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Models for analysing the economic 
impact of ore sorting, using ROC 
curves
by A. Drumond1, A.L. Rodrigues1, J.F.C.L. Costa1, F.G. Niquini1,  
and M.G. Lemos2

Abstract
The past decade has seen a renewed possibility of using machine learning algorithms to solve a large 
collection of problems in several fields. Data acquisition for mining operations has increased with 
the growth in sensor-based technologies, and therefore the amount of information available for 
mining applications has dramatically increased. Ore sorting equipment is available for separating 
ore from waste based on differences in physical properties detected by a real-time analyser. The 
separation efficiency depends on the contrast in these properties. In this study we investigate the 
application of machine learning models trained using data from the output of a dual-energy X-ray 
ore sorting apparatus at a gold mine. The particles were first hand-sorted into ore and gangue 
classes based on their mineralogical composition. Classification models were then used to help 
decide the balance between the number of true and false positives for ore in the concentrate, with 
a view to economic parameters, using their receiver operator characteristic (ROC) curves. The 
results showed AUC (area under the ROC curve) scores of up to 0.85 for the classification models 
and a maximum reward condition Fpr/Tpr around 0.5/0.9 for a simplified economic model.
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Introduction
Mineral deposits are natural anomalies described by their specific physical and chemical properties. 
These properties directly affect the performance of mining and ore processing equipment. It is desirable 
to understand the relationships between the mineralization characteristics and the process used in ore 
dressing. Geometallurgy provides the means to identify these relationships and mathematically model the 
influence of these variables on the metallurgical response. According to Lechuti-Tlhalerwa, Coward, and 
Field (2019), ‘Geometallurgy is an interdisciplinary field aimed at describing potential ore deposits in terms 
that mine planners and economists can use to design and run profitable mining operations’.

Ore sorting by mechanical means is used for the preconcentration of mineral particles. Sorting could 
be used for various purposes, ranging from initial waste removal to downstream processing. As a unitary 
processing operation, ore sorters require materials with certain characteristics. Most ore sorting applications 
require coarse mineral grains and a low flow rate to operate properly. According to Wills and Finch (2015), 
ore liberation is an important restriction for this technology. The typical throughput per machine ranges 
from 25 t/h at 25–5 mm particle size to 300 t/h for 300–80 mm. Despite some technological pitfalls, there 
are numerous advantages of this technology, including significant energy and water savings (Manouchehri, 
2003). 

Ore sorting equipment can have different or multiple sensors for detecting physical properties 
(Manouchehri, 2003). A schematic of an X-ray sorting machine is shown in Figure 1. The material is 
initially fed according to granulometric constraints in step 1. For practical purposes, fines are commonly 
removed to avoid their interfering with the physical measurements made by the X-ray sensors. The ore is 
transported by means of a vibratory belt, forming a single layer of particles to allow readings to be acquired 
from every individual particle. In step 2, particles pass by X-ray sensors and are analysed based on the 
intensity of their X-ray transmissibility. The physical measurements of each particle are computed and 
analysed. According to a pre-adjusted mathematical model, the particles are accepted or rejected from the 
stream in the separation chamber, by a pneumatic apparatus flaps. 

There are few published studies in the field of ore sorting specifically focused on ore classification. 
Von Ketelhodt (2009) tested the viability of optical sorting to process low-grade gold ore that had been 
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stockpiled for a long time. Von Ketelhodt and Bergmann (2010) 
employed dual-energy X-ray sensors to concentrate coal, thus 
reducing downstream water consumption. Dual-energy X-ray 
ore sorting has also been applied for the classification of rare 
earth elements (REEs) (Veras et al., 2020). In addition to X-ray 
techniques, sensors based on the near-visible spectrum have been 
utilized. Tusa et al. (2020) presented hyperspectral results using 
visible to near-infrared (VNIR) and short-wave infrared (SWIR) 
sensors, while Gülcan (2020) evaluated borate sorting using near-
infrared sensors.

