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Introduction
Why and what mathematics?
Debates around the importance of mathematical learning and what mathematics secondary 
school learners should learn (e.g. Davis, 2001; Gravemeijer et al., 2017; Schoenfeld, 2004) are not 
new. The increasing quantitative and statistical demands of the workplace and world at large 
afford a degree of consensus of the importance of all learners being given access to mathematical 
learning experiences to prepare them for the future (Mason et al., 2015). However, persistently 
high failure rates in mathematics subjects, particularly at secondary school level, continue to 
prompt discussions of the type, structure and purpose of mathematics subjects and whether it is 
necessary for all learners to engage with the type of complex and abstract mathematical content 
that caters primarily for preparing learners to proceed to mathematically or scientifically oriented 
studies and professions. Some of these discussions foreground the notion of ‘utility’ by prioritising 
mathematical applications in real-life scenarios and argue the case for making mathematics more 
meaningful and relevant to learners, particularly those who find the higher levels of more complex 
and abstract mathematics difficult (Horváth et al., 2022).

In South Africa, these debates informed the institutionalisation of a distinction between the two 
secondary school subjects Mathematics and Mathematical Literacy (ML), both made available to 
different groups of learners in their final three years of schooling (ages 16–18). Mathematics is a 
traditional mathematics subject that supports the development of mathematical knowledge and 
competence with abstract mathematical structures through engagement with ‘symbols and 

The subject Mathematical Literacy (ML) prioritises an interplay of mathematics and real-life 
contexts in pursuit of an empowerment agenda for improved life opportunities. In seeking to 
identify processes of inclusion-exclusion afforded by different conceptualisations of this 
interplay, a network of Bernstein’s theoretical constructs – classification, framing, discourses, 
and the pedagogic device – are used to analyse how different ML curricula conceptualise the 
notion of mathematical literacy and the criteria for legitimate communication, knowledge and 
practice in the subject. This analysis illustrates that despite differences in the formulation of 
the school subjects ML and Mathematics, enactments of the original ML National Curriculum 
Statement prioritised heavily mathematised methods in pseudo-realistic contexts. This 
approach thwarted the critical citizenship agenda of this curriculum and made it possible for 
ML to be criticised as watered-down mathematics. The analysis then reveals how the current 
ML Curriculum and Assessment Policy Statement, supported by specific curriculum features, 
has attempted to overcome these challenges by foregrounding a life-preparedness orientation 
for empowered self-management and citizenship. This involved weakening the classification 
of academic and everyday knowledge, strengthening the framing of curriculum specifications, 
and foregrounding criteria for legitimate communication, knowledge and practice around 
contextual problem-solving and decision-making. Challenges with this approach are 
considered.

Contribution: The article is relevant to those involved in curriculum, task and lesson design 
involving an interplay of mathematics and real-life contexts. The article aims to support the 
current curriculum review process in South Africa by decoding and theorising curriculum 
features and their impact for facilitating empowered life-preparation.
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notations for describing numerical, geometric and graphical 
relationships’ (Department of Basic Education [DBE], 2011b, 
p. 8). Although some problem-solving applications are 
expected in the subject, Mathematics is also viewed as a 
‘discipline in its own right and pursues the establishment 
of knowledge without necessarily requiring applications 
in real life’ (Department of Education [DoE], 2003b, p. 9). 
By contrast, ML prioritises the use of more elementary 
mathematical contents in authentic real-world problem-
solving experiences (DBE, 2011a, p. 8). This approach is 
in pursuit of an ideology for enabling a learner to become 
‘a self-managing person, a contributing worker and a 
participating citizen in a developing democracy’ (DoE, 2003a, 
p. 10). In simplistic terms, the distinction is one of end goal: 
in Mathematics the end goal is competence with abstract 
mathematical contents and apprenticeship into mathematical 
ways of working; in ML the end goal is the capacity to use a 
combination of mathematical, contextual and technological 
knowledge, information and tools to solve problems and 
make informed decisions in situations encountered in daily 
life and workplace situations (DBE, 2011a, p. 8; DoE, 2003a, 
p. 10) – in other words, empowered preparation for life 
and citizenship. Thus, although both ML and Mathematics 
involve working with mathematical contents, in ML any 
mathematics used or learned is intended to be in service to 
and in support of problem-solving and decision-making in 
authentic real-world problem experiences. This positions ML 
as different in kind and purpose from Mathematics and, 
at  curriculum level at least, ML is not subsumed within 
Mathematics (Graven & Venkatakrishnan, 2007). This has 
always presented the South African situation as a unique 
case for analysis, since in most international conceptions the 
development of mathematical literacy is seen as a component 
or by-product of the learning and application of mathematical 
knowledge rather than as a separate knowledge domain (e.g. 
De Lange, 2003; Kilpatrick, 2001; Organisation for Economic 
Co-operation and Development [OECD], 2018; Rafiepour 
Gatabi et al., 2012).

The subject ML is compulsory for and only available to 
learners not taking Mathematics, and originally targeted the 
40% of the school-leaving population who historically opted 
out of continuing with Mathematics in their final three 
years of schooling (Clynick et al., 2004, p. 30). However, by 
November 2022, 62,5% (approximately 450 000 learners) 
of all Grade 12 learners sat the final ML matriculation 
examinations (DBE, 2023, p. 57). This means that on one level 
the introduction of this subject achieved a key objective by 
giving many more learners exposure to extended study 
involving applications of elementary mathematics and hope 
and promise for future workplace, study and career 
opportunities. On another level, though, these heightened 
enrolment figures have prompted concerns about decreasing 
enrolment in Mathematics, spurred by vastly different pass 
rates in the two subjects (85,7% for ML and 55% for 
Mathematics in 2022) (DBE, 2023, p. 56). The subject ML has 
also faced criticisms, with some commentators referring to 
the subject as a watered-down easier version of mathematics 

(Jansen, 2012; Nkosi, 2014), thereby thwarting the progressive 
agenda for empowerment that motivated the qualification.

One component of these criticisms is a judgement made 
about the lower level of mathematical demand of the ML 
curriculum content. A second component is a lack of clarity 
and agreement about whether and how the types of skills, 
knowledge and practices developed through ML are 
differently constituted and legitimised from the types of 
skills, knowledge and practices developed in Mathematics. 
After all, if both ML and Mathematics are evaluated according 
to competence with mathematical ways of working, then it is 
no wonder that the degree of complexity of the mathematical 
contents of the subject becomes a key measure of the value 
of the subject (Christiansen, 2007; Julie, 2006; Vithal & 
Bishop, 2006).

These challenges speak to the complexities of curriculum 
design for a school subject that engages both contextual 
and mathematical knowledge in pursuit of a progressive 
agenda for enhanced life-preparation and empowered 
citizenship. In 2010 a review of the original ML National 
Curriculum Statement (NCS) (DoE, 2003a) was initiated, 
resulting in the ML Curriculum and Assessment Policy 
statement (CAPS) curriculum (DBE, 2011a). For me, as the 
author of the CAPS ML curriculum, these concerns were at 
the foreground of attempts to more clearly define the 
criteria for legitimate knowledge and practice in the subject 
in this revised curriculum and to frame these criteria 
around practices needed for empowered life-preparedness 
rather than mathematical competence – thereby more 
clearly distinguishing ML from Mathematics. In doing this, 
a key aim was to reveal and challenge the processes of 
inclusion-exclusion (Skovsmose, 2012) afforded by different 
instantiations of the ML curriculum with a view to 
establishing a potentially more empowering educational 
experience.

Research contribution, focus and 
relevance
In respect of the above, this article offers a sociologically 
motivated theoretical analysis of the evolution of the ML 
curriculum to address the following questions:

• How is the school subject ML, and the criteria for 
legitimate knowledge, practice and communication in 
this subject, different from the school subject Mathematics?

• How and why are the criteria for legitimate mathematical 
literacy knowledge, practice and communication different 
in the ML NCS and in the ML CAPS?

• In what ways and how does the intended curriculum of 
the CAPS ML curriculum facilitate a life-preparedness 
orientation for empowered self-management and 
citizenship?

‘Curriculum’ here is taken to refer to the state-published and 
sanctioned message systems (Bernstein, 2005, p. 156) that 
outline what counts as valid knowledge, the specific vision of 

http://www.pythagoras.org.za


Page 3 of 19 Original Research

http://www.pythagoras.org.za Open Access

pedagogic practice for the transmission of the knowledge, 
and the criteria for evaluation of that knowledge, for the 
South African secondary school subject ML. The interpretative 
analysis adopted in this article operates primarily at the level 
of the ‘intended’ curriculum. The intended curriculum 
provides the description of the selected store of knowledge to 
be made available to learners and specification of the vision 
(underlying rationale, philosophy, ideology) and intentions 
of the learning process (Thijs & Van Den Akker, 2009). 
However, some insights will be offered about implications 
for enacted representations of this curriculum (e.g. in 
assessments and teacher practices). For ML, the intended 
curriculum is captured in a collection of text-based 
state-published documents (CAPS ML – DBE, 2011a; NCS 
ML – DoE, 2003a) that specify the vision and ideological 
underpinnings for the subject, roles and responsibilities for 
teachers and learners, the contents for teaching and learning, 
and in some instances specific assessment criteria.

To address these research questions, a network of Bernstein’s 
(1999, 2000, 2003) theoretical constructs is used as an analytic 
lens, including the pedagogic device, forms of discourse, 
classification and framing. These constructs facilitate analysis 
of how different forms of discourse and associated knowledges 
are conceptualised, organised, institutionalised, distributed, 
transmitted and evaluated, and the rules that define what 
counts as legitimate acquisition and realisations of that 
knowledge. By employing these constructs, the analysis will 
demonstrate ML and Mathematics as different pedagogic 
discourses. It will be argued that these discourses comprise 
different evaluation criteria that define the basis of legitimate 
knowledge, practice and communication for how selected 
mathematics and contextual elements are engaged within each 
subject. The analysis will also demonstrate how the ML 
curriculum itself has evolved. The original ML curriculum 
(instantiated in the NCS ML document; DoE, 2003a) was 
characterised by heavily mathematised ways of working 
primarily in relation to pseudo-realistic contexts. By contrast, 
the CAPS ML curriculum (DBE, 2011a) makes a deliberate 
attempt to reframe what it means to be mathematically literate 
around the types of skills needed for problem-solving and 
informed decision-making in genuine problem scenarios 
encountered in authentic real-life contexts – in other words, 
around an empowered life-preparedness orientation. This 
reframing is underpinned by a number of curriculum features 
that influenced the internal structure of the curriculum, the 
criteria for legitimate knowledge, practice and communication 
in the subject, and, hence, in how the subject is to be 
distinguished from other subjects like Mathematics. These 
curriculum features, their theoretical origins and 
underpinnings, and challenges with this approach, are 
discussed in detail.

This article makes a threefold contribution. First, the research 
is timeous given a post-Covid impetus for a further review of 
the ML curriculum by the DBE. As such, the arguments 
presented herein are intended to inform ongoing debates 
about the subject and to highlight the potential strengths and 

risks of different conceptualisations of mathematical literacy. 
Second, the uniqueness of the South African situation, the 
novel interplay of contextual and mathematical elements 
encapsulated in the CAPS ML curriculum, and the significant 
numbers of learners impacted by the intended empowerment 
agenda of this curriculum make this a continued worthwhile 
site for analysis. Third, the article adds to the discussions of 
those seeking to understand the complexities of integrating 
contextual and mathematical elements in curriculum design 
initiatives that influence school-based teaching and learning 
experiences in a meaningful and empowering way. Given 
this threefold impetus, the analysis in this article will be 
relevant to those both within South Africa and beyond 
involved in curriculum and resource design seeking to 
theorise, understand and mitigate the ways in which different 
contextual-mathematical interactions empower or restrict 
access to particular types of knowledge, learning and skills.

