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Introduction
This study explored Grade 11 learners’ algebraic and geometric connections when solving 
Euclidean geometry riders. A Euclidean geometry rider is a geometric problem based on a set of 
theorems, definitions and axioms (Giannakopoulos, 2017). Solving Euclidean geometry riders 
requires learners to connect their algebraic and geometric concepts (Kemp & Vidakovic, 2021). 
South African learners grapple with solving Euclidean geometry problems because of the inability 
to integrate geometric and algebraic knowledge (Machisi, 2021). In Euclidean geometry, concepts 
are represented by axioms, definitions, theorems, and proofs (Denbel, 2015, Madzore, 2017). 
Solving Euclidean geometry problems helps learners to develop logical and deductive reasoning 
skills, which help them to expand their mental and emotional capacities (Liu et  al., 2015). 
According to Pavlovičová and Bočková (2021), learning geometry improves learners’ geometric 
thinking. Therefore, learners need to be taught Euclidean geometry to develop their conceptual 
knowledge and analytical skills (Mamali, 2015). Furthermore, solving Euclidean geometry 
problems requires learners to apply their visualisation skills. Knowledge of arithmetic and 
algebraic concepts is essential in solving Euclidean geometry problems (Suwito et al., 2016). When 
solving Euclidean geometry problems, learners interact with shapes in different orientations 
(Siyepu & Mtonjeni, 2014). 

South African learners in Grade 11 are expected to solve Euclidean geometry riders and prove 
theorems as part of their coursework (Department of Basic Education [DBE], 2011). Euclidean 
geometry riders are integrated into other mathematics concepts, such as trigonometry, 
coordinate geometry, and algebra (Denbel, 2015). Furthermore, riders contain different 
mathematical concepts, for example the congruency of triangles, and properties of parallel 
lines (Fauzi, 2015). As such, learners need to combine different mathematical content knowledge 
and procedures when solving Euclidean geometry riders, which also helps them to develop 
conceptual knowledge (In’am, 2016). According to Govender (2014), learners should connect 
theorems within Euclidean geometry, and apply concepts from other branches of mathematics 
such as algebra, trigonometry and analytical geometry. When solving and proving Euclidean 
geometry riders, learners are required to apply knowledge of theorems and properties of 
shapes to formulate algebraic equations to solve the problems and interpret them geometrically 
(Pilgrim & Bloemker, 2016). Therefore, this indicates that learners’ competence in proving and 
solving geometry riders depends on their abilities to connect and integrate algebraic and 
geometric concepts and processes during the solution process (Sialaros & Christianidis, 2016). 

In this article, we explored Grade 11 learners’ algebraic and geometric connections when 
solving Euclidean geometry riders. A qualitative interpretive case study design was followed. 
Thirty Grade 11 learners from a non-fee-paying secondary school in the Capricorn North 
district of South Africa were conveniently sampled to participate in this study. Data were 
collected through learners’ responses to classwork, homework exercises, and task-based 
interviews. Data were analysed thematically. The findings revealed that to solve Euclidean 
geometry riders successfully, learners need to establish the feature connections embedded in 
the given figure or diagram. The ability to make feature connections provides a point of 
departure in the solution process of a geometric problem.

Contribution: Once the feature connection is established, other connections will subsequently 
emerge. In addition, the reversibility connections become a form of feature connection when 
solving Euclidean geometry riders. Therefore, we recommend that mathematics teachers 
emphasise and use mathematical connections in their daily teaching of mathematics.

Keywords: algebraic connections; geometric connections; deductive thematic analysis; 
Euclidean geometry riders.
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The ability to connect algebraic knowledge and knowledge 
of Euclidean geometry is an essential prerequisite skill for 
solving geometric riders as well as developing conceptual 
integration during problem-solving (Pilgrim & Bloemker, 
2016). It is therefore necessary to look at the algebraic and 
geometric connections that Grade 11 learners make when 
solving Euclidean geometry riders.