Lessard, de Bakker, and McHugh. (2014) conducted an 
extensive study on the economic impact of using dual-energy X-ray 
transmission (DE-XRT_ ore sorting of molybdenum ore. They 
explored which parameters yielded the highest sensitivity for the 
equipment in order to achieve the best economic outcome.

Li et al. (2020) investigated the use of X-ray fluorescence 
(XRF) sorting on samples from a porphyry copper mine. XRF is a 
surface analysis technique, and this work was conducted in a well-
controlled laboratory environment. The study correlated economic 
return (net smelter return, NSR) with the cut-off grade.

In this study we investigate the possibilities of modelling the 
data output from a DE-XRT ore sorting machine (a TOMRA 
PRO Secondary) for the case of a gold deposit. The output data is 
multivariate, which is appropriate for machine learning techniques. 
After training a machine learning model, another parameter 
(the threshold) is taken into account, which is linked to the true 
positive rate (the proportion of ore correctly identified by the model 
relative to the total ore in the data-set) and false positive rate (the 
proportion of gangue misidentified as ore relative to the amount of 
gangue in the data-set).

This parameter allows the decision-maker to choose to include 
more ore in the concentrate, but at the expense of also including 
more gangue (resulting in dilution). Optimizing this parameter is 
crucial for achieving the best economic benefits from the process, 
which aligns with one of the objectives of this paper and is related 
to a question raised in the literature by Lessard, de Bakker, and 
McHugh (2014).

Dual-energy X-ray transmission
A thorough understanding of the sensor variables and operation 
is necessary beforehand. In the context of this study, the present 
findings are related to dual-energy X-ray absorptiometry applied 
to ore from gold deposits. According to Strydom (2010), particle 

classification using X-ray transmission sensors is based on the 
differences in the X-ray absorption of the grains. The absorption 
of X-rays in turn depends on the atomic numbers of the elements 
forming the minerals. Each particle is penetrated by X-rays and the 
difference between the transmitted and absorbed energy results in a 
contrast of brightness from the various particles. Furthermore, the 
attenuation of the X-ray emission depends on the grain thickness as 
well. The phenomenon referred to as transmission damping can be 
explained by X-ray transmission theory. Lambert’s law indicates that 
transmission damping is a function of the density and thickness of 
the material:

[1]

where Idet is the detected intensity, I0 is the intensity of the 
undisturbed beam, µ( ) is the mass absorption coefficient, ρ is the 
density of the solid, and d is the thickness of the irradiated material.

Lambert’s law can be applied to dual-energy absorption by 
transmitting high- and low-energy X-ray beams. An advantage 
is that the particle thickness can be determined using Lambert’s 
law for the high- and low-energy levels. Jong and Harbeck (2005) 
showed that the relationship between the detected intensities results 
in a constant, Cm, which depends only on the properties of the 
material and the chosen wavelength (Equation [2]). Common values 
of Cm are related to the atomic number for a specific element.:

[2]

Harbeck (2004) demonstrated that different minerals can be 
distinguished by comparing the degree of transmission of X-rays 
through the particles at two different energy levels. By examining 
the brightness levels produced by materials for two different X-ray 
channels, it is possible to visually interpret a density model.

Figures 2a and 2b show the X-ray images for different channel 
frequencies. Different wavelengths have different transmission 
values through the mineral particle: high frequencies penetrate the 
particle less than low frequencies. Figure 2c shows a scatter plot for 
the two channel readings (high and low frequency) at every pixel 
within the X-ray image according to the intensity values of channels 
with high and low frequencies. Pixels below the calibration curve 
are considered as low-density pixels, and those above the curve as 
high-density. The pixels can be counted as the indicator values of 
high and low densities.

Figure 1—Schematic of an X-ray sorter. (1) The particles are fed into the equipment so as to form a single layer with no overlap between particles. (2) The 
electromagnetic sensor, where the X-ray waves are generated and transmitted through the particles. The equipment records and analyzes the X-ray images. (3) The 
separation chamber, where airgun blasts segregate the particles based on their classification as ore or gangue
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A filtering process might be needed for the data collected by the 
sensors, as a thick gangue particle can provide similar readings as a 
thick ore grain.