Theoretical framework
The pedagogic device
The pedagogic device describes the principles and processes 
through which knowledge (intellectual, practical, expressive, 
official or local) is transformed into pedagogic communication 
and distributed to different social groups via, for example, 
the education system (Bernstein, 2000, p. 50). The device also 
brings into focus the inherent relay of external relations of 
power and control that occur in this transformation process 
(Bernstein, 2003, p. 171). This transformation of knowledge is 
ordered by specific rules that regulate how and which 
knowledge is distributed to different groups (distributive 
rules), how knowledge is recontextualised into a pedagogic 
discourse that enables pedagogic communication about 
the knowledge (recontextualisation rules), and the criteria for 
how the knowledge is to be acquired (evaluation rules). These 
rules capture the relationship of power, knowledge and 
consciousness in the construction of pedagogic discourses 
and in how these discourses are made available to different 
groups (Bernstein, 2000, p. 56). Each of these rules is 
associated primarily, but not exclusively, with a specific field 
of activity – of production (macro-level), recontextualisation 
(meso-level) and reproduction (micro-level) (Singh, 2002). It is 
within these fields that selections of produced knowledge 
(e.g. produced by academics) are made available for 
recontextualisation into a form suitable for pedagogic 
communication (e.g. curriculum documents and textbooks) 
and distributed to other sites (e.g. schools) to be acquired 
(and internalised into consciousness) by designated groups 
(e.g. by specific learners) (Bernstein, 2003, pp. 181–184). 
Figure 1 summarises the fields and rules of the pedagogic 
device. Note that the arrows indicate hierarchical relations 
between the fields in the device: the distributive rules 
regulate which knowledge from the field of production is 
made available for recontextualisation into pedagogic 
communication and who this is made available to through 
recontextualisation and evaluation processes; this field in 
turn regulates the criteria through which the legitimised 
knowledge is to be recognised and realised as it is reproduced 
in pedagogic interactions (Bernstein, 2003, p. 172). 
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In relation to the analysis of school curricula that is the focus 
of this article, the pedagogic device enables a description of 
differences in the types of knowledge selected and 
recontextualised from varied fields of production in the 
development of the subjects ML and Mathematics in the 
official recontextualisation field. This facilitates analysis of 
similarities and differences in the forms of knowledge, 
practice and communication according to which participation 
in ML and Mathematics are legitimised and evaluated, and 
also shifts in the evaluation criteria between the NCS ML and 
CAPS ML curricula. 

Distributive rules and the structure 
of produced knowledge
New knowledge is produced at a macro-level by national 
and global and other regulatory agencies and the academic 
community. Distributive rules distinguish which new 
knowledges are deemed more or less worthwhile and, in so 
doing, give rise to a field of production that constructs and 
validates a specialised discourse for specific knowledges 
with specialised rules of access and control over this 
discourse (Bernstein, 2000, p. 31). Agents in the field of 
recontextualisation (e.g. policymakers; curriculum developers) 
make selections from this store of produced and validated 

knowledge for recontextualisation into pedagogic discourses 
that facilitate the transmission and acquisition of the selected 
knowledge. Distributive rules again influence decisions 
about which forms of the recontextualised knowledge should 
be transmitted to which groups. Similarly, agents in the field 
of reproduction (e.g. school leaders; teachers) also employ 
distributive rules to determine who is given access to what 
knowledge in pedagogic interactions.

To understand the type of knowledge (in the field of 
production) that is subject to recontextualisation and 
transformation into pedagogic communication (in the field of 
recontextualisation) for distribution to different social groups 
(in the field of reproduction), it is necessary to first distinguish 
two different forms of discourse and the knowledge 
forms realised by each discourse. Here Bernstein (1999) 
distinguishes between horizontal and vertical discourses. A 
horizontal discourse refers to everyday or common-sense 
knowledge and entails strategies and tacit understandings 
that are linked closely to their context of use, are acquired 
through encounters in common problems via everyday 
interactions with peers, the home and society, and are 
designed to maximise encounters in those contexts (Bernstein, 
1999, p. 159). The ‘common’ dimension of this type of 
knowledge means that everyone has potential access to it, 

Distributive rules
Regulate and order the creation and distribution

of a discipline’s store of valid knowledge.
Recontextualisation rules

Regulate transformation of selections 
of produced valid knowledge into 

pedagogic discourse.

Evaluative rules
Regulate acquisition of 

selections of valid knowledge 
via pedagogic practices.

Field of production Field of recontextualisation Field of reproduction

Distributive rules
Regulate who is given access to validated knowledge

Process: power
Determine relations of power between

social groups.

Process: transmission
Determines the conversion of 

knowledge into pedagogic discourse.

Process: acquisition
Determines acquisition of 

knowledge into consciousness.

Pedagogic function
Creation of new knowledge and theory formation.

Pedagogic function
Conversion of theory to curriculum.

Pedagogic function
Teaching, learning and assessment.

Macro-level domains
Academics, regulatory agencies.

Macro- & Meso-level domains
State dept., Teacher edu., textbooks.

Micro-level domains
Classrooms, tests.

Coherent, explicit, systematically 
principled, and integrated at the level 

of meaning rather than a specific 
context of use 

→ i.e. ‘Vertical discourse’.

Produced knowledges vary in terms of 
strength of ‘grammar’. 

Structure of produced knowledge

Recognition rules
Classification of 

pedagogic discourses
into subjects gives rise 

to specific criteria 
that learners must 

recognise to acquire 
the valid knowledge.

Realisation rules
The ways in which 
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how they construct and 
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legitimate knowledge
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Source: Adapted from Smith, M.D. (2023). The neoliberal structures of English in Japanese higher education: Applying Bernstein’s pedagogic device. Current Issues in Language Planning, 24(3), 
334–356. https://doi.org/10.1080/14664208.2022.2102330

FIGURE 1: Overview of the fields and rules of the pedagogic device.
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which negates the need for this type of discourse to 
be transformed into a form suitable for pedagogic 
communication via a formal educational interaction. In 
addition, the outcome of a learning interaction involving a 
horizontal discourse is most commonly the acquisition of a 
competence (Bernstein, 1999, p. 161). Knowledges of 
horizontal discourses are segmentally organised, meaning 
that the realisation of a discourse or practice will vary 
depending on how a specific culture segments and specialises 
practices (Bernstein, 1999, p. 159). 

By contrast, a vertical discourse is coherent, systematic and 
principled (as in the knowledge domains of mathematics or 
science), or comprises specialised languages with specialised 
criteria to be decoded or translated (as in the knowledge 
domain of history) (Bernstein, 1999, p. 159). The explicit and 
specialised knowledge structures realised by vertical 
discourses are related at the level of meanings rather than 
segments of context, which means that these explicit 
knowledges can be generalised across a range of contexts and 
applications (Bernstein, 1999, p. 161). Acquisition of the 
vertical discourse is realised by demonstrating competence 
with the specialised knowledges and languages that 
characterise the discourse, and is evaluated via a graded 
performance according to explicit evaluation criteria 
(Bernstein, 1999, pp. 161–162). It is this type of specialised 
knowledge that is subject to creation, ordering and 
distribution in the field of production of the pedagogic 
device. In addition, given the specialised nature of knowledge 
realised by vertical discourses, access is facilitated through 
recontextualisation and transformation of the knowledge 
into a form of pedagogic communication (in the field of 
recontextualisation) amenable to pedagogic interactions (in 
the field of reproduction). This means that, in contrast to 
everyday knowledge forms associated with horizontal 
discourses, not everyone has access to the specialist 
knowledges of vertical discourses; rather, different vertical 
discourses are differentially distributed to different groups 
and individuals through recontextualisation and pedagogic 
processes. In other words, the distributive rules of the 
pedagogic device regulate relations of power between 
different social groups (Bernstein, 2000, p. 28).

Within vertical academic discourses, distinctions can then be 
made between forms of knowledge exhibiting stronger and 
weaker ‘grammars’. Grammar here refers to the degree to 
which a form of knowledge is characterised by a language 
with an ‘explicit conceptual syntax capable of “relatively” 
precise empirical descriptions and/or of generating formal 
modelling of empirical relations’ (Bernstein, 1999, p. 164). 
The strength of grammar refers to the extent to which 
participation in and with a particular form of knowledge is 
dependent on an understanding of specialised language, 
symbols and discourse. For example, Mathematics requires 
engagement with a highly specialised, abstract and 
generalisable language (including symbols and notation), 
and mathematical language is easily identifiable. Thus, 
mathematics exhibits a strong grammar. By comparison, ML 

exhibits a weaker grammar due to the presence of more 
localised context-specific terms and notations that must be 
engaged with to support real-world problem-solving 
activities. This makes it harder to identify whether a specific 
utterance or term or symbol relates specifically to the 
discourse of the subject ML or whether it relates to a different 
discourse (e.g. the discourse of shopping). This issue will be 
discussed in more detail later.

Recontextualisation rules and the 
construction of pedagogic discourse
As mentioned above, agents operating in the field of 
recontextualisation select knowledge from the store of 
produced and validated knowledge and recontextualise and 
transform the knowledge into a form of specialised 
communication, namely pedagogic discourse. This pedagogic 
discourse is designed to facilitate the transmission and 
acquisition of the selected knowledge via an educational 
experience (Bernstein, 2003, p. 174). Importantly, 
recontextualisation involves the delocation of the original 
discourse from the field of knowledge production and its 
relocation to another site where it is changed: the 
recontextualised discourse no longer resembles the original 
discourse because it has been pedagogised in privileged texts 
(e.g. curriculum documents and textbooks) into a form of 
pedagogic communication suitable for transmission (e.g. by 
teachers) and acquisition (e.g. by learners) in the field of 
reproduction (Bernstein, 2000, p. 57). This recontextualised 
discourse exhibits specific recontextualisation rules that define 
which elements of the knowledge from the field of production 
are selected for inclusion in pedagogic interactions, how this 
knowledge is sequenced and paced in those interactions (or 
framing – see below), and how this knowledge is distinguished 
from other pedagogic discourses (or classification – see below), 
together with a specific theory of instruction that defines 
the rules of transmission of the discourse (Bernstein, 1999, 
p. 176). It is these recontextualisation rules employed 
in recontextualisation processes that distinguish specialist 
pedagogic discourses for different subjects. Recontextualisation 
can occur at two levels that produce the privileged texts for 
the discourse: at an official level (e.g. the state-sanctioned 
curriculum) and at a pedagogic level (e.g. textbooks, classroom 
support materials, and teacher training initiatives). Note that 
it is the official recontextualisation of notions of mathematical 
literacy, captured in a specific way in the ML curricula in 
South Africa, that is a key site of analysis in this article.

Evaluation rules and the 
classification and framing of 
pedagogic practices
The field of reproduction is the arena of teaching and 
learning, and of the rules for the evaluation of these. Here 
pedagogic discourse is transformed into pedagogic practice 
as the privileged texts created in the field of recontextualisation 
are reproduced (and transformed again) by teachers as they 
seek to generate shared understandings with learners 
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(Bernstein, 2000, p. 59). Two additional concepts, classification 
and framing (Bernstein, 2000), require unpacking here to 
facilitate discussion of the evaluation rules that regulate how 
and whether learners are able to acquire the pedagogic 
discourse. Within the education system, various boundaries 
are established to distinguish different subjects (e.g. 
Mathematics and ML), groups (e.g. higher and lower 
attaining sets), and institutional contexts (e.g. studios for art 
and laboratories for science). Bernstein (2000, p. 30) refers to 
the strength of the boundaries between categories as 
classification – in other words, how strongly classified or 
insulated different categories of discourses, groups and 
spaces are from each other. The stronger the classification, the 
stronger the boundary between categories, the more 
distinguishable the categories are from each other, and the 
stronger the degree of specialism of discourse, knowledge, 
practice and identity in each category (Bernstein, 2000, p. 31). 
In the establishment of boundaries, different classifications 
contain unique internal rules that need to be recognised in 
order to participate legitimately in those categories. These 
recognition rules define the special features that distinguish 
the contents of one classification from another 
(e.g. Mathematics from ML from History) and allow learners 
to make inferences about what meanings are considered 
relevant and legitimate in a specific discourse, thereby 
enabling them to realise acquisition of the discourse 
(Bernstein, 2000, pp. 41–42). Not being able to access the 
recognition rules leads to powerlessness because it becomes 
impossible to replicate the forms of communication, 
knowledge and practice appropriate to that classification. 
Thus, power is an inherent principle of the classification 
process (Bernstein, 2000, p. 29). 

In addition to boundaries between classified categories, 
pedagogic experiences also involve issues of control within 
the interactions of those involved (e.g. teachers and learners). 
This is in relation to the framing of ‘who’ controls ‘what’ in 
respect of the message being communicated and also in 
terms of the form of communication: its sequencing, its 
pacing, the criteria that regulate how the communication is to 
be successfully realised, and the origins of the message 
content (Bernstein, 2000, pp. 29; 36–37). In a student-teacher 
interaction in a school setting, strong framing gives the 
teacher heightened control over what and how knowledge is 
communicated, sequenced and paced, which means there is 
a clearly visible pedagogic practice. By contrast, weak 
framing gives learners more opportunity to influence and 
direct the learning process, thereby making the pedagogic 
practice less visible (Bernstein, 2000, p. 38). Where 
classification constitutes specialised recognition rules for 
each classification, framing regulates the means through 
which learners acquire the discourse in a classification 
(Bernstein, 2000, p. 37). A key role of the teacher, then, is to 
support learners to recognise the principles and procedures 
of legitimate communication in the discourse. This will give 
them access to the rules, the realisation rules, that will enable 
them to realise acquisition of the discourse (Bernstein, 2000, 
p. 42). The combination of recognition and realisation rules 

enables both learners and teachers to evaluate what counts as 
legitimate realisations of the curriculum: teachers use these 
evaluative rules in their pedagogic practices to evaluate 
student understanding, while learners draw on the evaluative 
rules to acquire understanding.