The ability to make connections is an essential skill for 
solving Euclidean geometry riders successfully (Reddy, 
2015). Learners who possess this ability can integrate or 
identify properties of figures within representations. 
Mathematical connection refers to the skill of making 
interrelationships among mathematical concepts, skills, and 
as well as relating ideas to real-world situations and other 
related topics (Haji et al., 2017). Learners who possess this 
skill view mathematics as a complete entity, not a separate 
subject of distinct concepts (Egodawatte & Stoilescu, 2015). 
There are two categories of mathematical connections, 
namely internal and external connections (Baiduri et  al., 
2020). Internal connections are interrelationships between 
mathematical topics, mathematical processes and procedures 
(Baiduri et al., 2020). External connections are interrelationships 
between mathematics and other subjects in the curriculum 
as well as everyday life (Ayunani & Indriati, 2020). Thus, 
mathematical connections provide learners with a broader 
and more holistic understanding and view of mathematics 
(Ndiung & Nendi, 2018). Learners learn about the properties 
of shapes and theorems of Euclidean geometry and then 
summarise these concepts algebraically using equations 
(Pilgrim & Bloemker, 2016). When learners possess 
mathematical connection skills, they will be able to 
successfully solve Euclidean geometry riders.

Several researchers revealed that learners experienced some 
challenges when solving Euclidean geometry riders. 
Makonye and Fakude (2016) reported that learners incorrectly 
apply Euclidean geometry theorems during problem-solving. 
The South African National Senior Certificate Diagnostic 
Report showed that learners had trouble relating prior 
knowledge to concepts of Euclidean geometry, visualising 
diagrams and solving problems (DBE, 2020). Furthermore, 
Ngirishi and Bansilal (2019) reported that South African 
learners fail to make correct constructions when proving 
theorems; they incorrectly apply Euclidean geometry 
theorems and figure properties (DBE, 2020). Learners have 
misconceptions about geometric concepts because they rely 
on the physical appearance of the figures, an inability 
to  associate geometric properties with each other, 
overgeneralisation, and memorisation (Zuya & Kwalat, 
2015). In addition, learners struggle to incorporate or connect 
other mathematical concepts and struggle with writing 
algorithms correctly when solving riders (DBE, 2020; Luneta, 
2015). This indicates that learners experience challenges in 
connecting geometric and algebraic knowledge when 
proving and solving riders. Thus, in this article, we explored 
Grade 11 learners’ algebraic and geometric connection skills 
for solving and proving Euclidean geometry riders.

Literature review
The integration of algebraic and geometric concepts in 
solving Euclidean geometric problems has been a topic of 
significant interest in mathematical education. This approach 
leverages the strengths of both algebra and geometry, 
fostering deeper understanding and more versatile problem-
solving skills. Integrating algebraic and geometric concepts 
helps students develop a more comprehensive set of tools for 
solving problems. Algebra provides a systematic approach to 
solving equations, while geometry offers visual intuition and 
spatial reasoning. The integration of the two problem-solving 
skills provides learners with a versatile approach to tackling 
geometry problems. Studies have shown that learners who 
are proficient in both areas perform better in complex 
problem-solving tasks (Fuson et al., 1997).

Euclidean geometry is a significant topic for developing 
mathematical skills. However, learner performance in 
geometry remains a concern in many countries (Mosia et al., 
2023). In South Africa, the teaching and learning of Euclidean 
geometry has been identified as one of the topics that is a 
challenge for both teachers and learners (Giannakopoulos, 
2017). This observation suggests the need for an urgent 
intervention to seek an alternative approach to the teaching 
and learning of Euclidean geometry (Jojo, 2015). Proficiency 
in using mathematical connections is an important 
mathematical skill, and learners should embrace it as a tool 
for solving mathematical problems. Learners with good 
mathematical connection skills have high success rates in 
solving mathematical problems. On the other hand, learners 
with poor mathematical connection skills struggle with 
solving mathematical problems. Learners’ low mathematical 
connections efficacy impacts on learners’ failure in solving 
mathematical problems. The learners’ ability to solve 
mathematical problems is measured by the number of 
mathematical connections they are able to make as they are 
solving the problem. When learners connect mathematical 
ideas, their understanding is deeper and more lasting, and 
they come to view mathematics as a coherent whole. By 
solving mathematical problems, learners gain ways of 
thinking, habits of persistence and curiosity, and confidence 
in unfamiliar situations that serve them well outside the 
mathematics classroom. When learners can connect 
mathematical ideas, their understanding of mathematics 
becomes deeper and more durable (Ayunani & Indriati, 
2020). Mathematical tasks that involve the relationship 
between mathematical ideas within a topic and between 
topics train learners to improve their mathematical connection 
abilities.