The data output from the sorter maps four regions: high, 
medium, low, and dark. To calculate density models for mineral 
particles, the calibration curve must be adjusted to fit a threshold 
limit based on several particle measurements. For example, a 
density curve of 60% means that 60% of the total samples from a 
given mineral are plotted below the curve.

The use of machine learning
According to Webb and Copsey (2011), machine learning and 
pattern recognition developed as an interdisciplinary subject, 
covering statistics, engineering, computer science, psychology, and 
physiology, among others. One special characteristic of machine 
learning modelling is dealing with multivariate problems. The 
present study requires that a decision must be made about each 
analysed particle using a multidimensional input vector of data 
readings representing the corresponding sample. Supervised 
machine learning methods are appropriate for addressing these 
multidimensional decision problems when prior sampled data, 
designated by experts as ore and gangue through hand sorting, is 
available.

A supervised model trained with ore/gangue designated data 
can be used to make decisions about whether a new, unknown 
sample is ore or not, and to present the degree of certainty for 
this prediction. Supervised algorithms could be used in two main 
applications: for regression and for classification. The first relates to 
real target values, whereas the second relates to a categorical value. 
For a binary output, like ore/gangue, this output is represented by 
(1) when a particle is ore and (0) when the particle is gangue. Ore 
sorting can be viewed as a traditional classification problem, since 
ore and gangue particles are classified into concentrate or the waste 
streams (Figure 3).

All classification outcomes can be summarized in the confusion 
matrix (Table I), which provides a comprehensive overview of 

true positive, true negative, false positive, and false negative 
classifications.

Machine learning metrics can be applied to assess the 
performance of an ore sorting model. These metrics are derived 
from the confusion matrix, which summarizes the classification 
results. Equations [3] to [6] present some of the key metrics used in 
this assessment:

   Table I
   �Confusion matrix for ore sorting products. Mineral particle 

in rows and downstream definition in columns. The true 
positive values and true negative values are considered to 
be the particles that are correctly directed to their desired 
downstream destinations. False positives and false negatives 
indicate incorrectly classified particles

   Type	 Concentrate	 Waste

   Ore	 True positive	 False negative
   Gangue	 False positive	 True negative

Figure 2—(a) High- and (b) low-energy X-ray images. Each pixel represents the X-ray transmission intensity in greyscale for the two energy levels (frequencies) in 
the area. (c) Each pixel is represented using the transmission in high energy as the y-value and the transmission in low energy as the corresponding x-value. The grey 
squares represent the readings from each pixel in (a) and (b) for the two channels. These points are scattered around the previously calibrated curve (continuous black 
line) for a given mineral. The decision on whether a particle is mineral or gangue is made by comparing the pixel readings from (c) to the calibrated curve

Figure 3—Separation of the feed into concentrate and waste (tailings) 
streams. Since the concentration process is not perfect, some waste particles 
could be directed to the concentrate

Legend
Gangue

Ore
Feed

RejectConcentrate



Models for analysing the economic impact of ore sorting, using ROC curves

400 JULY 2024 	 VOLUME 124	 The Journal of the Southern African Institute of Mining and Metallurgy

[3]

[4]

[5]

[6]

where Tp is true positive, Fp is false positive, Tn is true negative, and 
Fn is false negative.

In the context of ore sorting classification, terminology that 
aligns with machine learning concepts is not well-established in 
the literature. To address this gap and facilitate understanding, we 
propose the following definitions:
➤	� Concentrate ore grade: The proportion of ore in the 

concentrate stream. This concept is analogous to precision 
metrics used in machine learning classification problems.

➤	� Recovery: The metric which measures the proportion of ore 
particles in the training set that is sent to the concentrate. This 
definition is also called the true positive rate (Tpr) in machine 
learning classification metrics.

Proposing a mathematical model for particle recovery and 
the ore grade in the concentrate allows the modeller to manage 
specific conditions related to the equipment to achieve the desired 
characteristics for the process.

