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Compositing and regularization of drillhole 
data for geostatistical resource estimation
by L.W. Palmer1

Abstract
Compositing or regularization of drillhole data is common practice in mineral resource estimation 
and is deemed a necessary step in producing unbiased estimates of mineral resources and reserves. 
Commonly, data are collected over irregular distances due to the varying relative thicknesses 
of lithologies drilled or sampling/assaying strategies. This necessitates data transformation to 
regular lengths of equal size to ensure that all data have the same sample support. However, there 
have been few detailed publications on the effect of this process on the composited data that are 
subsequently taken forward for the estimation process. In this paper, three currently available 
compositing methods are reviewed and the effects of inappropriate compositing methodologies 
presented. It is shown through a case study that compositing samples to different lengths leads to 
changes in the average and variance of the grades in the drillcores in the dataset, which will impact 
the final estimated value. These differences are exacerbated by breaks or gaps in data where, for 
a variety of reasons, there has been no data collection or data have been lost. The importance of 
appropriately treating blank and zero data is also presented. Globally, these differences might be 
minimal, but locally may be substantial, affecting the efficiency of the estimation and subsequent 
use of the results in, for example, mine planning and reconciliation. Further detailed investigation 
of compositing practices is required if the full implications of compositing are to be understood 
and any induced bias effectively defined.
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Introduction
Data gathered from drilling are extensively used within the mining industry for the purpose of resource 
estimation and, ultimately, resource delineation. As part of the standard data-processing procedure for 
resource estimation (or grade-control purposes), it is common practice to composite or regularize multiple 
samples together and take the results forward for further analysis (Rossi and Deutsch, 2013). The purpose 
of compositing is to ensure that all samples have the same weighting, so further analyses are not affected by 
bias. Compositing is a linear-weighted averaging approach, where the sum of the product of the lengths and 
the measured variables is divided by the total length of all samples considered in calculating a composite 
value. 

Regularization is performed whether solid core, for example, from diamond coring (DC), or chips from 
rotary air blast (RAB) or reverse circulation (RC) are recovered. Drillholes are commonly non-vertical, to 
ensure that the best possible intercept with lithologies and/or mineralization is achieved (Biel et al., 2010; 
Lomberg, 2014; Moorhead et al., 2001). The compositing method may be adjusted to take this into account. 

Sampling of core or chips for assay is a complex process. The number and nature of samples taken 
depends on several factors, including the nature of the geology, the drilling method, the location of the 
deposit, the cost of obtaining reliable assay results, and the degree of compliance of the project with 
international reporting codes, such as the SAMREC (2016), JORC (2012), and CIM (2010) codes. If the 
geology is highly complex, then more samples need to be taken spatially to elucidate the geological picture. 
If the drilling method is more basic (chip recovery) or poorly executed, sample collection will be less 
efficient. If the project is located in a challenging or remote environment, the cost of sending samples for 
assaying increases, which makes it likely that fewer samples will be analysed. If the project is to be compliant 
with JORC or other reporting codes, then more, and higher quality, samples are likely to be taken. 

To illustrate some of the potential issues that poor treatment of drillhole data can cause, a hypothetical 
example is presented (Figure 1). Here, drilling was conducted across a zone of interest, the results of which 
will subsequently be used to best delineate a mineralized zone in a gold deposit. Each sample was analysed 
for gold and arsenic. These two variables, Au (g/t) and As (%), form the basis of the resource estimation. 



Compositing and regularization of drillhole data for geostatistical resource estimation

332 JUNE 2024 	 VOLUME 124	 The Journal of the Southern African Institute of Mining and Metallurgy

Arsenic has no economic value, but could affect downstream 
processing efficiency and, ultimately, the value of the project. Higher 
density sampling was conducted across the area of highest gold 
mineralization.

The arithmetic average of the gold assay values data is 1.05 g/t, 
compared with the length-weighted composite value of 0.80 g/t. This 
shows that the original arithmetic average considerably over-valued 
the Au grade for this drillhole. In the biased arithmetic average, 
all samples are equally weighted, irrespective of the length that the 
sample assay represents; in calculating the average, the 0.5 m sample 
at 2 g/t receives the same weighting as the 3 m sample at 0.6 g/t. The 
arithmetic average ignores representivity of the sample, resulting in 
this grade difference. A composite sample is a more representative 
value of the grade, and is obtained by weighting every sample assay 
according to the length it represents. Considering the As data, we 
see that the arithmetic average under-estimates the actual As levels 
by selectively over-sampling specific targets where lower values of 
As are found: the arithmetic average of the As sample data is 1.36% 
and the length-weighted average is 1.60%.