In combination, the principles of classification and framing 
provide the rules of pedagogic practice for a specific 
pedagogic discourse: in specific relation to the institution of 
schooling, the strength of classification defines the structure 
and variations between curricula and subjects, while framing 
defines the structure and variations in pedagogy (Bernstein, 
1971). As such, changes (from strong to weak) in the 
classification and framing of pedagogic discourses (within 
the field of recontextualisation) will affect how pedagogic 
practice is organised (in the field of reproduction), including 
the types of communication, knowledge and practices 
considered valid, the criteria needed to recognise and realise 
the discourse, the type of instruction foregrounded, the roles 
of the teacher and student, the nature of knowledge itself, 
and the type of understanding (consciousness) that is 
privileged and expected (Bernstein, 2000, p. 39). 

This, then, brings to an end the discussion of the rules and 
fields of the pedagogic device. In the next section, the device 
is used to theorise ML and Mathematics as distinct pedagogic 
discourses. It will be argued that although both subjects 
recontextualise contents from the vertical discourse of the 
field of knowledge production of the discipline of 
mathematics, there are additional recontextualisation rules 
(including how ML and Mathematics are conceptualised 
within the field of knowledge production of mathematics 
education) that classify the subjects with unique and different 
recognition and realisation rules. In addition, the device is 
also used to identify shifts in the structuring of knowledge 
and evaluation in the NCS ML and CAPS ML curricula. 
Figure 2 captures this intended application of the pedagogic 
device in relation to the three areas of focus framed by the 
research questions.

Mathematics and Mathematical 
Literacy as distinct pedagogic 
discourses
This section addresses the first research question: How is the 
school subject ML, and the criteria for legitimate knowledge, 
practice and communication in this subject, different from the 
school subject Mathematics? 

As identified previously, the school subjects Mathematics 
and ML are characterised as different in kind and purpose. 
Viewed through the lens of Bernstein’s pedagogic device, 
these two subjects represent distinct classifications of pedagogic 
discourses in the field of recontextualisation. Both pedagogic 
discourses draw on selections of mathematical knowledge 
recontextualised from the vertical discourse of the discipline 
of mathematics in the field of production. Both discourses 
also foreground engagement with selections of extra-
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mathematical contextual elements located outside the 
discourse of mathematics (e.g real-world applications). These 
selections have been structured into a systematic, coherent 
and principled form for each subject, and captured in 
distinct curriculum and assessment policies in the official 
recontextualising field by the DoE and DBE (Mathematics – e.g. 
DBE, 2011b; DoE, 2003b; ML – e.g. DBE, 2011a; DoE, 2003a). 
The pedagogic discourses of the subjects Mathematics and 
ML have then been made available to different groups via 
specific distributive rules that define the criteria for access to 
each classification. Namely, at a policy level (the official 
recontextualising field) ML was intended for the high 
proportion of learners who historically may have opted out 
of continuing with Mathematics in their final three years of 
schooling while Mathematics is targeted at learners intending 
to pursue future mathematics-related areas of study and 
work. At school level (the field of reproduction), ML is 
commonly selected by learners who do not require 
mathematics for future study or work opportunities, learners 
who have had unsuccessful prior learning experiences in 
Mathematics, and learners who see ML as easier than 
Mathematics (Jacobs & Mhakure, 2015; Masuku, 2014).

Although both subjects draw on selections of mathematical 
knowledge and extra-mathematical content, there are a 
number of key differences in how these selections are 
recontextualised (i.e. the recontextualisation rules) into 
pedagogic discourses for each subject. First, the scope, 
quantity and complexity of the mathematical content in ML 

is significantly lower than in Mathematics. This applies to 
both the NCS ML and CAPS ML curricula, with the former 
specifying ‘basic mathematical skills’ (DoE, 2003a, p. 9) and 
the latter ‘elementary mathematical concepts’ (DBE, 2011a, 
p. 8) needed for analysing and solving problems encountered 
in everyday situations. Most of the mathematics content in 
ML reflect content already encountered in previous grades, 
with the main focus instead on their functional use in real-
world problem-solving experiences. It is for this reason that 
the original NCS ML curriculum states that ‘Mathematical 
Literacy should not be taken by those learners who intend to 
study disciplines which are mathematically based, such as 
the natural sciences or engineering’ (DoE, 2003a, p. 11). By 
contrast, the content of the subject Mathematics builds on 
and extends the mathematics encountered in previous grades 
to provides the platform for learners seeking future study or 
career opportunities involving theories and applications of 
abstract mathematical relationships (DBE, 2011b, p. 10; DoE, 
2003b, p. 11).

A second difference shifts focus away from how knowledge in 
each subject is recontextualised from selections of the 
discipline of mathematics. Instead, we can also consider the 
distinctive way in which learning is conceived in the pedagogic 
discourses for each subject, which directly affects the evaluation 
rules for the acquisition of each discourse. As stated previously, 
Mathematics is viewed by the DBE as a symbolic language for 
describing numerical, geometric and graphical relationships 
(DBE, 2011b, p. 8). Although the ‘applied’ dimensions of 

Distributive rules in the field of production
employed by agents operating in 

macro-level domains (Academics, global
assessment agencies [e.g. PISA])

Distributive rules
at policy and curriculum level (official recontextualisation field) and school level (field of reproduction)

regulate who is given access to and encouraged to study Mathematics and ML

Pedagogic device

Regulate and order the creation and
distribution of what counts as valid

mathematical knowledge:

Recontextualisation rules in the field of recontextualisation
employed by agents operating in Macro- &-meso-

level domains

Regulate the transformation of selections of 
knowledge from the  discipline of mathematics and field

of mathematics education into distinct pedagogic discourses for:

Foregrounding of learning and application 
of abstract mathematical concepts.

Mathematics curriculum 

ML curricula
Foregrounding of the functional use of basic mathematics,

contextual knowledge and technology to inform problem-solving in
real-life settings to support development of:

Evaluative rules in the field of
reproduction employed by agents

operating in the micro-level domains
(school and classroom)Department of (basic)

education [official 
recontextualisation field]

Publishers; teacher trainers
[pedagogic recontextualisation 

field]

Regulate acquisition of selections of valid
knowledge via pedagogic practices:

Teachers and learners in 
mathematics classrooms interact 

to recognise & realise abstract 
mathematical concepts and 

applications.

Teachers and learners in ML 
classrooms interact to recognise and 

realise real-world problem-solving 
and decision-making experiences.

NCS CAPS
critical citizenship empowered life-preparedness

RQ1: How is the subject ML, and 
the criteria for legitimate 

knowledge and practice in this 
subject, different from the subject 

Mathematics?

RQ3. In what ways and how does the 
intended curriculum of the CAPS ML 
facilitate a life-preparedness orientation 
for empowered self-management and 
citizenship?

RQ2: How and why are
the criteria for legitimate

mathematical literacy
knowledge and practice
different in the NCS ML

and the CAPS ML?

Discipline 
of 

mathematics 

Vertical discourses of:

Field of 
mathematics 

education 

FIGURE 2: Analytical framework of the use of Bernstein’s (1999, 2000, 2003) theoretical constructs in the analysis of the ML and Mathematics curricula.
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problem-solving and modelling are recognised (DBE, 2011b, 
p. 8), the subject is also seen as a discipline in its own right that 
does not necessarily require real-life applications (DoE, 2003b, 
p. 9). Acquisition of the pedagogic discourse of Mathematics is 
to be recognised and realised by communicating understanding 
of its specialised intra-mathematical content and by using 
these specialised components to identify, describe, model, 
solve and engage critically with mathematical and, at 
times, extra-mathematical problems involving mathematical 
patterns and relationships (DBE, 2011b, pp. 8–9). In other 
words, the evaluation criteria reside in the principles of 
the vertical discourse of mathematics, even when extra-
mathematical elements are included. This conceptualisation of 
the pedagogic discourse of the subject Mathematics shares 
similarities with particular perspectives (in the field of 
production of mathematics education) regarding the nature of 
mathematics as: an abstract science of developing, describing 
and understanding intra-mathematical relationships, patterns, 
objects, symbols, notation and language (pure mathematics), 
and applied to support understanding and develop aspects 
of extra-mathematical content (applied mathematics), and 
also as a teaching subject that facilitates transmission, the 
dissemination and the furtherance of mathematics as a 
discipline (Niss, 1994, p. 367). 

By contrast, the subject ML foregrounds an intention for 
enabling learners to ‘develop the ability and confidence to 
think numerically and spatially in order to interpret and 
critically analyse everyday situations and to solve problems’ 
(DoE, 2003a, p. 9). This is to be achieved by engaging in real-
world problem-solving experiences in authentic real-life 
contexts in pursuit of critical citizenship (NCS ML) and 
empowered life-preparedness (CAPS ML): ‘The approach 
that needs to be adopted in developing Mathematical 
Literacy is to engage with contexts rather than applying 
Mathematics already learned to the context’ (DoE, 2003a, p. 
42); ‘mathematical content is simply one of many tools that 
learners must draw on in order to explore and make sense of 
appropriate contexts’ (DBE, 2011a, p. 9). Acquisition of the 
pedagogic discourse of ML, then, is to be recognised and 
realised by demonstrating confidence and skill in using a 
combination of mathematical, contextual and technological 
tools, understandings and knowledge to make sense of, solve 
and communicate informed decisions about problems 
encountered in both familiar and less or unfamiliar daily 
life, workplace and societal contexts: ‘Learners who are 
mathematically literate should have the capacity and 
confidence to interpret any real-life context that they 
encounter, and be able to identify and perform the techniques, 
calculations and/or other considerations needed to make 
sense of the context’ (DBE, 2011a, p. 8). As such, and in 
contrast to the subject Mathematics, any mathematical 
content used or learned in the subject ML has a functional 
purpose for supporting informed and critical decision-
making and problem-solving in real-world contexts. 

This conceptualisation of the pedagogic discourse of the 
subject ML shares similarities with particular perspectives (in 

the field of production of mathematics education) regarding the 
nature of mathematical literacy. To begin with, 
conceptualisations of mathematical literacy in this field share 
emphasis on an interplay of mathematics and real-life 
contexts: the functional use of mathematics in real-life (extra-
mathematical) settings and problems (Niss, 2015, p. 410). 
Differences between conceptualisations arise specifically 
with respect to the perceived outcome and purpose of 
integrating mathematics and context: ‘Different conceptions 
of mathematical literacy are related to how the relationship 
between mathematics, the surrounding culture, and the 
curriculum is conceived’ (Jablonka, 2003, p. 80). In relation to 
these differences, Julie (2006, p. 62) argues that the definitions 
of mathematical literacy are on a continuum, spanning 
from mathematical literacy for entry into mathematics (1) 
to mathematical literacy for critical interaction with 
mathematical structures and installations in society (4). 
Jablonka (2003, p. 76) illuminates the in-between categories 
as: (2) developing basic computation skills needed for 
everyday contexts and (3) developing more complex 
problem-solving and modelling skills needed for society and 
the workplace (Jablonka, 2003). These perspectives represent 
a ‘spectrum of agendas’ for mathematical literacy, and the 
shift from (1) to (4) represents a change in prioritisation of the 
mathematical terrain to the contextual terrain (North, 2015, 
p. 38). While the first perspective has as an explicit goal 
the development of mathematical knowledge, the fourth 
perspective aims to develop critical engagement with 
real-world problem environments and the forms of 
communication, knowledge and practice that facilitate 
empowered participation, communication and decision-
making in those environments. In respect of these different 
conceptions, the descriptions given above of characteristics 
of the pedagogic discourse for the subject ML signal a 
combination of agendas. Specifically: in the NCS ML 
curriculum – computation skills for everyday self-
management (2) and critical engagement with how 
mathematics is used in the world (4); in the CAPS ML 
curriculum – preparation for problem-solving experiences in 
life and the workplace (3). The specifics of how these agendas 
are characterised in each of the ML curricula will be discussed 
further in the next section.