In the South African curriculum for the Further Education 
and Training (FET) Phase, solving Euclidean geometric 
problems involves leveraging various mathematical 
connections and concepts. When solving Euclidean geometry 
riders, which are essentially challenging geometry problems, 
integrating algebraic and geometric connections can 
significantly enhance problem-solving efficiency and depth. 
By integrating algebraic and geometric approaches, learners 
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can more effectively solve Euclidean geometry riders, 
deepening their understanding and improving their 
problem-solving skills. In Euclidean geometry, riders are 
challenging problems that require a deep understanding of 
various theorems and their applications. Solving these 
problems often involves connecting multiple geometric 
theorems, allowing for a comprehensive approach to 
complex problem-solving (Giannakopoulos, 2017). By 
connecting these various mathematical concepts and 
methods, one can approach Euclidean geometric problems 
from multiple angles, making the solution process more 
robust and comprehensive.

Theoretical framework
The mathematical connection framework of Garcĺa-Garcĺa 
and Dolores-Flores (2018) guided this study. The mathematical 
connections framework consists of the following tenets: 
procedural, part-whole, different representations, reversibility, 
meaning, and feature. Figure 1 shows the theoretical 
framework that guided this study.

The mathematical connection framework in Figure 1 shows 
the mathematics connections that can be used during problem-
solving. These connections include procedural, different 
representations, features, reversibility, meaning, and part-
whole (Garcĺa-Garcĺa & Dolores-Flores, 2018). This study 

focused on exploring Grade 11 learners’ algebraic and 
geometric connections when solving Euclidean geometry 
riders.

Procedural connections
Procedural connections are made when learners use 
formulas,  algorithms, and rules to solve a mathematics 
problem (Garcĺa-Garcĺa & Dolores-Flores, 2018). Procedural 
connections also include learners’ explanations and 
justifications for using a particular formula or procedure to 
solve a mathematical problem (Garcĺa-Garcĺa & Dolores-
Flores, 2018). Recently, Garcĺa-Garcĺa and Dolores-Flores 
(2021) defined a procedural connection as a mathematical 
connection in a situation, in which if learners have or identify 
concept A, then B automatically becomes a procedure to 
get  the solution. For example, if a learner identifies that a 
triangle is right-angled, then the procedure for solving it can 
involve the application of the Theorem of Pythagoras and 
trigonometric ratios. In proving and solving riders, learners 
identify the applicable theorems and corollaries from the 
given geometric diagrams.

Different representations connections
Different representation refers to presenting a mathematical 
idea in an equivalent or alternative way (Garcĺa-Garcĺa & 
Dolores-Flores, 2018). An alternative representation is when 
learners can present a mathematical concept in more than one 
form of representation (Rodriguez-Nieto et al., 2020). Different 
forms of representation take the form: algebraic-graphic, 
verbal–graphic, algebraic-verbal, etc. Alternative different 
representations connections are observed when learners 
present theorems as algorithms and when learners present 
theorems diagrammatically. For example, the theorem stated 
as ‘Angle subtended by an arc at the centre is twice the angle 
subtended by the same arc on the circumference in the other 
segment’ can be represented algebraically or diagrammatically. 
Figure 2 presents this theorem.