It is known that the variance of a grade variable decreases 
as the sample support increases, which is a derivation of Krige’s 
relationship (Krige, 1951). This is known as the volume-variance 
relationship, or dispersion variance, and is used in the operation 
of estimators that make use of the change of support rule, the most 
common being uniform conditioning (Abzalov, 2014; Chiles and 
Delfiner, 2012) and its derivatives (Emery, 2008). The volume-
variance relationship has also been used as a tool for mine planning 
(Parker, 1979) and to analyse the variance associated with blending 
of different size stockpiles (Marques and Costa, 2014).

Previous studies have empirically shown (Figure 2) that as 
the sample support (size and shape) increases, the variance of 
data decreases, which causes a corresponding decrease in the 
variogram sill-and-nugget effect (Clark, 1979). This is highly 
significant because the variogram is the key tool in the application 
of geostatistical estimation techniques, such as kriging: any change 

to the variogram used will have an impact on the results produced, 
whether considering estimating (Isaaks and Srivastava, 1989) or 
simulating (Palmer and Glass, 2014) using the data.

Current published best practice on compositing focuses on 
the methodology (Noble, 2011; Rossi and Deutsch, 2013; Sinclair 
and Blackwell, 2002), rather than on how a suitable length for 
compositing should be selected that does not bias the variance of 
the data or the variography. An additional important consideration 
is whether there are unsampled locations present within a database, 
which can occur for a variety of reasons. Gaps in data can be 
produced as part of data-cleaning exercises; for example, by removal 
of data deemed to be spurious during data validation (Rossi and 
Deutsch, 2013). More commonly, however, the database made 
available for resource estimation will already contain gaps that 
have to be accounted for and accordingly treated by the resource 
estimation team.

Gaps in databases can take two forms: blanks (no value or 
assay recorded, and treated as a missing value) or true zeros (value 
or assay recorded, but assigned zero because it is a true zero assay 
value). Different types of gaps need to be treated in different ways 
during resource estimation; however, the nature of gaps in sample 
records is not always apparent. Blanks can be caused by losses in 
sample during drilling, resulting in no sample being collected or 
not enough sample being collected for analysis to be conducted. 
Samples can be lost during analysis or during the digitization of 
old data, resulting in blanks. Zero values are normally the result 
of analysis being completed; however, values reporting below the 
analytical detection limit are also often designated as zero. 

In this study, a review is conducted of the contemporary practice 
of regularization, followed by a short investigation, using real data, 
into the effect that regularization can have on data variability. The 
effects on key statistical parameters, such as the average, variance, 
and variogram, of the composite data are described. The results are 
discussed with relevance to published recommended practice in the 
estimation of mineral resources and reserves. 

Overview of Published Practices
Best practice details three main procedures for producing 
composites of drillhole data: downhole, by bench, or by domain 
boundaries (Rossi and Deutsch, 2013; Sinclair and Blackwell, 2002).

Downhole compositing involves splitting the data into regular 
lengths based on the true length of the sample, regardless of 
orientation (Figure 3, Case A). This is the most commonly used 

Figure 1—Sampling results (sample length and assay values) for two variables 
of interest, Au and As, in a hypothetical drillhole

Figure 2—Experimental semi-variograms constructed from core regularized 
to three lengths for a lead/zinc sample (adapted from Clark, 1979)
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method of regularization and is appropriate in most scenarios, 
especially when drillholes have been orientated in multiple 
directions and/or the future bench height is unknown.

Composites are generally calculated using the bench method 
in open-pit scenarios when the drilling is nearly vertical (Rossi and 
Deutsch, 2013). Here, the tops and bottoms of benches are defined 
and the assay values are averaged into these lengths on a length-
weighted basis, regardless of the true length and orientation of the 
drillhole (Figure 3, Case B). In-pit drilling in more mature mining 
projects is often vertical, as, by this time, the nature of the geology 
is fairly well understood and oriented core is an unnecessary 
complication. Vertical drilling can be used in other circumstances 
where it is particularly relevant to understand grade by depth in less 
well-understood deposits. 