The heightened emphasis in the subject ML on more 
contextually oriented agendas signals another distinctive 
recontextualisation rule for the pedagogic discourse of ML. 
Namely, that the pedagogic discourse for this subject 
includes selections of knowledge recontextualised from 
both vertical and horizontal discourse domains. As discussed 
above, selected mathematical content is recontextualised 
from the vertical discourse of the discipline of mathematics 
in the field of production. However, and in addition, 
horizontal discourse elements – including everyday 
situations, problems, language, notation, knowledge, tools 
and techniques – are also appropriated and recontextualised 
from the terrain of the real world. In other words, the 
pedagogic discourse for ML recognises that effective 
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problem-solving in real-world settings requires two 
different types of knowledge: competence with selected 
specialised mathematical content generalisable across a 
range of contexts and applications, and understanding of 
local and context-specific information, language, practices 
and considerations that reflect how people act, make 
decisions and communicate effectively in those contexts. 
Hence the stipulations in the NCS ML and CAPS ML 
curricula for the subject to be ‘rooted in the lives of the 
learners’ (DoE, 2003a, p. 42), with ‘incorporation of local 
practices’ (DoE, 2003a, p. 43), and recognition of ‘non-
mathematical skills and considerations in making sense of 
those contexts’ (DBE, 2011a, p. 8). Whereas in the subject 
Mathematics the recognition and realisation rules reside 
primarily in the vertical domain discourse of mathematics, 
in the subject ML these rules require consideration of both 
mathematical and everyday forms of knowledge, practice 
and communication. Faculty only with horizontal discourse 
elements of the everyday world is not sufficient. After all, if 
the content of an everyday practice can be learned in the 
context of the practice, why is there a need to engage such 
content in a formal academic experience? Equally, faculty 
only with vertical discourse elements of the mathematical 
domain is also insufficient since competence in intra-
mathematical contents does not necessarily equate to 
enhanced functionality in the extra-mathematical real-
world. The implication of the above is that, at the level of 
curriculum intention at least, the discursive practices of ML 
have weaker grammars than Mathematics, involving some 
discursive elements and practices that are linked to their 
context of use and which may not have a specialised or 
explicit conceptual syntax or be generalisable to other 
contexts.

Despite these differences in the recontextualisation rules and 
consequent pedagogic discourses for the subjects ML and 
Mathematics, a number of curriculum features of the original 
NCS ML curriculum, together with operationalisations 
of this curriculum in national assessments, blurred the 
distinctions in the evaluation criteria of these subjects. This 
resulted in participation in ML being evaluated primarily 
accordingly to overly mathematised ways of working 
in pseudo-real contexts. The system-wide curriculum 
review in 2010 that resulted in the CAPS ML curriculum 
provided the opportunity to more clearly distinguish ML 
from Mathematics and to more clearly define the recognition 
and realisation rules around contextual problem-solving and 
informed decision-making practices. In the next section, the 
evolution of these two ML curriculum instantiations is 
discussed, and a range of Bernstein’s concepts are used to 
rationalise differences between the curricula.

Evolution of the intended 
curriculum for Mathematical 
Literacy in South Africa
The discussion in this next section will address the second 
research question: How and why are the criteria for legitimate 

mathematical literacy knowledge, practice and communication 
different in the ML NCS and in the ML CAPS?

First curriculum instantiation – 
Mathematical Literacy National 
Curriculum Statement
The original curriculum for the subject ML, encapsulated 
within the NCS framework, embodied a theory of instruction 
of an outcomes-based curriculum model that prioritised a 
learner-centred and activity-based approach to education 
(DoE, 2003a, p. 2). This curriculum was structured around 
four broad learning outcomes for learners to demonstrate by 
the end of the learning process – LO 1: Numbers and 
operations in context; LO 2: Functional relationships; LO 3: 
Shape, Space and Measurement; LO 4: Data Handling (DoE, 
2003a, pp. 11–12). Each learning outcome was accompanied 
by a number of assessment criteria stipulating content, 
skills and procedures to evidence each learning outcome 
(Figure 3). 

Within this outcomes-based approach, teachers were 
positioned as active mediators of learning, interpreters and 
designers of learning programmes and materials (DoE, 
2003a, p. 5). This characterised weak framing on two 
dimensions. First, with respect to the degree of state control 
of the selection, sequencing and pacing of content. Second, 
with respect to both teachers and learners being given 
heightened control and responsibility as co-participants in 
the learning process. Understandably, this approach sought 
to directly redress the discriminatory, exclusionary and 
highly controlled nature of the Apartheid education system. 
Consequently, the curriculum aims also directly foregrounded 
a critical citizenship dimension, with emphasis on the 
importance of education (and participants in the education 
system) for building an equitable democratic society (DoE, 
2003a, pp. 1, 5, 10). To facilitate this critical citizenship 
dimension, the NCS ML curriculum foregrounded 
engagement with real-life contexts ‘rooted in the lives of the 
learners’ (DoE, 2003a, p. 42), signalling weakened classification 
of the boundary strength between academic and everyday 

Learning outcome 2

Func�onal rela�onships

The learner is able to recognise, 
interpret, describe and represent 
various func�onal rela�onships to 
solve problems in real and
simulated contexts.

We know this when the learner is able to:

10.2.1 Work with numerical data and
            formulae in a variety of real-life
            situa�ons, in order to establish
            rela�onships between variables by:

(Types of rela�onships to be dealt
with include linear, inverse
propor�on and compound growth
in simple situa�ons.)

• Finding the dependent variable;
• Finding the independent variable;
• Describing the rate of change.

Assessment standards

Source: Department of Education (DoE). (2003a). National curriculum statement grades 
10–12 (General): Mathematical literacy (p. 20). Pretoria: Government Printers

FIGURE 3: Learning Outcome and Assessment Standard structure in the NCS ML 
curriculum.
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knowledge. At an ideological level, then, the NCS conception 
of mathematical literacy foregrounded learners being able to 
use mathematics to engage critically with societal issues 
(intended realisation rules for legitimate acquisition of this 
discourse) (DoE, 2003a, p. 10).

However, the four learning outcomes that frame the NCS ML 
curriculum content corresponded closely to traditional 
mathematics content domains and resemble the learning 
outcome domains of the Mathematics curriculum (LO 1: 
Numbers and Number relationships; LO 2: Functions and 
Algebra; LO 3: Shape, Space and Measurement; LO 4: Data 
Handling and Probability) (DoE, 2003b, pp. 12–14). In 
addition, these content domains were strongly classified 
(internally) from each other, with no clear commentary or 
cross-referencing of how the content of one learning outcome 
might relate to another. Progression through the curriculum 
was structured predominantly around engagement with 
increasingly sophisticated mathematical content. For 
example, ‘Solve problems in 2-dimensional and 3-dimensional 
contexts by estimating, measuring and calculating values 
which involve: Grade 10 – volumes of right prisms; Grade 11 
– volumes and surface areas of right prisms and right circular 
cylinders; Grade 12 – volumes and surface areas of right 
prisms, right circular cylinders, cones and spheres’ (DoE, 
2003a, pp. 24–25). This weakened the strength of external 
classification between ML and Mathematics, since both were 
organised around increasingly complex mathematical 
content. This made it harder to distinguish ML and 
Mathematics as different subjects, characterised by different 
pedagogic discourses, and comprising different forms of 
knowledge, practice and communication and different 
recognition and realisation rules for acquisition of these. 
The consequence was enactments of the NCS ML curriculum 
in national assessments (official recontextualising field) 
and pedagogic resources such as textbooks (pedagogic 
recontextualising field) that dealt with the interplay of 
mathematics and context in vastly different ways – in other 
words, divergent perspectives on the recognition and realisation 
rules for the subject. The national examinations were a 
particular case in point here, foregrounding heavily 
mathematised ways of working, commonly in relation to 
overly simplified pseudo-real-life contexts bearing limited 
resemblance to authentic real-life practices (North, 2015, 
2017). Confidence and competence with, primarily, 
specialised mathematical grammars, procedures, forms of 
knowledge and ways of working, and the ability to recognise 
(recognition rules) and communicate about mathematical 
elements in contrived contextualised problems (realisation 
rules), were taken as evidence of successful acquisition of the 
pedagogic discourse of ML.

The prevalence and privileging of heavily mathematised 
forms of practice foregrounded an agenda for basic 
computation skills needed for everyday contexts (agenda 2). 
This agenda was at the expense of more complex real-world 
problem-solving and modelling (agenda 3) and critical 
evaluation skills needed to facilitate critical engagement with 

complex real-world problems (agenda 4) (Jablonka, 2003; 
North, 2015). As such, this agenda contradicted and thwarted 
both the curriculum intention for weakened classification of 
academic and everyday knowledge and the ideological 
intention for critical citizenship. These curriculum 
contradictions and the privileging of overly mathematised 
problems and ways of working facilitated a number of 
criticisms of the NCS ML curriculum and its enactments. 
Julie (2006) argued that a weak and largely futuristic action 
component in the curriculum would negate opportunities for 
learners to challenge issues of domination and discrimination 
in their current lives. This, in turn, would risk enactments of 
the curriculum degenerating into nothing more than 21st 
century arithmetic (which, as described above, is precisely 
how aspects of the curriculum came to be enacted in 
the national examinations). Christiansen (2007) similarly 
questioned the potential of the subject to facilitate a 
‘livelihood gaze’ over a ‘mathematical gaze’ and, so, to 
challenge social inequality. Two components underpinned 
this view: first, the organisation of the curriculum around 
mathematics often not useful for everyday practices; second, 
invocation of overly simplistic contexts lacking insight into 
complex phenomena. At a classroom level, inconsistent 
messaging in curriculum-related documents about the 
interplay of mathematics and contexts (Mthethwa, 2009) 
influenced four distinctive and sometimes incompatible 
pedagogic agendas in teaching and assessment practices. 
These agendas were: prioritisation of sense-making of 
contexts relevant to learners’ lives, exclusive prioritisation 
of mathematical learning, equal consideration given 
to mathematical learning and relevant contexts, and 
prioritisation of mathematics but embedded in largely 
pseudo-contexts designed to foreground mathematical ideas 
(Venkatakrishnan & Graven, 2007). At an assessment level, 
North and Christiansen (2015) argued that statutory 
assessment practices in the subject were dominated by 
engagement with highly mathematised and mythologised 
representations of reality (the fourth pedagogic agenda 
above), and that this negated any opportunities for either 
successful apprenticeship in mathematics beyond basic 
competence or for more enhanced preparation for real-world 
functioning. By implication, participation in the subject 
limited rather than afforded access to future career and 
study opportunities and, in doing so, facilitated a degree 
of educational disadvantage and inequality within the 
institutionalised curriculum framework (North, 2015). 

Second curriculum instantiation: 
Mathematical Literacy Curriculum 
and Assessment Policy Statement
In 2009, a curriculum review for all subjects was initiated by 
the DoE to ‘address the complexities and confusion created 
by the NCS curriculum and assessment policy vagueness 
and lack of specification, document proliferation and 
misinterpretation’ (DoE, 2009, p. 8). This review resulted in 
the development of CAPS for all secondary school subjects, 
and in the second instantiation of the curriculum for the 
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subject ML. A key requirement of the CAPS development 
process was to unpack the more vaguely constituted 
outcomes-based statements in the NCS curricula to provide 
more detailed specifications of content, progression, 
sequencing and assessment criteria. In other words, 
significantly heightened state control and regulation (framing) 
of legitimate knowledge for each subject and also explicit 
clarification of the recognition and realisation rules needed 
for acquisition of legitimate knowledge, practice and 
communication. This would position the CAPS documents 
as the definitive source of information (DoE, 2009, p. 8) for 
teachers (in the field of reproduction) and other role players (in 
the pedagogic recontextualising field), thereby strengthening 
implementation by ensuring more consistency in teaching 
and assessment structures between the intended and enacted 
curriculums. This approach also constituted a move away 
from an outcomes-based approach in favour of a discipline-
based curriculum (Graven et al., 2022) with more clearly 
defined and more strongly classified subject boundaries. 
Consequently, the CAPS curriculum, compared with the 
NCS curriculum, embodies a shift within the official 
recontextualisation field at curriculum level: from macro-
level focused mainly around broad assessment outcomes 
(system and national specifications) to meso-level (school) 
and micro-level (classroom and teacher) with a high degree 
of specification and regulation of the criteria for instruction 
and associated pedagogic practices.