Equivalent different representations connections, on the 
other hand, appear within the same register (for example 
algebraic-algebraic); the focus is more on simplifying the 
same representation. For example, the algebraic function 
f(x) = x2 + 5x + 6 is equivalent to f(x) = (x + 3) (x + 2). Equivalent 
different representations connections are made when learners 

Source: Adopted from Garcĺa-Garcĺa, J., & Dolores-Flores, C. (2018). Exploring mathematical 
connections of pre-university learners through tasks involving rates of change. International 
Journal of Mathematical Education in Science and Technology, 50(3), 369–389. https://doi.
org/10.1080/0020739X.2018.1507050

FIGURE 1: Framework to study mathematical connections. 
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can present theorems in different forms within one register. 
For example, the theorem presented in Figure 2 can be 

written as  =O P21 1 or  =P O1
2

1, and the three pictures in Figure 

2 represent the same theorem but in different shapes and 
orientations.

Feature connections
Feature connections are recognised when learners can 
identify mathematical concepts in different contexts using 
their properties (Garcĺa-Garcĺa & Dolores-Flores, 2018). 
Likewise, feature connections are mostly identified when 
learners describe or develop descriptions of properties of 
concepts in terms of the other as a way of differentiating the 
concepts (Eli et al., 2013). Furthermore, the characteristics of 
mathematical concepts are used to differentiate them from 
others (Eli et al., 2013). In the context of Euclidean geometry, 
the characteristics of mathematical concepts refer to the 
properties of shapes and their relations (Luneta, 2015). For 
example, Figure 3 and Figure 4 present different theorems 
but they have common aspects in terms of shape.

Reversibility connections
According to Garcĺa-Garcĺa and Dolores-Flores (2018), 
reversibility connections are observed when learners are 
able  to identify the bidirectional relationship between 
mathematical ideas and concepts. Reversibility connections 
are evident when learners are able to use concept X to arrive 
at concept Y and vice versa (Garcĺa-Garcĺa & Dolores-
Flores,  2018). Reversibility connections are observed when 
learners are able to recognise and establish relationships 
among theorems, corollaries, and converses. Reversibility 
connections are mostly displayed when learners are supposed 
to prove Euclidean geometry riders, for example ‘the angle 

between a tangent and a chord is equal to the angle subtended 
by the same chord in the other segment’. Thus, when learners 
are not given a circle but are required to prove that a certain 
segment is a tangent, they are supposed to identify the two 
angles they can prove are equal and those angles should be 
equal.

Meaning connections 
Meaning connections are identified when learners can 
describe mathematical concepts in their own way using 
relevant reasons and arguments when solving mathematical 
tasks (Garcĺa-Garcĺa & Dolores-Flores, 2018). Learners give 
mathematical concepts meaning to differentiate them, to get 
a sense of what they mean to themselves in different contexts 
and give them a definition (Garcĺa-Garcĺa & Dolores-Flores, 
2021). The  difference between feature connections and 
meaning  connections is that mathematical concepts in 
feature connections are not given definitions while in 
meaning connections they are given definitions (Garcĺa-
Garcĺa & Dolores-Flores, 2018). Proving and solving the 
riders of Euclidean geometry establish contexts of meaning 
when learners can identify geometric shapes in different 
orientations. In addition, meaningful contexts arise when 
learners can prove the diameter and tangents of the circles 
that are not drawn. For example, in geometry an exterior 
angle is one of the angles located outside a geometric figure, 
but for it to be called an exterior angle it must be on the same 
straight line as its interior adjacent angle. That is, with the 
latter, the angle outside a figure will not be called an exterior 
angle, if it does not fall on the same straight line as the interior 
adjacent angle.

Part-whole connections 
Part-whole connections appear when learners identify the 
logical relationship between mathematical concepts when 
solving mathematical tasks (Garcĺa-Garcĺa & Dolores-Flores, 
2021). There are two forms of part-whole connections, 
namely: inclusion and generalisation. Inclusion part-whole 
connections occur when learners can realise a mathematical 
concept within another concept (Garcĺa-Garcĺa & Dolores-
Flores, 2021). Generalisation part-whole connections occur 
when learners are able identify general forms of a concept 
from a specific concept. In Euclidean geometry, generalisation 
part-whole connections are presented through theorems and 
their corollaries. Theorems are general statements that 
learners must conceptualise to the respective geometry 
diagrams they are presented within a particular question.