Regularising to the same height as the blocks can be 
unsatisfactory in cases where the height of the blocks is unknown 
or the resource estimator wishes for the block size to be optimized 
during the kriging parameter optimization process, through 
methodologies such as Qualitative Kriging Neighbourhood Analysis 
QKNA (Vann et al., 2003). Compositing to domain boundaries 
can be performed using either the downhole or bench method, 
and can be performed earlier in the estimation process, so each 
geospatial domain taken forward will have its own set of composited 
samples (Figure 3, Case C). This has the advantage that it becomes 
apparent early in the data-validation process whether a sample is 
inside or outside a domain; if the assignment seems inappropriate, 
it can be adjusted. Difficulties can be encountered if very narrow or 
small domains are used with a relatively long compositing length, 
resulting in few samples remaining in the domain for estimation 
(Dominy et al., 2013). 

The length to which samples should be regularized is not so 
obvious from a review of the literature. It is common practice 
(although not necessarily best practice) to composite samples to the 
same height as the blocks for which the estimate will be produced, 
when this height is known (Rossi and Deutsch, 2013). Theory states 
that this should be the case, but, in practice, this will have little 
impact, as the following example illustrates. 

A core of 15 cm diameter and 9 m in length was regularized to 
produce estimates of a 25 m × 25 m × 15 m regular block, assuming 
a density of 2.75 t/m3. The volume of this block is 9375 m3 and the 
mass is 25 781.25 t. The practitioner has a choice of regularising 

to 15 m (the same as the block height) or to 3 m (which is more 
representative of the initial sample spacing). If the former is used, 
the resulting volume of the regularized sample is 0.265 m3 (pr2h = 
3.14 × (0.075 m)2 × 15 m); in the latter case, three samples of  
0.053 m3 are generated (pr2h = 3.14 × (0.075 m)2 × 3 m), giving a 
total volume 0.159 m3. The masses of the two sets are 0.729 t and 
0.437 t, respectively. The block volume/core volume ratios are  
2.83 × 10−5 or 5.65 × 10−5 for the 15 m and 3 m composite lengths, 
respectively. It can be seen that regularising the samples to 15 m 
does not greatly improved the disparity between the sample and 
block volumes, but may result in significant smoothing of data and 
therefore affect the parameters of the variogram: the nugget effect 
will be lower and the ranges longer, leading to smoothed estimates. 

In recent mining and exploration, drill-core sampling is 
regularly performed down the hole, resulting in little fluctuation in 
the sample support when different compositing lengths are applied. 
This is often not the case in many older and historic datasets, where 
sampling was conducted in a more haphazard fashion, with many 
changes in drilling type and sampling methods present across an 
area of interest. In some cases, such as sampling chips from RC or 
RAB drilling, a single sample might represent an entire drillhole, 
which is a challenge for the production of resource estimates. 

At the bottom of the drillhole (and in gaps in the data), a 
decision has to be taken whether the last part of sample remaining 
after compositing has been performed should be kept or discarded 
(see Figure 4). As with other parts of compositing, little has been 
concluded concerning the best method to employ (Coombes, 
2008). A general rule-of-thumb is to use half the composite length 
as a cut-off, so if samples are regularized to 3 m, a sample of 1.5 m 
will be kept and anything else discarded. This can cause problems 
when drilling stops due to lost core associated with weak ground 
conditions and corresponding low recovery of core. Weak ground 
conditions can often be encountered alongside mineralization in 
deposits such as Mississippi Valley-type lead-zinc and epithermal 
gold deposits (Robb, 2005; Stevens, 2012), resulting in some sources 
keeping the sample, even if a low percentage of the composite length 
remains due to the correlation between gaps in the drillcore and 
grade (Annels and Dominy, 2003).

Figure 3—Three common practice methods of compositing. The bars on the 
right of the drillholes represent the raw data that are the same for all three 
drillholes. Drillhole A has been regularized by bench, Drillhole B has been 
regularized by length, and Drillhole C has been regularized by lengths and 
within domains defined by changes in lithology

Figure 4—Effect of changing minimum kept length at the end of drillholes. 
The changes to three drillholes are investigated using three different scenarios, 
each with a different length of cut-off
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Case study
The effects of compositing to different sample supports was 
investigated in this case study using data for samples collected 
using DC drilling from a kaolinized granite in Cornwall, Southwest 
England. Bristow (1993) and Palmer and Glass (2015) provide 
overviews of the history and genesis of the deposit. Drilling 
was performed as part of the standard orebody delineation and 
resource-estimation procedures across the kaolinized mass of the St 
Austell granite.

