this mining 
operation. Therefore, the production schedule branches when 
a representative number of scenarios, between 30% and 70%, 
invest in one of these three feasible alternatives. The scenarios 

are then split, and further branching considerations are assessed 
in future periods. Further details on the parameters considered 
for each of the capital investments are described in Table II.

The mine initially begins with 30 haul trucks and six shovels 
that have two years remaining productive life before salvaging. 
The model dynamically considers the purchase of trucks and 
shovels throughout the thirteen-year production schedule. Truck 
and shovel purchases define the annual mine production rate. 
The cost per truck and shovel is $1.6 million and $20 million, 
respectively, which is accounted for in the annual cash flows, 
allowing for the optimizer to decide on the appropriate time to 
invest in trucks and shovels throughout the mine life. The mining 
operation has an ageing fleet and is planning to replace the 
originally purchased haul trucks with a new fleet. The ability to 
consider the purchase of new equipment during the optimization 
provides an opportunity to re-establish the optimal mining rate 
to satisfy the processor requirements and maximize the value 
of the operation. The trucks and shovels have a corresponding 
lead time of two years to provide a suitable amount of time for 
purchasing equipment from the manufacturer, shipping, and 
on-site assembly. In addition, they have an expected equipment 
life of seven years and a purchase can be made every three years, 
stabilizing the production rate. 

Base case mine production schedule
A base case mine production schedule is defined here using a 
simultaneous stochastic optimization approach that considers 
capital investment decisions within the optimization framework 

Figure 2—The mining rate and shovel/truck purchase plan for the base case production schedule with no branching

   Table II

  Parameters and cost of capital investments
   Parameters	                       Non-branching		                       Branching expansions 
	 Shovel	 Truck	 Tailings	 Autoclave	 Acid

   Lead time (years)	 2	 2	 3	 2	 3

   Capital cost ($ million)	 10	 1.6	 200	 1	 0.2

   Life of equipment (years)	 7	 7	 13	 13	 13

   Periodicity of decision (years)	 3	 3	 13	 13	 13

   Increase in capacity	 Feed for 5 trucks/unit	 1.4 Mt/unit	 5.75 million m3 	 925 kt	 9.6 kt
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while managing uncertainty. Branching, however, is not 
considered. The base case mine production schedule can choose 
to invest in trucks, shovels, and the available expansions, 
but it cannot branch and adapt to uncertainty by considering 
alternatives; it must choose either to invest or not to invest. 
This is different from the adaptive simultaneous stochastic 
optimization that can be used to evaluate different alternatives 
and their corresponding value, as there is a fixed production 
schedule that must be executed in one way, which does not 
consider the value of having alternative options to manage 
uncertainty to a greater extent. The results from the base case 
mine production schedule are compared with the adaptive 
branching approach that considers feasible capital investment 
alternatives. Each method uses a set of multivariate stochastic 
simulations of  the orebody for each open pit as input to the 
optimization model (Boucher and Dimitrakopoulos, 2009; Rossi 
and Deutsch, 2014). The external sources are simulated based 
on historical data associated with variability in the supply and 
quality of material received from other mines in the region. The 
variability and uncertainty of the material sources are accounted 
for directly in the optimization framework, unlike conventional 
frameworks that use a single estimated orebody model as input 
(Hustrulid and Kutcha, 2006). Lastly, the open pit mines have 
a block size of 30 m × 30 m × 20 m, representing the selective 
mining unit and contain 296 000 and 172 000 blocks in Mine 1 
and Mine 2, respectively.  

The results from the base case production schedule, including 
the extraction sequence, capital investments, stockpiling, 

blending, mining rate, and processing decisions, follow. Figure 2 
defines the base case mining rate alongside the truck and shovel 
investment decisions. Noticeably, the amount of equipment 
that is required decreases as the mine life proceeds and as the 
older equipment approaches the end of its operational life, an 
opportunity arises to operate the two mines at a lower mining 
rate. Although a lower mining rate is utilized, the ability to 
satisfy the autoclave processor (Figure 3a) and oxide mill is 
fulfilled and a resulting NPV of $3.65 billion is achieved in the 
50th percentile (P-50). The base case mine production schedule 
invests in both the expansion of the tailings management 
area and the additional acid storage facility. The investment in 
additional pumps does not contribute an increase to the mining 
complex’s NPV when accounting for all scenarios, consequently 
the pumps are not purchased. The blending constraints are 
satisfied, between the upper (UB) and lower bounds (LB), 
in most years through the utilization of stockpiles and other 
available material (Figure 3b, 3c). However, during the first year, 
the blending constraints are unachievable as the material that 
can be extracted during that year does not have the appropriate 
properties to meet the blending requirements. As the production 
schedule proceeds, stockpiles are established to help with 
blending in future years. The operational costs of stockpiling 
these materials are integrated into the optimization to ensure 
that the stockpiling decisions contribute to the profitability of the 
mining complex and help manage the technical risk.