Research methods and design
In this article, a qualitative interpretive case study design by 
Merriam (1998) was utilised. Grade 11 mathematics learners 
were considered as a case. All 30 Grade 11 learners were 
conveniently sampled to participate in this study (Cohen 
et  al., 2011). These participants were also purposefully 
selected as Euclidean geometry is prescribed for them in 
South Africa. The participants were from a public secondary 

FIGURE 3: The angle at the centre is twice the angle at the circumference. 
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school in Capricorn North district, South Africa. Participants 
consisted of 19 girls and 11 boys, and their ages ranged from 
16 to 18 years. Data for this study consist of learners’ 
responses to classwork and homework activities. 
Additionally, data were triangulated using task-based 
interviews through which learners were asked questions 
about the connections they were making when solving the 
given classwork and homework activities. All the task-based 
interviews were video-recorded and later transcribed. 
Reflexive thematic analysis was used to analyse the collected 
data (Braun & Clarke, 2006). The data were coded and 
grouped into themes according to their commonalities drawn 
from the mathematical connection framework constructs 
which comprise procedural, different representation, feature, 
reversibility, meaning and part-whole connections (Garcĺa-
Garcĺa & Dolores-Flores, 2018). These were further classified 
as either algebraic or geometric connections when finalising 
the themes that are reported in this study. Data triangulation 
of classwork and task-based interviews, peer debriefing of all 
the authors and audit trail of the whole research process 
were followed to ensure trustworthiness during the analysis 
process (Nowell et al., 2017). Learners’ parents consented to 
their children’s participation in the study. In addition, the 
participants assented to participate in this study. Pseudonyms 
were used in place of learners’ names. The Limpopo 
Provincial Department of Education and the selected school 
gave their permission to conduct the study.

Results
Learners’ responses to task-based interviews, classwork and 
homework activities were analysed thematically in this 
study. In this study, we selected some of the learners’ 
responses based on the connections they made as they solved 
the problems. The algebraic and geometric connections that 
learners made in this study are presented below.

Geometric feature connections leading to 
algebraic procedural connections
Some learners managed to identify the properties of 
geometric figures embedded in the rider. These learners 

made geometric feature connections which led to procedural 
connections which are algebraic. For example, Learner 26’s 
response to question 3 of class activity 2 is shown in 
Figure 5.

From Figure 5, the learner started by making feature 
connections that helped him to determine the length of AB 
and BC. The learner further applied algebraic connections to 
determine the correct length of AB. The statements AB = 4x 
and BC = 4x show that the learner was able to make feature 
connections by applying the theorem which states that ‘A 
line drawn from the centre of the circle perpendicular to the 
chord bisects the chord’. Thus, the learner was able to connect 
the correct theorem with the diagram through the features 
of the given diagram. Therefore, the learner was able to make 
the geometric feature connection by applying the correct 
theorem to the given diagram. In addition, the learner made 
a geometric feature connection by applying the Theorem of 
Pythagoras to determine the radius OC of the circle. 
The learner managed to substitute correctly, thus making the 
correct algebraic procedural connection. However, the 
learner could not get to the solution because of simplification 
after substitution into the Theorem of Pythagoras. This 

learner wrote = 2OC x , which means that the learner was 
taking the square root of each term of the equation. The 
learner failed to simplify the surds, hence committing an 
algebraic procedural error. When interviewed about why he 
wrote that way, the learner responded by saying: ‘ OC  is the 
square root of OC2 and 2x2 + (4x)2 = 2x This learner failed to 
make connections between the square and the square root 
concepts which affected the learner’s solution process. 
Therefore, the learner was unable to finish the procedure due 
to a lack of knowledge of simplifying the surds.