DC drilling was employed. The samples were analysed using 
X-ray fluorescence spectroscopy for elemental Fe, which occurs 
in minor to trace amounts. Data from eight drillholes were 
compiled to study the effects of compositing in detail. The most 
common sample length in the data was 3 m, and ranging between 
2 m and 5 m. There are gaps present in the data ranging in length 
from 1 m to 5 m. The drillholes ranged in depth from 18 m to 
40 m. Regularization was performed on each drillhole to a range 
of lengths, from 50 cm to 20 m. The average (arithmetic mean) 
and variance of the resulting data were calculated for individual 
composites in the drillcores and the dataset as a whole. 

The statistics for the Fe variable are presented in Table I, 
along with the original sample lengths present in the data. From a 
comparison between the arithmetic average of the raw data and the 
length-weighted average, it can be seen that the sampling generally 
overestimated the Fe%, relative to the unbiased average. This is 
unsurprising. Although Fe is not a target element, understanding its 
concentration in the granite mass is important for process-control 
purposes, and was thus a focus of sampling effort. For three (DC01, 
DC07, and DC08) of the eight individual drillholes, the arithmetic 
average produces a lower estimate of Fe% than the composite 
Fe%; in the remaining five cases (DC02, DC03, DC04, DC05, and 
DC06), this biased estimate is higher than the composite Fe%. From 
interpretation of Krige’s Law, it is understood that the variance of 
data would decrease as bigger composites are produced, whilst the 
average remains constant. However, it can be seen that this is not 
always the case (Figures 5 and 6), especially when drillcores are 
considered, as is the case here. Most drillholes clearly exhibited the 
expected downward trend in variance, but drillhole DC03 showed 
the reverse pattern, with the variance increasing as composite length 
increased. The most likely cause of this is the clear grade trend seen 
in this drillhole, where grade generally increased from 0.86% Fe 
to 5.39% Fe down the hole over six samples. When the sample was 
composited to increasingly longer lengths, increasingly different 

samples were brought into contact, thereby increasing the variance. 
The data here originate from the same geological unit (a kaolinized 
granite), but this effect could also have been caused by different 
geological units becoming into contact. This compositing process 
can thus be seen as a kind of moving-average estimation, with an 
increasing window size.

Within the general downward trend of the variance that 
most drillholes display, there are composite lengths that exhibit 
relatively low variance compared with the surrounding values. This 
relatively low variance appears to correlate with multiples of the 
most common composite lengths in the original data; in this case, 
3 m. Not all drillholes exhibit this, however, and the relatively large 
change in variance in DC03 (Figure 6) significantly differs from the 
overall pattern. 

The directional (down-hole) semi-variogram produced from 
the data regularized to different lengths (Figure 7) displays the 
predicted pattern. The shorter composite lengths have a lower 
nugget effect due to more samples with the same grade coming into 
conjunction as the pre-existing samples are divided. The longer 
composite lengths have a generally lower sill, although the picture 
is more complex due to the reduction in sample pairs (Figure 7). 
The general shape of the variogram is repeated in composite lengths 
below 4 m and follows a similar pattern above 4 m, but presents a 
more complex picture with the 5 m and 11 m lengths all having a 

  Table I
  Statistics of raw Fe(%) data used for compositing analysis 

  Drillcore	 Arithmetic (raw) 	 Length-weighted	 Raw	 Total length sampled	 Total drillcore	 Number	 Average sample 
  number	 average Fe %	 average Fe%	 variance	 (excluding blanks)	 length	 of assays	 length, m

  DC01	 2.30	 2.33	 1.89	 25.5	 30	 8	 3
  DC02	 1.06	 0.99	 0.28	 25	 30	 8	 2.5
  DC03	 2.20	 1.98	 3.99	 30	 30	 8	 3.4
  DC04	 1.56	 1.51	 0.36	 35.5	 40	 12	 3.1
  DC05	 1.69	 1.56	 1.25	 34	 40	 13	 2.6
  DC06	 0.94	 0.90	 0.12	 20	 23	 7	 2.6
  DC07	 1.09	 1.10	 0.07	 22	 30	 9	 2.5
  DC08	 1.78	 1.92	 0.88	 13	 18	 5	 3

Raw average and raw variance are the arithmetic mean and the sample variance, respectively, of the data prior to regularization, excluding blank 
values. The number of samples is the number of individual assay values in each drillhole, including blanks prior to regularization

Figure 5—Change of average Fe (%) for eight drillholes holes for compositing 
lengths between 0.5 m and 20 m 
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within these analysed samples. The nature and reason for observing 
blanks is not of interest for the purpose of this study; however, 
identifying the true reason for blanks in data, as either lack of grade 
or lack of sample, is key for successful mineral resource estimation. 
A separate analysis was conducted to investigate the effect that 
misapplication of treating breaks has on the regularization process. 