In assessing the performance of mathematical models for ore 
sorting, the receiver operator characteristic (ROC) curve serves 
as a crucial tool. This curve provides insights into the relationship 

between false positive rate (Fpr) and true positive rate (Tpr), aiding 
in the evaluation of model effectiveness. The ROC curve (Figure 4) 
establishes, for a given trained model, a relationship between the 
false positive rate (Fpr, on the x-axis) and true positive rate (Tpr, on 
the y-axis). The area under the ROC curve (AUC score) provides a 
comprehensive measure of the model's performance, ranging from 0 
to 1. A higher AUC score indicates better predictive accuracy.

The threshold is the parameter which controls the trade-off 
between the Tpr and the Fpr given a trained model. For example, for 
an input particle, the model predicts a 75% probability of it being 
ore. If the threshold chosen is 50%, the prediction will be ore. If 
the threshold selected is 90%, the prediction would be gangue. 
Changing the threshold results in a repositioning along the model, 
moving within the ROC curve and effectively implementing a 
trade-off between the amount of gangue in the concentrate and the 
quantity of ore sent to the reject stream. If the operator wants to 
value the true positive rate (when the model answers ore, it should 
really be ore!) the threshold must be set to a higher value, 98% for 
instance. In this case, the model will behave as point 1 in Figure 
4c. The opposite case is when the threshold is set to 0%, returning 
all the predictions as ore regardless of the particle input. This case 
is represented by point 4 in Figure 4c. Figures 4a and 4b show the 
definitions of the true positive rate (Tpr, associated with the ore 
recovery) and false positive rate (Fpr). 

Variables, preprocessing phase, and ore definition

Variables and preprocessing phase
The variables employed in the modelling will be called ‘features’. 
In this study a mineral sample has 17 features (Figure 5): 16 
continuous numerical features related to three different density 
model calibration curves and a categorical feature corresponding 
to the origin of the sample in the orebody. The preprocessing 
phase comprises two stages. The first stage involves replacing the 

Figure 4—Example of a ROC curve. The x-axis and y-axis are physically related to properties in the ore sorting equipment. (A) shows the recall and its physical 
interpretation: the ore portion in concentrate. (B) shows the false positive rate and its physical interpretation: the amount of waste in the concentrate relative to 
the total amount of waste in the feed. (C) Two different ROC curves: the straight line is the worst model where all predictions are realized randomly. Points 1 and 4 
represent the total stream deviations respectively to the tailings and to the concentrate
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grade above the cut-off value of 0.4 ppm. Figure 6 depicts the ore 
class, illustrating the criteria used for classification. This indicator 
variable, based on the specified criteria, serves as the response 
variable for the supervised learning classification algorithms.

Hand sorting and database creation 
The process for calculating the indicators of high, medium, low, 
and dark proportions according to each density model is shown 
in Figure 7. The process starts by sampling different regions from 
the mineral deposit, so that each particle can later be individually 
analysed according to the X-ray measurements. The images 
composed of the channels of high and low energy transmitted 
along the particles are simulated to obtain the proportion of 
indicators (high, medium, and low densities) for each density 
model considered. The final supervised database is composed 
of measurements of the properties of individual rock particles, 
including the calculated indicators of high, medium, low, and dark 
proportions according to each density model.

numerical features corresponding to the absolute number of pixels 
in each 'band' with the pixel proportion in each band for each 
sample. For example, a sample in DM-70 with 40 pixels in high, 
20 in dark, 10 in medium, and 30 in low, will be transformed into 
proportions (0.4, 0.2, 0.1, 0.3) respectively, given that the total 
number of pixels for this sample is 100.

In the second stage of preprocessing, standardization is applied 
to each feature and the categorical variable is replaced by the 
probability of each class in the data-set. Figure 5 lists the numerical 
features and the categorical feature used to perform the training.