The development of the CAPS ML curriculum sought both to 
operationalise these ideals, and to address the previously 
discussed criticisms and challenges experienced in the subject 
as a result of the weaker framing and classification of knowledge 
of the NCS ML. In particular, a key aim was to more strongly 
classify ML as a distinct subject, with clearly identifiable 
recognition and realisation rules that were easily distinguishable 
from the evaluation criteria in Mathematics. This involved 
reframing the underlying ideological orientation of what 
constitutes mathematical literacy in the curriculum. An 
essential starting point here was acknowledgement that it is 
problematic when claims are made that heavily mathematised 
practices in pseudo-real contexts better prepare participants 
for more effective participation in real-world practices. 
Instead, since the mathematised world represents a 
mythologised version of reality (Dowling, 1998), participation 
with this world does not equate to more empowered 
functioning in the real world. To overcome this issue, the 
CAPS ML recontextualised (from the field of production of 
mathematics education) a particular notion of mathematical-
literacy-for-empowered-life-preparation (Venkat, 2010) to 
foreground a primary ideological orientation for the subject 
as an ‘empowered life-preparedness orientation’. In this 
orientation, the goal for the realisation of mathematical 
literacy is enhanced and empowered functioning and self-
management in daily life and workplace practices facilitated 
through the capacity to use mathematics and other tools to 
support authentic contextual problem-solving and critical 
decision-making experiences (DBE, 2011a, p. 9). An 
empowered life-preparedness orientation affords preparation 

for effective functioning in everyday life through exposure to 
existing everyday forms of knowledge, participation and 
communication, and to possible alternative forms derived 
through mathematically and technologically informed 
considerations and descriptions. The orientation seeks to 
understand how people think, act, behave and communicate 
in real-world contexts, and then to explore how they might 
think, act, behave and communicate differently from a 
mathematically and technologically oriented perspective. 
This orientation foregrounds more contextually focused 
agendas for critical engagement with complex problem-
solving experiences in society and the workplace (agenda 3) 
(Jablonka, 2003; North, 2015) and is to be achieved, 
pedagogically, via a particular view of the interplay of 
mathematical and contextual elements:

If Mathematical Literacy is seen in this way, then a primary 
aim in this subject is to equip learners with a set of skills 
that transcends both the mathematical content used in 
solving problems and the context in which the problem is 
situated. In other words, both the mathematical content and 
the context are simply tools: the mathematical content 
provides learners with a means through which to explore 
contexts; and the contexts add meaning to the mathematical 
content. But what is more important is that learners 
develop the ability to devise and apply both mathematical 
and non-mathematical techniques and considerations in 
order to explore and make sense of any context, whether  
the context is familiar or not. (DBE, 2011a, p. 9: original 
emphasis)

The life-preparedness orientation for empowered self-
management and citizenship is embodied in a number of 
curriculum features. These features are motivated by an 
attempt to strengthen the classification of ML as a distinctive 
pedagogic discourse and weaken the classification between 
academic and everyday knowledge. The features also 
redefine the evaluative (recognition and realisation) rules for 
legitimate communication, knowledge and practice 
according to engagement in authentic contextual problem-
solving and informed decision-making experiences. Some 
of these features are captured explicitly in the descriptors 
of the ‘five key elements of Mathematical Literacy’ in the 
CAPS ML curriculum (DBE, 2011a, pp. 8–10). Namely, that 
ML involves: the use of elementary mathematical content, 
authentic real-life contexts, solving familiar and unfamiliar 
problems, decision-making and communication, and the 
use of integrated content and skills in solving problems. 
Additional features are reflected in how the curriculum 
and specifications of content are organised and structured, 
and criteria for progression. All features are based on a 
theoretical language of description (North, 2015, 2017) of 
the enabling criteria for a contextually focused agenda 
for critical engagement with real-world practices, and of 
the components deemed necessary to facilitate and 
operationalise this orientation in produced texts (such as 
textbooks, curricula and assessments). This language of 
description aligns with modelling approaches informed 
by a more a situated orientation (Niss et al., 2007, p. 5), 
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which acknowledge heightened emphasis on the 
extra-mathematical realm and on developing skills that 
facilitate the use of mathematical and real-world 
knowledge in the modelling of real-world problems. These 
features will now be discussed and exemplified in relation 
to the CAPS ML curriculum extract shown in Figure 4. The 
discussion of these features, in conjunction with the 
characterisation of an empowered life-preparedness 
orientation in the preceding discussion, directly addresses 
the third research question: In what ways and how does the 
intended curriculum of the CAPS ML curriculum facilitate a 
life-preparedness orientation for empowered self-management 
and citizenship? 

Feature 1: Curriculum organisation 
around applications
This first feature operates at the level of curriculum 
organisation. To foreground the importance of the real-world 
and applications in that world, the CAPS ML curriculum 
makes a distinction between ‘Application Topics’ and ‘Basic 
Skills Topics’ (see Figure 5). Application Topics specify the 
real-world contexts to be investigated and the content and 
skills to be applied in solving problems in those contexts. By 
contrast, the Basic Skills Topics (discussed in more detail in 
Feature 4) specify elementary mathematical content and 
skills that learners have been exposed to in previous grades 

Topic: Maps, plans and other representaons of the physical world

Secon Content/skills to be developed in appropriate contexts

Use the following plans:

 • Rough and scaled floor/layout plans showing a top view perspec�ve (Grade 10)
 • Rough and scaled eleva�on plans (front, back and side) showing a side view perspec�ve (Grades 11 and 12)
 • Rough and scaled design drawings of items to be manufactured (e.g. clothing, furniture) (Grades 11 and 12)

In the context of:

In order to:

In order to:

• a familiar structure (e.g. classroom; room in a house → bedroom or lounge) (Grade 10)
• a less familiar structure (e.g. office space containing cubicles; a garden/tool shed) (Grade 11)
• a complex structure (e.g. house → RDP house) (Grade 12)

Understand the symbols and nota�on used on plans
(e.g. the symbol for a window is a double line; the symbol for a door is a ver�cal line a�ached to a quarter circle indica�ng
the swing direc�on of the door).

Describe what is being represented on the plans.
Analyse the layout of the structure shown on the plan and suggest alterna�ve layout op�ons.
Determine actual lengths of objects shown on plans using measurement and a given scale (number or bar scale).
Determine quan��es of materials needed by using the plans and perimeter, area and volume calcula�ons.

Understand the terms
• "North Eleva�on"; "South Eleva�on"; "East Eleva�on"; "West Eleva�on" and the relevance of compass direc�ons in the

construc�on of buildings.
Connect the features shown on eleva�on plans with features and perspec�ves shown on a floor plan of the same structure.

Determine the most appropriate scale (Grade 12) in which to draw a plan and use the scale (Grade 10 and 11).

Addional comments:

Possible assessment (incorporang plans, conversions, area, surface area, finance):

Possible assessment (incorporang finance, models, plans, perimeter, area, volume):
Assignment: Building a house
• Inves�gate the considera�ons involved in the construc�on of a house
• A�er interpre�ng the plans of a house, build a scale model and perform perimeter, area and
   volume calcula�ons in the context of fencing, paint, concrete, etc.
• Analyse a budget for the building project
• Analyse infla�on figures to predict possible adjustments to building costs.

Pl
an

s (
flo

or
, e

le
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o
n 

an
d 

de
sig

n 
pl

an
s)

Addi�onal contexts and/or resources include any other plans in the context of the learner's daily life and in less familiar
contexts rela�ng to simple and complex structures.

Assignment: Pain�ng a classroom
• Create accurate 2-dimensional scaled drawings of the inside walls of a classroom
• Use the plans to determine the quan�ty of paint needed to paint the classroom
• Prepare a budget to show the projected cost of pain�ng the classroom.

Determine how long/wide/high an object should be drawn on a plan when actual dimensions are known.
Draw scaled 2D floor and eleva�on plans for:
• A familiar structure (e.g. classroom; room in a house → bedroom or lounge) (Grade 10)
• A less familiar structure (e.g. office space containing cubicles; a garden/tool shed) (Grade 11)
• A complex structure (e.g. house → RDP house) (Grade 12).

Grade

10, 11 and 12

11 and 12

10, 11 and 12

11

12

Grades 10, 11 and 12

A
Source: Department of Basic Education (DBE). (2011a). Curriculum and Assessment Policy Statement (CAPS): Mathematical literacy (p. 77). Pretoria: Government Printers

FIGURE 4: CAPS ML curriculum extract.
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and which are deemed necessary for engaging with the 
contents of the Applications Topics (DBE, 2011a, p. 13). These 
basic skills comprise, primarily, the types of numeracy skills 
and arithmetic fluency that a person might encounter as they 
go about their everyday lives. Importantly, it is the content of 
the Application Topics that are the main focus of learning in 
the CAPS ML curriculum and the Basic Skills are intended 
to support specified problem-solving activities in the 
Application Topics. Hence, no weighting is allocated to the 
Basic Skills contents in any assessments (DBE, 2011a, p. 8).

This separation of real-world applications and basic 
mathematical skills, and the foregrounding of the former in 
learning processes, signal that the realisation and recognition 
rules for the pedagogic discourse of Mathematical Literacy in 
the CAPS ML curriculum reside in contextual problem-
solving practices rather than in the type of heavily 
mathematised mathematical competency practices that came 
to characterise enactments of the NCS curriculum.

The characterisation of the Application Topics also included 
an attempt to reorganise the CAPS ML curriculum differently 
from the mathematical content domains that structured the 
NCS ML. As such, the CAPS ML organises the curriculum 
around phenomenological categories that encapsulate broad 
areas of real-world experiences encountered by a self-
managing individual – for example, ‘Finance’ and ‘Maps, 
plans and other representations of the physical world’. This 
use of phenomenological categories was intended to weaken 
the strength of the boundary between academic and everyday 
knowledge (classification) and, so, to strengthen the 
classification of CAPS ML as distinctive from the structure 
and organisation of Mathematics. This approach contrasts 
with other prevalent school-level instantiations of 
mathematical literacy in the literature (e.g. OECD, 2018) that 
tend to retain more traditional content strand groupings 

while prioritising mathematical learning. However, the 
content domains of the CAPS ML curriculum remain too 
similar to the NCS ML curriculum and to some domains in 
the Mathematics curriculum (e.g. Finance and Probability). 
As such, it is unlikely that this attempted use of 
phenomenological categories will have strengthened the 
classification of CAPS ML from both NCS ML and 
Mathematics in the way intended. If a life-preparedness 
orientation is to be foregrounded in any future ML curriculum 
revisions, it is important for curriculum developers to 
consider whether some of the Application Topics 
(e.g. Probability) could be reframed even further to more 
closely reflect the realities of how these concepts are 
experienced in daily life (e.g. ‘Chance and Prediction’).

The curriculum extract shown in Figure 4 is from the Maps-
plans-and-other-representations-of-the-physical-world 
Application Topic and specifies some of the contents, skills 
and problem-solving experiences expected of learners when 
working with design drawings and floor and elevation plans 
(DBE, 2011a, pp. 77–78). In addition to this curriculum topic 
being more directly framed around a specific area of 
potential real-world experience, there is a prevalence of 
contextual language (e.g. quantities of materials, painting a 
classroom) and terminology (e.g. floor plan, North Elevation; 
budget), reflecting more closely how people might talk 
about these contents in these real-life settings (i.e. weak 
grammars). Here, being mathematically literate is recognised 
as and to be realised by engaging in an informed way in 
contextual problem-solving and decision-making practices, 
such as ‘painting a classroom’, rather than according to the 
degree of competence with mathematical ways of working. 
Since exposure to these problems in the subject may support 
learners to successfully engage with these concepts and 
tasks in current and future real-life situations beyond school, 
herein lies the potential for empowered life-preparation and 
self-management.

Feature 2: Engagement with real-life 
contexts and problems with a high 
degree of authenticity and which 
bear a strong resemblance to reality

In exploring and solving real-world problems, it is essential that 
the contexts learners are exposed to in this subject are authentic 
(i.e. are drawn from genuine and realistic situations) and 
relevant, and relate to daily life, the workplace and the wider 
social, political and global environments. Wherever possible, 
learners must be able to work with actual real-life problems and 
resources, rather than with problems developed around 
constructed, semi-real, contrived and/ or fictitious scenarios. 
(DBE, 2011a, p. 8)

When foregrounding an empowered life-preparedness 
orientation, the contexts engaged with are expected to bear a 
high degree of fidelity to authentic real-world practice (in 
ways recognised as genuine by people who work in those 
practices) (ML Key Element 2). However, there also needs to 

CAPS
Mathematics

NCS ML
curriculum

CAPS ML curriculum

Basic skills topics Application topics
Interpreting and
communicating
answers and
calculations

Finance, growth
and decay Numbers and 

operations
applied in
context

Finance

Number patterns, 
sequences and
series

Number and
calculations with
numbers

Functions Functional
relationships

Patterns, relationships
and representations

Analytical geometry

Shape, space
and 
measurement

MeasurementEuclidean geometry
and measurement

Trigonometry
Maps-plans-and-
other-
representations-of-
the-physical-world

Statistics Data handling Data handling
Probability Probability
Algebra
Differential calculus

FIGURE 5: Organisation of the CAPS ML, NCS ML and CAPS Mathematics 
curricula.
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be recognition that any analysis of a context in a classroom 
setting involves a recontextualisation of the context from the 
terrain of the everyday world and, as such, provides a limited 
and situated view of a contextual environment or practice. 
Authentic contexts require authentic activities and authentic 
cultural artefacts (e.g. newspaper articles, adverts, financial 
documents) drawn directly from real-world fields of practice. 
Engagement with these contexts, activities and artefacts 
should aim to facilitate a greater understanding of problems 
encountered in those contexts. In addition, there should be 
recognition and valuing of multiple solution paths and real-
world forms of practice and communication (see Feature 3). As 
such, within an empowered life-preparedness orientation, 
legitimate communication, knowledge and practice is 
recognised and realised (evaluation rules) through successful 
engagement in problem-solving and decision-making 
activities in segments of real-life contexts that bear a high 
degree of resemblance to reality, but which have been selected 
and potentially modified for exploration in a classroom setting. 
The curriculum extract shown in Figure 4 gives examples of 
the types of familiar (classroom; bedroom), less familiar (office) 
and increasingly complex (house) contexts for exploration in 
this topic. A defining characteristic of these and all other 
contexts specified in the curriculum is the clear and strong link 
to authentic real-life settings familiar to the learners or with 
the potential to be encountered in the future. 