Lastly, the base case production schedule invests in a tailings 
storage expansion in year 7. This investment increases the 

Figure 3—Base case autoclave throughput and blending: (a) no expansion taken in the optimization for additional throughput, (b) blending of SS, (c) blending of 
CO3, (d) maintaining the SS/CO3 ratio for ideal operating conditions
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storage capacity and becomes available in year 10 (Figure 4). 
The increased tailings storage prolongs the mine life by three 
years and allows for 1 to 2 more years of gold production if 
the duration of this schedule is increased. This results in an 
additional $0.7 billion in discounted cash flows generated. It is 
important to optimize waste management considerations, such 
as tailings disposal, directly in the mine production scheduling 
process in order to generate feasible life-of-mine designs. 
Additionally, the processor upgrade that allows for additional 
acid consumption was purchased in year 3, allowing for a 20% 
increase in acid consumption in subsequent years Figure 5). This 
controls the blending requirements at the autoclave processing 
stream.

Adapting to supply uncertainty in a gold mining complex
The previously discussed results will be compared with the 
adaptive stochastic optimization that considers branching on 
feasible capital alternatives. During the adaptive simultaneous 
stochastic optimization, groups of scenarios are optimized to 
determine if there is a beneficial time to invest in any of the one-
time capital investments alternatives described previously. The 
scenarios that lead to a branching decision are separated based 
on those that invest and those that choose not to invest in the 
time window. The scenarios that choose not to invest maintain 
the ability to invest in the capital investment in future years, 
while the scenarios that invest lock in that decision for that 
year, activating the non-anticipativity constraints. The scenarios 
are grouped into separate branches and optimized to produce 
a feasible alternative for both investing and not investing in 
the solution. A representative number (over 30%) of scenarios 
must undertake the same decision for the solution to consider 

branching or investing in these alternatives, which reduces the 
number of branches and prevents overfitting the decision tree to 
each scenario. It is important to note that the scenarios in each 
branch all undertake the same decisions until a new branching 
decision is made.

Based on the available capital investments, it was first 
determined that the additional acid capacity was a suitable 
investment for more than 70% of the scenarios leading to 
a non-branching investment decision. The first investment 
helped improve the ability to meet the quality requirements 
of the autoclave. After considering all the simulated scenarios 
(geostatistical simulations of each open pit mine and an uncertain 
external source) and the branching mechanisms criterion, the 
first branching decision is undertaken, allowing for the expansion 
of the autoclave throughput by installing two additional positive-
displacement pumps. This separates the number of scenarios 
into a group of 115 scenarios in branch 1 (B1) that invest and 
205 scenarios in branch 2 (B2) that do not invest. After the 
branching occurs, the optimizer also decides to invest in the 
additional tailings capacity in more than 70% of the scenarios, 
for both branches, preventing further growth of the scenario 
tree. The resulting feasible alternatives both produce a higher 
NPV than the base case production schedule, achieving a value 
of $3.89 billion in B1 and $4.66 billion in B2 (Figure 6). This 
accounts for a 6.4% and 27.5% increase in NPV when comparing 
the P-50 of each alternative to the base case production schedule. 
Each of the branches or feasible alternatives performs better 
than the base case production schedule; however, this may not 
always be the case as there could be a group of scenarios that 
underperforms the base case production schedule. The method 
prevents overfitting by ensuring that the number of scenarios 

Figure 4—Tailings production over the long-term production schedule and the available capacity expanded in year 10

Figure 5—Annual acid consumption with additional capacity obtained in year 6
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does not become too few within each branch and that there is 
a significant difference in the number of scenarios that either 
invest or maintain the same operating conditions, hence the 
representativity parameter which ensures between 30% and 
70% of the scenarios will be split and not a small group of 
outliers. This substantially reduces the number of branches and 
ensures feasible, stable solutions. The changes in the investment 
decisions result in very different responses in the production 
scheduling process, as shown in Figure 7, when comparing 
the N-S cross-sections. The solution is exactly the same until 
branching occurs, and then the schedules change dramatically 
to take advantage of the new capital investments. There are a 
number of similarities between the base case and B2 in terms of 
the depth and extent of the mine. However, in B1 there is a large 
area in the north of the mine where extraction no longer occurs, 
compared to the other two mine plans. This implies that there is 

some high material variability and uncertainty in this section of 
the mine, which leads to large changes in the resulting mine plan.