Ore definition
To be classified as ore, a particle must exhibit either the target 
mineralogy (such as sulphides, quartz, or fine arsenopyrite) or a 

Figure 5—The features used in the study comprise four numerical 
features contributed by each DM calibration curve, resulting in a total of 
16 continuous numerical features. Additionally, the categorical feature 
representing the origin of the sample in the orebody is replaced by the 
probability of each class. As a result, each mineral sample is represented by a 
vector with 17 entries

Figure 6—The definition of the ore class, which is determined based on 
mineralogy or gold grade. This class serves as the response variable in the ore 
sorting classification process. Particles are classified as ore if they exhibit the 
target mineralogy or have gold grades above the specified cut-off value. Any 
particles not meeting these criteria are classified as waste

Figure 7—The process of creating the database for ore particles. (a) Particles are sampled from various regions in the mineral deposit. (b) Each particle is individually 
coded and analysed. (c) Two images are generated based on the high and low channel frequencies from the X-rays. (d) These images are simulated using different 
density models. The proportions of high, medium, low, and dark pixels are then computed. (e) The final database is composed of the proportion of density indicators 
for each particle, according to the specific calibration curve
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parameter linked to the processing costs of the rejected material. All 
these three parameters are in units of dollars per unit mass, e.g. US$ 
per ton.

Rewriting the reward expression (Equation [9]) yields:

[10]

where mo is the fraction of ore in the total mass, Mo/M, and mg is 
the fraction of gangue in the total mass, Mg/M. The reward function 
r(Tpr,Fpr) is expressed in the same units as the parameters B, Cp, and 
Cp2 (for example US$/t) and indicates the amount of money (US$) 
for an amount of material fed to the ore sorter (t).

Note that r(Tpr, Fpr) depends on two variables. A trained model 
will yield the relationship between these two variables, which is 
given by the ROC curves shown previously. When establishing a 
reward function for an ROC curve, the reward function will take the 
form r(Fpr).

Although the presented reward function model is simple and 
limited, it serves as a starting point for decision-making in ore 
sorting processes. In real mining operations, it is possible to develop 
a more comprehensive and specific reward function tailored to the 
unique characteristics of the operation.

One notable factor not accounted for in the cost model is the 
operational cost of the ore sorting equipment, which includes 
energy consumption and maintenance costs (Lessard, de Bakker, 
and McHugh, 2014). However, this cost was intentionally omitted 
from the model, as its value does not significantly depend on the 
choice of Tpr and Fpr.

In the next step of the analysis, two additional quantities will 
be calculated and incorporated into the decision-making model. 
The first is the total mass of concentrate output from the ore 
sorting process given a specific Fpr. The second is the grade of the 
concentrate obtained at that Fpr. These additional metrics will 
provide valuable insights into the operational boundaries and help 
optimize planning for the ore sorting operation.

The total mass in concentrate is:

[11]

where the total mass in the concentrate is given in relation to the 
mass fed to the ore sorting (M).

The ore grade in the concentrate is given by:

[12]

The question may arise as to when it would be valuable to 
create a figure illustrating ore mass recovery as a function of Fpr. 
Interestingly, such a figure has already been produced in the form of 
the ROC curve (Figure 14). In the ROC curve, the y-axis represents 
Tpr, which is equivalent to Recall in machine learning terminology. 
This Tpr value can be interpreted as the total amount of ore in the 
deposit that can be recovered at a given Fpr.

The purposes illustrated in this section were produced and 
commented mimicking a long-term mine planning analysis. But it 
would be trivial to change the timeframe planning. By changing mo 

In this study, the labels high, low, medium, and dark correspond 
to density regions, while DM% represents the density model 
used. Additionally, a categorical variable representing the mined 
orebody associated with each particle was introduced. This 
categorical variable has six possible outcomes. To incorporate the 
categorical variable into the modelling process, it was encoded into 
a frequency-based representation. This encoding method assigns 
numerical values to each category based on their frequency of 
occurrence in the data-set.

The data acquisition, calibration, and sampling processes were 
carried out by the technical staff of a mining company in Brazil, 
as documented in studies by Magalhães et al. (2019) and Dumont, 
Lemos Gazire, and Robbens (2017). This study focuses on analysing 
the output data from the ore sorting equipment using samples from 
these deposits.