This insistence on engagement with cultural artefacts drawn 
from authentic real-life contexts and a valuing of real-world 
forms of knowledge, practice and communication (weak 
grammars) significantly weakens the boundary strength 
(classification) between academic and everyday knowledge 
– much more so than in the NCS ML curriculum instantiation. 
This further strengthens the classification between ML and 
Mathematics as distinctive school subjects characterised by 
distinctive pedagogic discourses and evaluation criteria. In 
addition, there is a deliberate specification of a larger range 
of exemplar contexts in the CAPS ML curriculum and these 
exemplars foreground more explicitly the ‘authenticity’ 
criteria of the types of contexts deemed appropriate for 
investigation. This heightened specification of contexts 
signifies strengthened state regulation of what is considered 
to be legitimate knowledge, while at the same time giving 
both teachers and learners less control and agency over the 
content to be taught and learned – in other words, 
strengthened framing of state control of the selection of 
knowledge. 

Feature 3: Active problem-solving in 
authentic contexts 
According to the CAPS ML curriculum, ‘learners who are 
mathematically literate should have the capacity and 
confidence to interpret any real-life context that they 
encounter, and be able to identify and perform the techniques, 
calculations and/or other considerations needed to make 
sense of the context’ (DBE, 2003a, p. 9). Thus, the CAPS ML 
curriculum explicitly prioritises engagement with genuine 

problems in authentic contexts to facilitate the development 
of problem-solving skills that lead to the potential for more 
informed, empowered and enhanced decision-making in 
those (and other) contexts (DBE, 2011a, p. 9) (ML Key Element 
3). For example, as exemplified in the curriculum extract in 
Figure 4, ‘Determine quantities of materials needed by 
using the plans and perimeter, area and volume calculations’. 
As part of their problem-solving activities, learners are 
expected to consider a variety of tools and content, including 
contextual, mathematical and technological information, 
meanings, methods and terminology. By using these tools, 
learners are expected to develop the skills to model possible 
solutions to problems and to consider possible alternative 
ways of working in contextual practices to inform informed 
and empowered decision-making (DBE, 2011a, pp. 8–9). 
Learners are also expected to recognise the necessity for 
reasoning and reflection on the relevance and validity of both 
contextual and mathematical elements. For example, in the 
curriculum extract in Figure 4, it is expected that learners will 
learn to draw and use plans and models showing objects 
from different perspectives to inform decisions about 
material quantities when completing real-world projects 
(such as painting a room or building a structure); they will 
also be helped to recognise that although the calculated 
solution provides an important guideline of quantities, it is 
common and sensible practice to buy more than the calculated 
quantity to account for wastage and other practical 
considerations (e.g. DBE, 2011a, pp. 34 & 62). 

In addition, the CAPS ML also recognises and values the role 
of real-world forms of knowledge, communication, and 
flexible and less formal calculation strategies (e.g. estimation) 
to support problem-solving and decision-making activities 
(DBE, 2011a, pp. 8–9). Awareness of context-specific 
knowledge and terminology (e.g. Figure 4 – ‘Understand the 
symbols and notation used on plans’), emphasis on effort-
saving techniques (e.g. Figure 4 – ‘Use rough plans’), and 
informal or less formal mathematical techniques are all valued. 
An example of an informal technique from the Measurement 
curriculum topic is: ‘Determine length and/or distance using 
appropriate measuring instruments, including: “rule of 
thumb” methods (e.g. … one metre is approximately one large 
step/jump)’ (DBE, 2011a, p. 64). Appropriate and effective 
communication are further essential components of the 
contextual problem-solving process, evidenced by the ability 
to make comparisons, make appropriate choices and 
communicate findings using terminology and tools most 
appropriate to the context (DBE, 2011a, pp. 9–10) (ML Key 
Element 4). For example, in Figure 4, ‘Analyse the layout of the 
structure shown on the plan and suggest alternative layout 
options’. All of the above signal weakened classification 
between academic and everyday forms of discourse and 
knowledge. In addition, the valuing of contextual language, 
terminology and forms of communication signals a 
prioritisation of weaker grammars which may be more closely 
tied to specific contextual problems and situations, alongside 
stronger mathematical ones that can be applied across a range 
of contexts and problems.
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In respect of the previously mentioned, being mathematically 
literate is recognised in the CAPS ML curriculum as the 
capacity to draw on a range of mathematical, contextual and 
technological tools to support problem-solving and decision-
making in authentic real-world problem scenarios, and is 
realised by learners developing competence and confidence 
in being able to do this in relation to any contexts (familiar 
or not) that they encounter. Herein lies a key catalyst for 
potential empowerment for enhanced life-preparedness as a 
self-managing citizen in a way that could not be facilitated 
through the mathematised enactments of the original NCS 
ML curriculum. Note that despite the lowered teacher agency 
over selection, sequencing and pacing due to the strong 
regulation (framing) of the CAPS ML curriculum content, this 
emphasis on the development of problem-solving skills 
foregrounds the importance of learners as active role players 
in the learning process, which reinforces the empowerment 
agenda. 

Feature 4: Competence with 
elementary mathematical contents 
and skills
Contextual problem-solving and decision-making 
practices require a degree of fluency with financial, 
numeric, spatial and statistical components of the everyday 
world (ML Key Element 1). This is akin to what Skovsmose 
(1994, p. 47) refers to as ‘mathematical knowing’. As such, 
and as discussed previously, encapsulated primarily 
within Basic Skills curriculum topics is selected 
mathematical content drawn from mathematics curriculum 
specifications from earlier grades that reflects the types of 
numeracy and arithmetic fluency that a person might 
encounter in their daily lives. The CAPS ML curriculum 
expectation is that teachers should revise this content with 
learners as and when it is encountered and needed to 
support contextual problem-solving and decision-making 
activities in relation to the Application Topics (DBE, 2011a, 
p. 13). In addition, there is an explicit stipulation that 
mathematical content should not be taught in isolation of 
contexts (DBE, 2011a, p. 8) and that if ‘calculations cannot 
be performed using a basic four-function calculator, then 
the calculation is in all likelihood not appropriate for 
Mathematical Literacy’ (DBE, 2011a, p. 8). Recognition and 
realisation of the pedagogic discourse of ML, then, rest not 
in being able to demonstrate competency with basic 
mathematical skills. Instead, they are evidenced in the 
capacity to use some mathematics to engage meaningfully 
in complex problem-solving and decision-making 
practices in authentic real-world contexts.

The curriculum extract in Figure 4 specifies a range of 
mathematical content and skills embedded within the 
described contextual applications. For example, measurement 
of lengths, conversions, ratio (when using scales), analysing 
2D and 3D perspectives, perimeter-area-volume calculations, 
cost calculations involving cost rates, percentages (inflation), 
and so on. Note that these mathematical concepts are always 

kept in service to contextual problem-solving and decision-
making practices, as evidenced in the focus of the two 
suggested assessment activities (‘painting a classroom ’ and 
‘building a house’).

As shown in the curriculum extract in Figure 4, insistence on 
engagement with authentic real-life contexts (Feature 2), 
prioritisation of problem-solving activities (Feature 3), and 
recognition of the importance of some mathematical content 
(Feature 4) are reinforced in the CAPS curriculum via highly 
specified statements for each learning focus. These statements 
utilise a sequence of sentence starters to outline the scope of 
the contents, contexts and problems to be explored: 

‘Use the following’ (or ‘Determine’ or ‘Measure’ or ‘ 
Calculate’ or ‘Work with’) [Content]

‘In the context of [Context]

‘In order to’ [Problem-solving, applications and 
 decision-making]

This structure foregrounds the importance of problem-solving 
as a key behaviour and skill of an empowered self-managing 
mathematically literate citizen. Note that ‘Content’ does not 
only imply or specify mathematical content but is also taken to 
signify contextually specific knowledge, strategies, language 
and terminology. This approach, together with the inclusion of 
a suggested work schedule (including time allocations) for the 
teaching of the curriculum content (DBE, 2011a, pp. 15–19), 
facilitated a more strongly framed and regulated specification 
of the selection, sequencing and pacing of curriculum content. 
This strengthened framing enabled a more explicit statement of 
the recognition and realisation rules for what it means to be 
mathematically literate around contextual problem-solving 
and decision-making practices than was evident in the NCS 
curriculum, thereby strengthening the classification of the 
pedagogic discourse of ML as distinctive from Mathematics. 
Strengthened framing of the curriculum in this way was 
intended to ensure greater consistency between the intended 
curriculum and assessments produced in the official 
recontextualising field, textbooks produced in the pedagogic 
recontextualising field, and teachers’ pedagogic practices in the 
field of reproduction. Doing this, however, significantly 
weakened teacher agency over both content and pedagogy (in 
the field of reproduction). In addition, the CAPS ML instantiation 
does not provide an explicit explanation of the significance of 
these sentence starters for outlining the interplay of the 
content, contexts and problems to be explored. This is another 
oversight in the curriculum design that may have affected 
curriculum users’ understanding of the specific interplay of 
mathematics and contexts envisioned for supporting an 
empowered life-preparedness orientation for contextual 
problem-solving and decision-making.

Feature 5: Integration of contents 
and skills across topics
Problems encountered in everyday and workplace contexts 
rarely involve only a single piece of knowledge, content or 
skill and, rather, more commonly involve the use of several 
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of these drawn from a range of topics and sources (Tout 
et al., 2021). To reflect the intricate and intertwined nature 
of real-life problem-solving experiences, a deliberate 
attempt is made in the CAPS ML instantiation to signal 
cross-referenced links between different curriculum topics 
to encourage curriculum users to consider the holistic 
nature of contextual problem-solving practices (DBE, 2011a, 
p. 10) (ML Key Element 5). In other words, to support an 
empowered life-preparedness orientation, an attempt is 
made to weaken the classification between topic areas within 
the curriculum. For example, as shown in the curriculum 
extract in Figure 4, cross-referenced links are made to 
budgets and inflation (Finance), and to perimeter-area-
volume calculations, measurement of lengths and compass 
directions (Measurement), since these are common topics 
that people encounter when working with plans in real-life 
settings. 

Feature 6: Curriculum progression 
linked to complexity of contexts, 
content and problem-solving 
experiences
According to the CAPS ML curriculum, progression refers to 
the ‘process of developing more advanced and complex 
knowledge and skills’ (DBE, 2011a, p. 11). In many 
mathematics subjects, progression is defined principally 
according to engagement with increasingly complex and 
abstract mathematical contents. Shifting the recognition and 
realisation rules in the CAPS ML to an empowered life-
preparedness orientation necessitated a change in the way in 
which knowledge development was conceptualised and 
sequenced in the learning process. As such, progression in 
the CAPS ML curriculum occurs in relation to three 
interlinked dimensions: familiarity and complexity of 
contexts, complexity of content (mathematical and contextual 
knowledge, tools, resources, language and terminology), 
and increased independence in managing problem-solving 
experiences (DBE, 2011a, pp. 11–12).

In terms of familiarity and complexity of contexts, ‘Moving 
from Grade 10 to Grade 12, the contexts become less familiar 
and more removed from the experience of the learner and, 
hence, less accessible and more demanding’ (DBE, 2011a, 
p. 12). However, it is impossible to separate out the interplay 
between the contexts explored and the content engaged 
with in those contexts. Thus, progression is seen to occur in 
relation to the familiarity of a context and/or the complexity 
of the content being engaged with in a context. The ‘and/or’ 
is deliberate: it signals that at times the widening scope 
and unfamiliarity of contexts may embody more complex 
issues and real-life artefacts. At other times, however, the 
scope and familiarity of the contexts may remain unchanged, 
with the indicator of progression linked instead to the 
complexity of the resources and tasks to be engaged in the 
contexts.