B1 invests in the autoclave expansion (Figure 8), which can 
be fully utilized in year 6, and has the lowest mining rate over 
the long-term production schedule. A comparison of the mining 
rates is given in Figure 9, where the resulting production rates 
directly correlate to the number of trucks and shovels purchased. 
The autoclave expansion results in lower grade refractory 
ore material being processed and a higher throughput at the 
autoclave. Over the long-term production schedule, there is a 9% 
reduction in the number of gold ounces produced over the life of 
mine compared with the P-50 of the base case scenario. However, 
the reduction in mining costs due to the lower mining rate 
overcompensates the loss in revenue and results in a higher NPV. 
The lower mining rate is feasible as the throughput outweighs 
the grade of material through the autoclave, changing the 

Figure 6—Comparison of the NPVs from the adaptive branching and base case production schedule

Figure 7—N-S cross-section of production schedule Mine 1: (a) base case (top left), (b) branch 1 (top right), and (c) branch 2 (bottom left)

Figure 8—Autoclave throughput and targets (a) B1 and (b) B2 with investments
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selectivity between ore and waste material. Lower utilization of 
the oxide processing facilities also decreases the operating costs. 
In B1, the optimizer has a challenging time meeting the blending 
constraints and is unable to provide the appropriate material to 
attain the blending targets, making the acid investment a critical 
decision for ensuring there is a suitable SS/CO3 ratio.

B2 performs quite differently and instead increases the size 
of the truck and shovel fleet, which results in a higher extraction 
rate and ensures that higher-grade refractory ore is sent to the 
processor. The oxide processing streams are utilized far more in 
B2 than in B1 and their target production is maintained during 
most years. A higher stripping ratio is required to move the 
additional waste between years 5 and 9 (Figure 10), which is 
the reason for the additional truck and shovel requirements. 
Increasing the selectivity between ore and waste results in a 

substantially higher NPV, which B1 was unable to achieve even 
with the autoclave capacity expansion. The larger contribution 
in NPV is primarily due to the accessibility of oxide materials 
in the different groups of simulations and the uncertainty and 
variability in the gold, SS, CO3, and OC grades. Here the adaptive 
approach is able to take advantage of understanding the inherent 
variability of the mineral deposits and indicates that there is 
an important investigation to be conducted. This includes more 
information with regards to the mineralization of oxide materials 
and stricter guidelines in terms of the quality of material 
received from external sources before deciding on the autoclave 
expansion. B2 produces 10% more gold by fully utilizing all the 
processing stream capacities and better satisfying the blending 
constraints. The increased utilization of the oxide leach and mill 
contribute significantly more gold ounces.

Figure 9—A comparison of the mining rates required to satisfy each production schedule

Figure 10—Total waste production over the long-term production schedule

Figure 11—Total tailings production with investment decisions
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The feasible alternatives B1 and B2 invest in the additional 
tailings containment area in year 7 and receive the capacity in 
year 10, similar to the base case. Had the tailings expansion not 
been considered during the optimization process, processing 
would have been required to stop in year 10 and a loss of $1 
billion and $1.3 billion in additional cash flow would be incurred 
in B1 and B2, respectively. This would be a larger loss than 
the resulting $0.7 billion in the base case production schedule. 
The potential loss highlights the importance of simultaneously 
optimizing the entire mining complex to further understand the 
intrinsic value of each investment decision. 

Conclusions
The simultaneous stochastic optimization of a gold mining 
complex was studied using an adaptive method that integrates 
feasible capital investment alternatives. The framework 
capitalizes on synergies and adapts to uncertainty, resulting in 
a 6.4% and 27.5% increase in NPV in branch 1 (B1) and branch 
2 (B2) respectively, while satisfying a wide array of production 
targets and managing supply uncertainty. Investments in trucks 
and shovels define a new mining rate that minimizes capital 
expenditure and satisfies each processor’s capacity. Additionally, 
an investment in a tailings facility expansion and additional acid 
consumption increase the life of the mining complex and manage 
variable material quality at the autoclave processor. Integrating 
tailings management into the optimization process increases the 
NPV by $0.7 billion in the base case production schedule and 
leads to an additional $1 billion in B1 and $1.3 billion in B2. 
This emphasizes the importance of considering waste and tailings 
management in the optimization process in order to capitalize 
on the available synergies. The optimizer chooses to branch the 
production schedule when the autoclave expansion is considered 
and identifies uncertainty and local variability associated with 
the supply of oxide and refractory ores sent to each processor. 
This leads to different mine plans and operating requirements 
for the processing streams and mining equipment, depending on 
whether the investment alternative is purchased. The feasible 
investment alternatives provide a high level of insight into the 
appropriate attributes to investigate, including highly variable 
areas of the deposit and large differences in the quantity of oxide 
materials mined. The optimized production schedule does not 
branch for the first three years and provides the appropriate lead 
time to evaluate each alternative decision and gather the required 
information to construct an informed final production schedule.