Proposing a decision criterion
After training a machine learning model and obtaining the ROC 
curve, determination of the optimal combination of true positive 
rate (Tpr) and false positive rate (Fpr) for the most economical 
decision depends on various factors, including the value of the 
concentrate and associated costs. In this section we introduce an 
economics-based decision model.

To illustrate this decision-making scenario, we present a simple 
reward (benefit) function model. Unlike a loss function, which 
aims to be minimized, a reward function seeks to be maximized to 
increase profit.

Consider an amount M of material to be analysed and processed 
by the ore sorting equipment. The ore sorting model is already 
trained and the parameters chosen. The necessary parameters are 
presented as the general true positive rate Tpr and false positive rate 
Fpr.

Although the sorter operates on a particle basis (not exactly 
mass), one can create a mathematical formulation considering mass 
when using the hypothesis that all particles have the same mass, 
which may be some statistical mean mass established from field 
data. This will be the case for the formulation in this section.

This mass M to be processed is divided into ore (Mo) and 
gangue (Mg) masses, so that M = Mo + Mg. The amount of material 
which is selected as ore by the model in the equipment is given by 
MoTpr + MgFpr and the amount discarded by MgTnr + MoFnr. The true 
negative rate Tnr and the false negative rate Fnr are given by:

[7]

                                                                                 [8]

The balance is the reward from the correctly accepted gold 
(MoTpr), the cost of processing all accepted (as ore) material MoTpr + 
MgFpr, and the total cost of processing the rejected material MgTnr + 
MoFnr. This simplified model is based on the benefit of the correctly 
predicted ore and the relative difference in costs between processing 
some amount of material as ore or as waste. Expressing this reward 
function in an equation leads to:

[9]

where B is a parameter related to the financial gain from the 
specific mineral (gold in this case), Cp is a parameter connected to 
the processing costs of the accepted material, and Cp2 is another 
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Assessment of  performance with evaluation data
After selecting the model, it is crucial to verify its performance 
using the evaluation data-set to ensure its ability to generalize to 
new, unseen records. The results presented in Figure 10 indicate an 
AUC score of 0.783 for the selected random forest model. 

It is important to note that using the evaluation set to select 
the best-performing model among previous candidates can 
lead to overfitting. Overfitting occurs when the model performs 
exceptionally well on the evaluation set but fails to generalize to new 
data. This phenomenon, also known as second-order overfitting 
(Reunanen, 2012), emphasizes the importance of robust evaluation 
procedures to avoid misleading conclusions.

Results of the economic model
In the economics-based model, the parameters outlined in Table 
II were utilized. To cover a range of classification methods, several 
techniques were explored, including random forest, decision 
trees (Quinlan, 1986), linear discriminant analysis (Fisher, 1936), 
Gaussian naive Bayes, K-nearest neighbours, logistic regression, 
neural networks (McCulloch and Pitts, 1943; Bishop, 2006), and 
support vector classifier.	

and mg according to the deposit estimates in a given time period, 
the models do not need to be retrained if the original training set 
is already statistically representative of the deposit as a whole. Even 
the other parameters, such as Cp and Cp2, can be re-estimated for 
another time period. For further development of economic models 
using ROC curves one can refer to Ooms et al. (2010). The results of 
the economic criteria are presented in a later section.

Results and discussion
Training the ML algorithms, model selection phase
Seven machine learning classification algorithms were tested to 
build the classification model: random forest (Breiman, 2001), 
logistic regression (Cox, 1958), K-nearest neighbours (KNN with K 
= 6) (Cover and Hart, 1967), support vector machine (SVM) with 
radial basis function (RBF) kernel and linear kernel (Boser, Guyon, 
and Vapnik, 1995), Gaussian naive Bayes (Duda and Hart, 2001), 
and AdaBoost (Freund and Schapire, 1996).

The data-set was divided into two parts: 1160 records 
(approximately 70%) were used in the model selection phase, 
and the remaining 498 records were held back for evaluating the 
best-selected model. During the model selection phase, a stratified 
K-fold cross-validation approach with K = 5 was employed. The 
evaluation metric used was the AUC score (area under the ROC 
curve). The results are presented in Figure 8.