Gaps in the dataset, previously treated as blanks (lack of sample) 
during the regularization process, were instead treated as zeros (lack 
of grade in analysed sample) to illustrate the effect of changing this 
classification (Figure 8). As expected, the average is significantly 
reduced by the change of classification of blanks to zeros, 
represented by the negative movement in Figure 8(a). The variance 
(Figure 8(b)) is also affected by changing the zeros in the data to 
blanks, although the picture is more complex. The broad pattern is 
that the variance of the data increased, which is expected due to a 
lot of the same (zero) values having been removed. However, some 
drillholes (for example, DC05) displayed the opposite pattern and 
others (DC02 and DC08) exhibited variances both above and below 
that of the initial data. Any change to the variance will impact the 
variogram and thus any geostatistical procedure that follows.

Discussion
The case study confirms the initial premise that it is probable that 
unintentional bias is present in drilling campaigns, even with best 
practice sampling and assaying procedures, and irrespective of the 
presence or absence of any unavoidable problems associated with 
sampling procedures. Regardless of whether a particular variable 
is targeted by the sampling/drilling regime, bias may be produced. 
Bias can be overcome by the drillcore regularization process, but 
further bias many be introduced if the full effects of compositing 
are not understood. Whilst Krige’s Law theoretically explains the 
changes seen in the variance between different regularization 
lengths, it does not explain the full picture when real data are used. 
Drillhole DC03 is an example of this, where the variance increased 
as composite length increased (although, as a single drillhole, it 
is important not to read too much into this result). Effects like 
these could be taken to result from domaining issues, although the 
data used here was sourced from a single geological domain, so 
this is not considered a cause. Even within the general pattern of 
decreasing variance with increasing composite length, the pattern 
is more complex, with particular lengths that demonstrate relatively 
lower variances. 

similar sill to those of the shortest composite lengths of 0.5 m and 1 
m. Owing to the short nature of the drillholes, long regularization 
lengths would not normally be applied (unless they are necessary to 
conform to bench or block heights) (Clark 1979), but are included 
here to give a complete picture of the variogram behaviour if long 
composites are applied. The composite lengths of 12 m and 15 m 
are made up of four and five points, respectively, which would not 
normally be used for modelling due to lack of data, and thus losing 
coherency. Nevertheless, these provide useful illustrations of the 
effects of applying too great a composite length.

This analysis indicates that it is not readily apparent which 
composite length to select. If a shorter length is used, then the 
variance will be overall artificially increased by the increasing 
chance of differing values coming into contact due to the splitting 
of samples. At the same time, the nugget effect will decrease because 
samples split due to the regularization process will have zero 
variance between them, thereby decreasing the variance at small 
distances and hence the nugget effect. However, if a longer length is 
used, detail is lost and the variances decreases. Identifying a stable 
medium between these extremes is not simple and requires careful 
consideration by the practitioner.

The drillhole data used in these analyses contained numerous 
blanks, where sample had not been collected or, if collected, not 
analysed. The dataset contained 72 assays, with 15 blanks contained 

Figure 7—Experimental semi-variogram for data at different regularization lengths

Figure 6—Change of variance for eight drillholes holes for compositing 
lengths between 0.5 m and 20 m

Regularization Length

Va
ria

nc
e

Lag distance (m)

Se
m

i V
ar

ian
ce



Compositing and regularization of drillhole data for geostatistical resource estimation

336 JUNE 2024 	 VOLUME 124	 The Journal of the Southern African Institute of Mining and Metallurgy

Recent academic and technical focus has mainly been on the 
practice of regularization, rather than best practice, resulting in a 
lack of guidance to the practitioner. The effects of potential bias 
regularization on geostatistical estimates requires further study, with 
focus on developing an accepted best practice or guidance in what is 
good practice under certain circumstances, considering the variety 
of ore deposits, styles of mineralization, and the demands of the 
regulatory framework of mineral resource estimation. 
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