So, in Grade 10, specific ‘content’ is explored in contexts that 
are linked primarily to the learners’ daily lives and school 
environment. For example, ‘plans’ of a classroom or room in a 
house (Figure 4), [Finance] household ‘budgets’; [Measurement] 
‘measuring weights’ for home cooking situations, [Data 
Handling] ‘analysing data’ on a personal cell-phone bill. In 
Grade 11 the scope of contexts is expanded to include 
scenarios in the wider community and workplace 
environment – thus, potentially further removed from the 
learners’ immediate experiences and understanding. For 
example, ‘plans’ of an office space (Figure 4), ‘payslips’ for a 
job, using ‘electronic measures to measure weights’ accurately 
in a workplace context, ‘analysing data’ for a small business). 
And, in Grade 12, the scope of contexts now includes issues 
on a national and global scale and more complex projects. For 
example, ‘plans’ for a house (Figure 4), the impact of ‘inflation’ 
on household ‘disposable income’, analysing ‘weight growth 
charts’ given to new parents, analysing ‘national’ health ‘data’. 
Note that in these Grade 12 examples, for house plans (in 
Figure 4) and inflation it is the complexity of the ‘content’ 
(plans and inflation) rather than the (un)familiarity of the 
contexts that signals the indicator of progression, since both 
examples refer to household contexts that could be classified 
as a ‘familiar’.

In terms of problem-solving experiences, increasing the 
complexity of contexts and content necessitates that learners 
engage in and with more complicated problems involving 
more complex and larger data and information. There is 
also the expectation that by the end of the qualification 
(Grade 12) learners can independently identify and use 
appropriate tools to model solutions and solve problems 
(DBE, 2011a, p. 12), which the CAPS ML curriculum posits 
as a key characteristic of a mathematically literate person 
(DBE, 2011a, p. 12). In Grades 10 and 11, by contrast, these 
problem-solving experiences involve higher levels of 
scaffolding and guidance (DBE, 2011a, p. 12). In relation to 
the curriculum extract in Figure 4, as the content and/or 
contexts become more complex (moving from a floorplan of 
a room to a floorplan of a house), so too does the complexity 
of the problem-solving required to successfully complete 
tasks in those contexts. For example, in Grade 10 learners 
are given scaled plans of familiar or smaller structures to 
interpret and work with or are given the scales in which to 
draw plans of these structures. In Grade 12, by contrast, 
learners have to first determine appropriate scales and then 
draw plans of more complex and potentially larger 
structures.

Implications, challenges and 
conclusion
Is curriculum design for empowered life-
preparedness and enhanced self-management 
really possible?
The CAPS curriculum makes a deliberate attempt to more 
strongly classify CAPS ML from Mathematics and to 
reformulate the recognition and realisation rules for the 
subject around the knowledge, skills and practices needed to 
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facilitate empowered life-preparedness. However, there is 
some evidence that current enactments of this CAPS 
curriculum in national assessments and localised teaching 
experiences deviate from the orientation for empowered life-
preparedness in the intended curriculum. North (2017) 
highlights how questions in national assessments continue to 
prioritise heavily mathematised ways of working in overly 
simplified pseudo-real contexts. Graven et al. (2022), also 
focusing on enactments of the curriculum in national 
assessments, similarly signal the continued prioritising of 
mathematised ways of working. They go further to 
problematise the type of reasoning and reflection legitimised 
in the examinations, arguing that the limited expectations for 
more open-ended reasoning and reflection thwart any 
opportunities for the types of discussions and thinking that 
would facilitate critical citizenship. At a classroom level, 
Khoza (2015) highlights the lack of awareness among teachers 
across a range of subjects (including ML) of the ideological 
and theoretical underpinnings of the current curriculum 
documents. As a result, these teachers continue to teach in 
traditional ways based on their past teaching experiences 
rather than trying to teach with fidelity to the ideology of the 
intended curriculum for their respective subjects. For the ML 
teachers in Khoza’s study, this involved continuing to 
foreground and prioritise mathematical knowledge, skills 
and ways of working. However, Machaba (2017) identifies 
that ML teachers do see ML and Mathematics as different and 
distinguish the types of teaching approaches in each subject: 
CAPS ML involves problem-solving and reasoning, while 
CAPS Mathematics involves rules, procedures, direct 
teaching and lots of practice. Despite teachers making this 
distinction, the examples that the teachers in Machaba’s 
study refer to in explaining differences reflect heavily 
mathematised problems. 

Only tentative suggestions can be offered for the persistence of 
these deviations towards mathematically oriented ways of 
working, as this remains an under-researched area. One reason 
could be the challenges that teachers face with their own 
contextual knowledge of complex real-life experiences, and of 
appropriate pedagogical strategies for teaching this contextual 
knowledge (Pillay & Bansilal, 2019). In addition, since many 
ML teachers have qualifications and backgrounds in teaching 
mathematics and limited training in how to teach ML 
(Machaba, 2017, p. 95), there may be a natural tendency for 
these teachers to prioritise more familiar mathematical ways 
of working over less familiar contextual elements. Linked to 
this is the prevailing issue of context relevance: given the 
significant socio-economic disparities between different 
groups in South Africa, examiners in particular need to ensure 
that the contexts in the national assessments don’t adversely 
benefit or disadvantage different groups. Shifting focus to 
mathematical content and downplaying contextual elements 
alleviates this issue to some extent. A further reason could be 
the difficulties faced by many learners with the heightened 
reading, interpretation and comprehension demands ushered 
in by the inclusion of contextual elements, particularly since 
the overwhelming majority of the learners in this subject do 

not have English as their home language. This was an issue 
that Debba (2011) identified in respect of enactments of the 
NCS ML curriculum, and it is likely that this remains an issue 
with the CAPS ML curriculum given the heightened 
expectations for engagement with authentic contexts and 
context-specific language, content and methods.

All of these issues warrant further investigation and point to 
the complexity of foregrounding an interplay of mathematics 
and context that places heightened emphasis on authentic 
contextual problem-solving and decision-making practices. 
Additional research is needed to better understand 
deviations from the intended curriculum (e.g. in the 
national examinations). This will enable analysis of how 
these deviations affect the way in which the curriculum 
is recontextualised (e.g. in textbooks in the pedagogic 
recontextualising field) and reproduced in pedagogic 
interactions (in the field of reproduction). This, in turn, will 
facilitate evaluation of the implications of these enactments 
for whether and how the empowered citizenship agenda is 
enacted. Empirical evidence is also needed to evaluate 
whether and how the life-preparedness orientation of the 
CAPS ML, and the curriculum features that support this 
agenda, facilitate empowerment in the way that is 
conceptualised in the curriculum. Finally, additional research 
is needed into the impact of the learners’ poor prior 
mathematical understandings from the General Education 
and Training band on their capacity for complex contextual 
problem-solving and decision-making.

As valid as these issues are, prioritising heavily mathematised 
ways of working over contextual problem-solving and 
decision-making practices runs the risk of undermining any 
agenda for empowerment by repositioning Mathematical 
Literacy in a mathematical frame and reconstituting it as a 
lesser form of mathematics. Empowerment for the 21st 
century future depends on flexible use of a range of tools 
and content drawn from a range of sources to solve complex 
problems in a variety of contexts. This can only be achieved 
if we acknowledge the limitations of mathematics for making 
sense of the world and focus attention instead on giving 
learners learning experiences that will actually enable them 
to become more independent, empowered and critical self-
managing citizens. This perspective has clear implications 
for all involved in any future ML curriculum revision 
initiatives and associated teaching, learning, assessment, 
teacher training and professional development resources 
for  the subject. Taking seriously the life-preparedness 
orientation of the curriculum and an agenda for 
empowerment requires careful attention to the interplay 
between contextual, mathematical and technological 
knowledge and, particularly, to the way in which 
opportunities for problem-solving in authentic real-life 
contexts are foregrounded and prioritised over mathematical 
ways of working. Anything less runs the risk of subjugating 
the hundreds-of-thousands of learners enrolled in ML to a 
limiting educational experience.

http://www.pythagoras.org.za


Page 18 of 19 Original Research

http://www.pythagoras.org.za Open Access

Acknowledgements
Competing interests
The author declares that they have no financial or personal 
relationships that may have inappropriately influenced them 
in writing this article.

Author’s contributions
M.P.N. declares that they are the sole author of this article 
and took full responsibility for all aspects involved in 
the conceptualisation, authoring, editing and submission of 
the article.

Ethical considerations
This article followed all ethical standards for research 
without direct contact with human or animal subjects.

Funding information
This research received no specific grant from any funding 
agency in the public, commercial or not-for-profit sectors.

Data availability
Data sharing is not applicable to this article as no new data 
were created or analysed in this study.

Disclaimer
The views and opinions expressed in this article are those of 
the author and do not necessarily reflect the official policy or 
position of any affiliated agency of the author.

References
Bernstein, B. (1971). On the classification and framing of educational knowledge. In 

M. Young (Ed.), Knowledge and control: New directions for the sociology of 
education (pp. 47–69). Collier Macmillan.

Bernstein, B. (1999). Vertical and horizontal discourse: An essay. British Journal of 
Sociology of Education, 20(2), 157–173. https://doi.org/10.1080/01425699995380

Bernstein, B. (2000). Pedagogy, symbolic control and identity. Theory, research and 
critique (revised edition) (electronic book version). Rowman & Littlefield.

Bernstein, B. (2003). Class, codes and control (Volume 4): The structuring of pedagogic 
discourse (electronic book version). Routledge e-library.

Bernstein, B. (2005). Class, codes and control (Volume 1): Theoretical studies towards 
a sociology of language (electronic book version). Taylor and Francis e-library.

Christiansen, I.M. (2007). Mathematical literacy as a school subject: Mathematical 
gaze or livelihood gaze? African Journal of Research in SMT Education, 11(1),  
91–105. https://doi.org/10.1080/10288457.2007.10740614

Clynick, T., Lee, R., & Willis, S. (2004). From laggard to world class: Reforming maths 
and science education in South Africa. Retrieved from https://www.cde.org.za/
wp-content/uploads/2019/03/From-laggard-to-world-class-full.pdf

Davis, B. (2001). Why teach mathematics to all students? For the Learning of 
Mathematics, 21(1), 17–24.

De Lange, J. (2003). Mathematics for literacy. In L.A. Steen & B. Madison (Eds.), 
Quantitative literacy: Why numeracy matters for schools and colleges (Proceedings 
of the National Forum on Quantitative Literacy held at the National Academy of 
Sciences in Washington, DC, December 01–02, 2001) (pp. 75–89). Princeton.

Debba, R. (2011). An exploration of the strategies used by grade 12 mathematical 
literacy learners when answering mathematical literacy examination questions 
based on a variety of real-life contexts. Masters in Education. University of 
KwaZulu-Natal. Retrieved from http://researchspace.ukzn.ac.za/jspui/bitstream/ 
10413/5814/1/Debba_Rajan_2011.pdf

Department of Basic Education (DBE). (2011a). Curriculum and Assessment Policy 
Statement (CAPS): Mathematical literacy. Pretoria: Government Printers.

Department of Basic Education (DBE). (2011b). Curriculum and Assessment Policy 
Statement (CAPS): Mathematics. Government Printers.

Department of Basic Education (DBE). (2023). National senior certificate 2022: 
Examinatin report. Department of Basic Education.

Department of Education (DoE). (2003a). National curriculum statement grades 
10–12 (General): Mathematical literacy (p. 20). Pretoria: Government Printers.

Department of Education (DoE). (2003b). National curriculum statement grades 
10–12 (General): Mathematics. Pretoria: Government Printers.

Department of Education (DoE). (2009). Report of the task team for the review of the 
implementation of the national curriculum statement. Retrieved from https://
www.gov.za/sites/default/files/gcis_document/201409/reviewimplncs.pdf

Dowling, P. (1998). The sociology of mathematics education: Mathematical myths / 
pedagogic texts. RoutledgeFalmer.