Among the tested algorithms, random forest achieved the 
highest AUC score of 0.798, followed closely by SVM with RBF 
kernel (0.794) and KNN with K = 6 (0.791). On the other hand, 
logistic regression, Gaussian naive Bayes, and SVM with linear 
kernel exhibited poorer performances. All models were initialized 
with standard parameters from the Scikit-Learn implementations. 

Figure 9 displays the ROC curves for all selected machine-
learning models. To provide context, a straight line representing 
random predictions is plotted as a reference. The ROC curve is a 
valuable measure that assesses the overall quality of a given model 
across all possible values of Fpr and Tpr. For each trained model, 
varying the threshold (as discussed previously) results in different 
Fpr/Tpr values. By visually comparing the ROC curves, different 
models can be assessed and compared. The AUC scores, presented 
in Figures 9 and 10, represent the area under each ROC curve. The 
AUC score condenses the model's performance into a single value, 
facilitating comparative analysis. Comparison of the AUC scores 
and visual inspection of the ROC curves shows that the random 
forest is the model with the best performance.

Figure 8—Model selection using AUC mean scores for 5-fold cross-validation 
with confidence interval of 69% (one standard deviation)

Figure 10—Result for the random forest model using the previously unseen 
evaluation data-set

Figure 9—Receiver operating characteristic (ROC) curves for all supervised 
machine-learning algorithms utilized in the model selection phase. Among 
the algorithms tested, random forest achieved the highest area under the 
curve (AUC) score, with a value of 0.793
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Figure 13 shows the variation in concentrate grade for different 
values of Fpr. At the lowest values of Fpr the concentrate grade is 
approximately 1. However, in this case the concentrate mass is near 
zero (Figure 12). When Fpr approaches 1 the concentrate grade 
tends to the ore grade of M, which is mo (1 ppm). As stated before, 
when Fpr = 1 all the material goes to the concentrate.

To illustrate the application of the findings from Figures 9, 12, 
and 13, consider a scenario where the false positive rate (Fpr) is set 
to 0.5 and the random forest (RF) model is employed. According to 
the ROC curve (Figure 9), with an Fpr of 0.5, approximately 94% of 
the ore will be recovered from the total mass (M) fed into the ore 
sorting process. Referring to the total mass curve in Figure 12, the 
total mass of concentrate obtained will be approximately half of the 
mass (M) fed into the sorting process. Finally, using the concentrate 
grade curve in Figure 13, at an Fpr of 0.5, the average grade of the 
concentrate will be approximately 1.8 ppm. This demonstrates how 
the information from Figures 9, 12, and 13 can be integrated to 
inform decision-making, allowing operators to assess and optimize 
ore recovery, concentrate mass, and concentrate grade based on 
their specific objectives and constraints.

Conclusions
The introduction of innovative ore-sorting equipment presents 
a promising opportunity for the mining industry, offering the 
potential to enhance mineral recovery while reducing operational 

Figure 11 compares the reward functions for all trained models 
using B = 6 × 106 referenced in Table II. The best reward is from the 
RF model, when Fpr = 0.75 and r(0.75) = 51.6 US$/t. It shows good 
general performance in discriminating ore and waste, which can 
be seen as the r(Fpr) curve for RF is overall above the others (the 
AUC scores in Figure 14 also show the same pattern). This offers 
the decision-maker other strategies for using the reward r(Fpr). For 
example, the point in the RF reward curve at Fpr = 0.47 and r(0.47) 
= 50.8 yields almost the same reward as the maximum (51.6), but 
with a significantly lower value of Fpr = 0.47, which can lead to a 
compelling cut in costs not taken into account in the economic 
model. So, the reward curves must be seen as a tool to help in a 
decision, and not an automatic method to extract the maxima.

Another outcome from Figure 11 is the importance of a well-
trained model. A poorly calibrated model embedded in the ore 
sorting decision can lead to a significantly lower profit, from 30% to 
10% less, depending on Fpr.