Geometric feature connections leading to 
algebraic procedural connections
From Figure 6, item 1.1, Learner 7 was able to make geometric 
feature connections. The learner identified that  =A B2 2 and 
managed to justify that statement with the correct reason. 
The learner was able to realise that OA and OB are radii of 
the given circle and are equal, hence making triangle ABO an 

FIGURE 5: Learner 26 response to question 3 of class activity 2: (a) Question and (b) Learner’s response. 
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isosceles triangle. Although the learner did not write all the 
algebraic steps of determining the size of A2, the feature 
connections established helped the learner find that the size 
of A2 = 75°. This also emanated from the learner being able to 
connect O1  to ACB . During the task-based interviews, when 
asked how she arrived at the answer, the learner responded 
by saying: ‘I applied the theorem of the angle at centre is 
equal to twice the angle at the circumference. Then this 
means that AOB  = 30°. Then the angles of a triangle add up 
to 180°. Therefore, 180° − 30°  all divided by 2 = 75°’. This also 
indicates that the learner was also able to make algebraic 
procedural connections and hence managed to find that 
 =A B2 2 = 75°.

Geometric reversibility becoming feature 
connections 
Generally, learners’ responses show that they were able to 
make reversibility connections that informed correct 
geometric feature connections. For example, in item 1.2, in 
Figure 6, the learner noticed that segment BP is equal to PC 
and managed to identify the size of angle P1 as equal to 90°. 
When asked why she wrote the reason that way, the learner 
responded by stating the theorem which states that ‘A line 
drawn from the centre of the circle perpendicular to the 
chord, bisects the chord’. The learner made the correct 
feature connection and reversibility connection and got the 
correct size of angle P1; however, the reasoning during 
interviews was not correct. She should have stated the 
reason as ‘If a line is drawn from the centre of a circle to the 
mid-point of a chord, then the line is perpendicular to 
the  chord’ which is the corollary of the theorem that she 
stated as a reason during interviews. 

Failure to make geometric feature connections
Most learners failed to make correct geometric feature 
connections. For example, Learner 7’s attempt for item 1.3, in 
Figure 6, indicates the inability to make geometric feature 
connections. The learner wrongly stated that angle B1 is equal 
to angle B. In this case, the learner made a wrong geometric 
feature connection by applying properties of an isosceles 
triangle in a triangle that is not isosceles. When interviewed 
the learner stated that ‘the two angles are angles opposite 
equal sides of an isosceles triangle’. When asked which 
triangle is isosceles, that’s when the learner realised that she 
made a mistake.

In addition, the inability to make correct feature connections 
was also evident in Figure 7 in which Learner 9’ s work on 
one of the tasks is presented.

Figure 7 reveals that Learner 9 started by equating angles 
� �PQR RST and . The justification for equating the two 

mentioned angles was given as ‘exterior angle of a cyclic 
quadrilateral is equal to its interior opposite angle’. The 
learner failed to make a geometric feature connection. 
According to this learner, any four-sided figure inside a circle 
is regarded as a cyclic quadrilateral. However, PQRS is not a 
cyclic quadrilateral. The learner failed to understand that for 
a quadrilateral to be cyclic all its vertices should be on the 
circumference of the circle. Although the learner showed 
strong algebraic connections by being able to group like 
terms (2x − x = 80° + 40°) together, the learner started on the 
wrong footing by equating angles that are not equal 
(2x − 40° ≠ x − 8°). The learner failed to realise that the reflex 
PŜR (180° + x − 8°) is the angle at the centre of PQR(2x − 40°). 
This learner failed to apply the theorem that states that the 

FIGURE 6: Learner 7 response to home activity 1: (a) Question and (b) Learner’s response. 

ba

FIGURE 7: Learner 9 response to question 2 of home activity 2: (a) Question and (b) Learner’s response. 
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angle at the centre is twice the angle at the circumference of 
the circle. Hence, this affected the learner’s solution process. 

Geometric feature connections leading to 
geometric and algebraic procedural connections
Some learners were able to make correct geometric feature 
connections which led to geometric and procedural connections 
when solving Euclidean geometry riders. Figure 8 presents a 
learner’s work on a given question. This question in Figure 8 
requires learners to make a transition from geometric feature 
connections to either geometric or algebraic connections. The 
two solutions are discussed separately below.