Gravemeijer, K., Stephan, M., Julie, C., Lin, F.-L., & Ohtani, M. (2017). What 
mathematics education may prepare students for the society of the future? 
International Journal of Science and Mathematics Education, 15, 105–123. 
https://doi.org/10.1007/s10763-017-9814-6

Graven, M., Venkat, H., & Bowie, L. (2022). Analysing the citizenship agenda in 
mathematical literacy school exit assessments. ZDM – Mathematics Education, 
55, 1021–1036. https://doi.org/10.1007/s11858-022-01448-1

Graven, M., & Venkatakrishnan, H. (2007). Teaching mathematical literacy: A spectrum 
of agendas. In M. Setati, N. Chitera, & A. Essien (Eds.), Proceedings of the 13th 
Annual National Congress of the Association for Mathematics Education of South 
Africa (Vol. 1, pp. 338–344). AMESA.

Horváth, A., Baïdak, N., Motiejūnaitė-Schulmeister, A., & Noorani, S. (2022). Increasing 
achievement and motivation in mathematics and science learning in schools: 
Eurydice report. Publications Office of the European Union. Retrieved from 
https://eurydice.eacea.ec.europa.eu/sites/default/files/2022-06/Increasing_
achievement_and_motivation_in_mathematics_and_science_learning_in_
schools.pdf

Jablonka, E. (2003). Mathematical literacy. In A.J. Bishop, M.A. Clements, C. Keitel, J. 
Kilpatrick, & F.K.S. Leung (Eds.), Second international handbook of mathematics 
education (Vol. 2, pp. 75–102). Kluwer.

Jacobs, M., & Mhakure, D. (2015). Mathematical literacy: Are we making any 
headway? Paper presented at the 23rd Annual Meeting of the Southern African 
Association for Research in Mathematics, Science and Technology Education, 
13–16 January 2015, Maputo, Mozambique.

Jansen, J. (2012, 07 January). Matric razmatazz conceals sad reality. Independent 
Online (IOL). Retrieved from https://www.iol.co.za/news/south-africa/western-
cape/matric-razmatazz-conceals-sad-reality-1209349

Julie, C. (2006). Mathematical literacy: Myths, further inclusions and exclusions. 
Pythagoras, 64, 62–69. https://doi.org/10.4102/pythagoras.v0i64.100

Khoza, S.B. (2015). Student teachers’ reflections on their practices of the curriculum 
and assessment policy statement. South African Journal of Higher Education, 
29(4), 179–197. https://doi.org/10.20853/29-4-512

Kilpatrick, J. (2001). Understanding mathematical literacy: The contribution of 
research. Educational Studies in Mathematics, 47, 101–116. https://doi.org/ 
10.1023/A:1017973827514

Machaba, F.M. (2017). Pedagogical demands in mathematics and mathematical 
literacy: A case of mathematics and mathematical literacy teachers and facilitators. 
Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 
95–108. https://doi.org/10.12973/ejmste/78243

Mason, G., Nathan, M., & Rosso, A. (2015). State of the Nation: A review of evidence 
on the supply and demand of quantitative skills. The British Academy.

Masuku, T.P. (2014). What causes learner migration from mathematics to 
mathematical literacy in selected schools in the North-West Province?, Master of 
Education in Educational Management, North-West University (South Africa). 
Retrieved from https://repository.nwu.ac.za/bitstream/handle/10394/36950/
Masuku_TP.pdf?sequence=1&isAllowed=y 

Mthethwa, T.M. (2009). An analysis of mathematical literacy curriculum documents: 
Cohesions, deviations and worries. In J.H. Meyer & A. Van Biljoen (Eds.), 
Proceedings of the 15th Annual Congress of the Association for Mathematics 
Education of South Africa (AMESA) (Vol. 1, pp. 103–113). University of the Free 
State.

Niss, M. (2015, 08 July–15 July 2012). Mathematical literacy. Paper presented at the 
The Proceedings of the 12th International Congress on Mathematical Education: 
Intellectual and attitudinal challenges, Seoul.

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, 
H.W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education 
(pp. 3–32). Springer.

Nkosi, B. (2014, 01 August 2014). Matric maths scrapped at 300 schools. Mail and 
Guardian. Retrieved from http://mg.co.za/article/2014-08-01-matric-maths-
scrapped-at-300-schools

North, M. (2015). The basis of legitimisation of mathematical literacy in South Africa. 
Unpublished doctoral dissertation. University of KwaZulu-Natal, Pietermaritzburg. 
Retrieved from https://ukzn-dspace.ukzn.ac.za/handle/10413/12161

North, M. (2017). Towards a life-preparedness orientation: The case of Mathematical 
Literacy in South Africa. African Journal of Research in Mathematics, Science and 
Technology Education, 21(3), 234–244.

North, M., & Christiansen, I. M. (2015). Problematising current forms of legitimised 
participation in the examination papers for Mathematical Literacy. Pythagoras, 
36(1), a285. https://doi.org/10.4102/pythagoras.v36i1.285

http://www.pythagoras.org.za
https://doi.org/10.1080/01425699995380
https://doi.org/10.1080/10288457.2007.10740614
https://www.cde.org.za/wp-content/uploads/2019/03/From-laggard-to-world-class-full.pdf
https://www.cde.org.za/wp-content/uploads/2019/03/From-laggard-to-world-class-full.pdf
http://researchspace.ukzn.ac.za/jspui/bitstream/10413/5814/1/Debba_Rajan_2011.pdf
http://researchspace.ukzn.ac.za/jspui/bitstream/10413/5814/1/Debba_Rajan_2011.pdf
https://www.gov.za/sites/default/files/gcis_document/201409/reviewimplncs.pdf
https://www.gov.za/sites/default/files/gcis_document/201409/reviewimplncs.pdf
https://doi.org/10.1007/s10763-017-9814-6
https://doi.org/10.1007/s11858-022-01448-1
https://eurydice.eacea.ec.europa.eu/sites/default/files/2022-06/Increasing_achievement_and_motivation_in_mathematics_and_science_learning_in_schools.pdf
https://eurydice.eacea.ec.europa.eu/sites/default/files/2022-06/Increasing_achievement_and_motivation_in_mathematics_and_science_learning_in_schools.pdf
https://eurydice.eacea.ec.europa.eu/sites/default/files/2022-06/Increasing_achievement_and_motivation_in_mathematics_and_science_learning_in_schools.pdf
https://www.iol.co.za/news/south-africa/western-cape/matric-razmatazz-conceals-sad-reality-1209349
https://www.iol.co.za/news/south-africa/western-cape/matric-razmatazz-conceals-sad-reality-1209349
https://doi.org/10.4102/pythagoras.v0i64.100
https://doi.org/10.20853/29-4-512
https://doi.org/10.1023/A:1017973827514
https://doi.org/10.1023/A:1017973827514
https://doi.org/10.12973/ejmste/78243
https://repository.nwu.ac.za/bitstream/handle/10394/36950/Masuku_TP.pdf?sequence=1&isAllowed=y
https://repository.nwu.ac.za/bitstream/handle/10394/36950/Masuku_TP.pdf?sequence=1&isAllowed=y
http://mg.co.za/article/2014-08-01-matric-maths-scrapped-at-300-schools
http://mg.co.za/article/2014-08-01-matric-maths-scrapped-at-300-schools
https://ukzn-dspace.ukzn.ac.za/handle/10413/12161
https://doi.org/10.4102/pythagoras.v36i1.285


Page 19 of 19 Original Research

http://www.pythagoras.org.za Open Access

Organisation for Economic Co-operation and Development (OECD). (2018). Pisa 
2022 mathematics framework. Retrieved from https://pisa2022-maths.oecd.
org/files/PISA%202022%20Mathematics%20Framework%20Draft.pdf

Pillay, E., & Bansilal, S. (2019). Negotiating the demands of teaching mathematical 
literacy. Africa Education Review, 16(3), 84–100. https://doi.org/10.1080/181466
27.2017.1340807

Rafiepour Gatabi, A., Stacey, K., & Gooya, Z. (2012). Investigating grade nine textbook 
problems for characteristics related to mathematical literacy. Mathematics 
Education Research Journal, 24, 403–421. https://doi.org/10.1007/s13394-012-
0052-5

Schoenfeld, A.H. (2004). The math wars. Educational policy, 18(1), 253–286. https://
doi.org/10.1177/0895904803260042

Singh, P. (2002). Pedagogising knowledge: Bernstein’s theory of the pedagogic device. 
British Journal of Sociology of Education, 23(4), 571–582. https://doi.org/ 
10.1080/0142569022000038422

Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Kluwer.

Skovsmose, O. (2012). Students’ foregrounds: Hope, despair, uncertainty. Pythagoras, 
33(2), 1–8. https://doi.org/10.4102/pythagoras.v33i2.162

Smith, M.D. (2023). The neoliberal structures of English in Japanese higher education: 
Applying Bernstein’s pedagogic device. Current Issues in Language Planning, 
24(3), 334–356. https://doi.org/10.1080/14664208.2022.2102330

Thijs, A., & Van Den Akker, J. (2009). Curriculum in development. Netherlands Institute 
for Curriculum Development.

Tout, D., Demonty, I., Diez-Palomar, J., Geiger, V., Hoogland, K., & Maguire, T. (2021). 
PIAAC Cycle 2 assessment framework: Numeracy. In I. Demonty (Ed.), The 
assessment frameworks for Cycle 2 of the programme for the international 
assessment of adult competencies (pp. 65–153). Organisation for Economic Co-
operation and Development.

Venkat, H. (2010). Exploring the nature and coherence of mathematical work in South 
African Mathematical Literacy classrooms. Research in Mathematics Education, 
12(1), 53–68. https://doi.org/10.1080/14794800903569865

Venkatakrishnan, H., & Graven, M. (2007). Insights into the implementation of 
mathematical literacy. In M. Setati, N. Chitera, & A. Essien (Eds.), Proceedings 
of the 13th Annual National Congress of the Association for Mathematics 
Education of South Africa (AMESA) (Vol. 1, pp. 72–83). Uplands College.

Vithal, R., & Bishop, A.J. (2006). Mathematical literacy: A new literacy or a new 
mathematics? Pythagoras, 64, 2–5. https://doi.org/10.4102/pythagoras.v0i64.93

http://www.pythagoras.org.za
https://pisa2022-maths.oecd.org/files/PISA%202022%20Mathematics%20Framework%20Draft.pdf
https://pisa2022-maths.oecd.org/files/PISA%202022%20Mathematics%20Framework%20Draft.pdf
https://doi.org/10.1080/18146627.2017.1340807
https://doi.org/10.1080/18146627.2017.1340807
https://doi.org/10.1007/s13394-012-0052-5
https://doi.org/10.1007/s13394-012-0052-5
https://doi.org/10.1177/0895904803260042
https://doi.org/10.1177/0895904803260042
https://doi.org/10.1080/0142569022000038422
https://doi.org/10.1080/0142569022000038422
https://doi.org/10.4102/pythagoras.v33i2.162
https://doi.org/10.1080/14664208.2022.2102330
https://doi.org/10.1080/14794800903569865
https://doi.org/10.4102/pythagoras.v0i64.93

	Curriculum design for empowered life-preparation and citizenship: A sociological analysis of the evolution of the Mathematical Literacy curricula
	Introduction
	Why and what mathematics?

	Research contribution, focus and relevance
	Theoretical framework
	The pedagogic device

	Distributive rules and the structure of produced knowledge
	Recontextualisation rules and the construction of pedagogic discourse
	Evaluation rules and the classification and framing of pedagogic practices
	Mathematics and Mathematical Literacy as distinct pedagogic discourses
	Evolution of the intended curriculum for Mathematical Literacy in South Africa
	First curriculum instantiation – Mathematical Literacy National Curriculum Statement
	Second curriculum instantiation: Mathematical Literacy Curriculum and Assessment Policy Statement
	Feature 1: Curriculum organisation around applications
	Feature 2: Engagement with real-life contexts and problems with a high degree of authenticity and which bear a strong resemblance to reality
	Feature 3: Active problem-solving in authentic contexts
	Feature 4: Competence with elementary mathematical contents and skills
	Feature 5: Integration of contents and skills across topics
	Feature 6: Curriculum progression linked to complexity of contexts, content and problem-solving experiences
	Implications, challenges and conclusion
	Is curriculum design for empowered life-preparedness and enhanced self-management really possible?

	Acknowledgements
	Competing interests
	Author’s contributions
	Ethical considerations
	Funding information
	Data availability
	Disclaimer

	References
	Figures
	FIGURE 1: Overview of the fields and rules of the pedagogic device.
	FIGURE 2: Analytical framework of the use of Bernstein’s (1999, 2000, 2003) theoretical constructs in the analysis of the ML and Mathematics curricula.
	FIGURE 3: Learning Outcome and Assessment Standard structure in the NCS ML curriculum.
	FIGURE 4: CAPS ML curriculum extract.
	FIGURE 5: Organisation of the CAPS ML, NCS ML and CAPS Mathematics curricula.