Figure 12 shows the total mass in the concentrate relative to 
the mass M fed into the ore sorter. The curves for all models are 
collapsed to a visually straight line due to the low proportion of ore 
in the mass fed (1 ppm). In this case, Equation [13] is dominated 
by the term MgFpr, which is a first degree monomial considering 
the variable Fpr. For an increasing value of mo the curves will take 
another geometrical form.

The relationship shown in Figure 12 is a convenient method to 
establish boundaries on Fpr for the desired effect. For example, if 
the operator wants to reduce the mass in the concentrate (by being 
more selective), then the initial value for Fpr can be estimated using 
this graph. 

  Table II
  Parameters used for the economic model

  Parameter	 Value	 Observations

  mo	 1.0 × 10−6	 1 ppm
  mg	 9.99999 × 10−1	 mg = 1 − mo

  B	 60 000 US$/kg	 market price
  Cp	 10 US$/t	
  Cp2	 1 US$/t

Figure 11—Comparison of the rewards r(Fpr) for all trained models. The 
maxima of each curve are marked with a vertical dashed line. The highest 
reward is from the RF model at Fpr = 0.75 and r(0.75) = 51.6 US$/t

Figure 12—Total mass present in concentrate relative to the mass M fed to the 
sorter. The curves appear to be linear due to the small value of mo, given the 
definition of the mass in concentrate moTpr + mgFpr

Figure 13—Concentrate grade vs Fpr. When Fpr → 0, the grade tends to 1, i.e., 
the concentrate is almost exclusively ore. When Fpr → 1 the concentrate grade 
approaches mo. Horizontal dashed lines mark grades at 1000 ppm, 100 ppm, 
and 1 ppm
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ore]. Proceedings of XXVIII ENTMME. pp. 1–8. http://www.
entmme2019.entmme.org/trabalhos/180.pdf
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future. Proceedings of Konferens i Mineralteknik. Föreningen 
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McCulloch, W.S. and Pitts, W. 1943. A logical calculus of the 
ideas immanent in nervous activity. Bulletin of Mathematical 
Biophysics, vol. 5, no. 4, pp. 115–133.

Ooms, D., Palm, R., Leemans, V., and Destain, M.-F. 2010. A sorting 
optimization curve with quality and yield requirements. Pattern 
Recognition Letters, vol. 31, no. 9, pp. 983–990. https://doi.
org/10.1016/j.patrec.2009.12.015

Quinlan, R. 1986. Induction of decision trees. Machine Learning, 
vol. 1, no. 1, pp. 81-106.

Reunanen, J. 2012. Overfitting in feature selection: Pitfalls and 
solutions. Doctoral thesis, Aalto University School of Science, 
Espoo, Finland. http://lib.tkk.fi/Diss/2012/isbn9789526045160/
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costs. Central to this improvement is the adaptive adjustment of 
the sensor decision model within the equipment. In this paper we 
have shown how multivariate models, particularly in the context 
of machine learning, can leverage the rich output variables from 
ore sorting to optimize model parameters, taking economic 
considerations into account.

By employing a simple profit-cost model, derived from the 
receiver operator characteristic (ROC) curve of a machine learning 
model, economic aspects are quantified to inform decision-
making. Additionally, methodologies for modelling ore recovery, 
concentrate mass, and ore grade in the concentrate are provided. 
These resources serve as valuable tools to guide decision-makers, 
facilitating informed choices rather than automated decisions.

The multivariate modelling phase utilizes data output from the 
ore sorting equipment, albeit without capturing the full richness of 
dual-energy X-ray data for each pixel. This presents an opportunity 
for further enhancement, as leveraging raw dual-energy X-ray data 
could potentially improve modelling accuracy. Such improvements 
can be seamlessly integrated into the existing work flow outlined in 
this paper, allowing for economic-based decisions based on updated 
ROC curves.

To maximize the potential of this approach, it is recommended 
that ore sorting equipment manufacturers consider implementing 
interfaces capable of accepting models trained in high-level 
programming languages such as Python. This would enable 
seamless integration of advanced modelling techniques into the ore 
sorting process, further enhancing its efficiency and effectiveness.
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