If either of the feasible alternatives are executed, the 
expected NPV increases substantially. The base case and 
adaptive approaches capitalize on the synergies that exist 
between the different components of the mining complex, 
helping to manage the challenging blending constraints and 
determine the appropriate size of the mining fleet directly in the 
optimization. The results from this case study emphasise the 
importance of modelling the entire mining complex in a single 
optimization process. In addition, the branching mechanism 
and adaptive ability of the optimizer provides a method to easily 
evaluate several feasible alternatives and further understand the 
variability and uncertainty associated with the mining complex. 
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Appendix A 
Adaptive simultaneous stochastic optimization sets, parameters, 
and decision variables

Sets and Parameters

M	 Set of open-pit and underground mines
P	 Set of processors
W	 Set of waste facilities
S	 Set of stockpiles
G	� Set of groups or bins for different cut-off  

grades g ∈ G
T	 Set of scheduled time periods t ∈ T

S	� Set of simulated orebody scenarios s ∈ S where 
there are Sn ⊆ S scenarios that belong to the root, 
these scenarios are partitioned into Sn1 and Sn2 when 
branching occurs therefore Sn1 ∪ Sn2 = Sn and  
Sn1 ∩ Sn2 = ∅

P	 Set of primary attributes p ∈ P
H	 Set of hereditary attributes h ∈ H
K	� Set of available capital investments k ∈ K. There are 

two different subsets used to describe the different 
types of investments branching (K*) and non-
branching (K= ), where K* ∪ K= = K

O(g)	� Set of locations where the groups of materials g can 
be delivered

Bm	� Set of mining blocks b ∈ Bm from mine m ∈ M
bp,b,s	� Parameter that defines the set of simulated primary 

attribute p for block b in scenario s
rp,i,t,s	� Parameter that describes the recovery of each 

attribute p at location i ∈ P in each scenario s
R	� Representativity measure that describes the 

confidence interval for branching R ∈ (0 ,0.5)
tω	� Time window used to stabilize solutions where ω 

represents the number of periods to search
N	� Defines the minimum number of scenarios in a branch 

required for further branching periods  
(t+1) ∈ T

τk	� Lead time to assemble or construct a capital 
investment k ∈ K

λk	� Life expectancy of each capital investment k ∈ K
κk,h	� Unitary increase in capacity that each investment k ∈ 

K leads to for each attribute h ∈ H 
pK

k,t	� Discounted purchase cost for each investment k ∈ K 
for each period t ∈ T

ψk	� The periodicity of the investment k ∈ K
Lh,i,t, Uh,i,t	� The static upper and lower bounds for each hereditary 

attribute h ∈ H, location i ∈ M ∪ S ∪ P ∪ W, and 
period t ∈ T

Decision Variables
vp,i,t,s,vh,i,t,s	� Quantify the value of primary (p) and hereditary 

(h) attributes at each location  i ∈ M ∪ S ∪ P ∪ W in 
period t under scenario s, respectively

xb,t,s	 �A set of binary extraction sequence decision variables 
that denotes if a block b is extracted in period t in 
scenario s as 1, otherwise 0

zg,j,t,s	� A destination policy decision variable that takes a 
value of 1 if blocks in group g are sent to destination j 
∈ O(g), in period t ∈ T 

yi,j,t,s	� A continuous processing stream decision variable that 
defines the portion of product that is sent from one 
destination i ∈ S ∪ P to destination j ∈ O(i)⊆ S ∪ P in 
period t ∈ T and scenario s ∈ S, yi,j,t,s ∈ [0,1]

ωk,s,t	� A capital investment decision variable that defines if 
a capital investment k ∈ K is executed in period t ∈ T 
and scenario s ∈ S

σk,t,s	 �The number of investments undertaken for each 
investment k ∈ K in period t ∈ T and scenario s ∈ S

un
k*,t	� A binary variable equals unity when the design 

branches over option k* ∈ K* in node n in period t ∈ T, 
otherwise 0

A	� A binary variable that activates the non-anticaptivity 
constraints taking on the value 0, 1.