Geometric feature connections leading to geometric 
procedural connections: From Figure 8, it can be noticed that 
in an attempt to get the solution of item 1.1, Learner 17 started 
by stating that  =K 90o, which was true, and further gave the 
correct reason for that statement although he made a typo by 
writing same circle instead of a semi-circle. This indicates 
that the learner was able to identify the angle subtended by 
the diameter in the given diagram and made the geometric 
feature connection that it is equal to 90°. The learner realised 
that to get the correct solution for item 1.1, there is a need to 
prove congruency in the two triangles: ΔLPN and ΔLMN. 
Feature connections were identified again when the learner 
stated that LM is common when proving congruency in the 
two triangles. The learner did not manage to finish the 
congruency procedure; instead he concluded by stating that 
L2 = 28°. This indicates that the learner was equating L2 to M . 
Failure to make geometric procedural connections by writing 
the last statement of congruency meant the learner did not 
arrive at the final solution, that is the size of angle LPN . 
The learner was confused by starting with the statement that 
K  = 90° because K  is not an interior angle of any of the 
triangles, ΔLPN or ΔLMN. In trying to gain insight into the 
learner’s responses, the researcher asked him the following 
question: ‘Why do you start by writing that K  = 90°?’ The 

learner responded by saying ‘I was trying to prove 
congruency in the two triangles. So, since we are given that 
PL is a diameter it means that K  = 90°’. The learner made a 
correct feature connection; however, this was not necessary 
to solve the given problem. Instead, he should have used 
angles N1 and N 2 because the two angles are equal. Thus, 
Learner 17’s procedural and feature connections were 
partially correct because everything given on 1.1 was correct, 
but there were some important statements left out which 
could have helped the learner to reach the correct solution.

Geometric feature connections leading to algebraic 
procedural connections: On item 1.2 in Figure 8, Learner 17 
made correct geometric features and algebraic procedural 
connections in an attempt to solve the problem. The learner 
made a geometric feature connection by using the sum of 
interior angles of a triangle to determine the size of angle 
L3. He then used angle L3 to determine the size of angle L2
because the two angles are of equal since triangles ΔLPN and 
ΔLMN are congruent. Furthermore, the learner used angles 
L2 and L3 to determine the size of angle L1 because the three 
angles are on a straight line adding up to 180°. Therefore, the 
learner made the correct geometric feature connections as 
well as algebraic procedural connections. The learner made 
another geometric feature connection when determining the 
size of angle L1, because L1 is half of angle KOP according to 
the theorem ‘angle subtended by an arc at the centre of a 
circle is twice the angle subtended by the same arc on the 
circumference’. The learner applied this theorem to get the 
size of angle KOP, which was the one required.

Discussion
This study explored Grade 11 learners’ algebraic and 
geometric connections when solving Euclidean geometry 
riders. Data were collected from a conveniently selected 
sample of 30 Grade 11 learners who responded to classwork 
and homework activities and were interviewed on their 

FIGURE 8: Learner 17 responses to class activity 2: (a) Question and (b) Learner’s response.

a b
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responses to the given tasks. Data were analysed using 
reflexive thematic analysis. From the thematic analysis, this 
study has established the following.

In this study, we found that feature connections are at the 
centre of solving geometric riders. For Grade 11 learners to be 
able to solve Euclidean geometry riders successfully, they 
need to establish the feature connections embedded in the 
given figure or diagram. The ability to make feature connections 
provides a point of departure in the solution process of a 
geometric problem. Once the feature connection is established, 
other connections will subsequently emerge. This study 
established that when solving riders, the feature connections 
needed to be made are always geometric as they are based on 
the shapes, lines and theorems in the given rider (Fauzi, 2015). 
Therefore, failure to make feature connections causes learners 
to fail to make a breakthrough to rider solutions. This is in line 
with Ngirishi and Bansilal (2019) who found that when 
learners fail to make connections between shapes and 
properties of shapes, they subsequently fail to solve geometric 
problems. The ability to make the correct feature connections 
helps learners to proceed with the solution process as identified 
in some learners in this study. This implies that teachers need 
to emphasise the skill of making feature connections when 
teaching solutions to Euclidean geometry riders.

It was further established in this study that learners who were 
able to make correct geometric feature connections managed to 
proceed with the solution process as identified in some 
learners’ work. It is established that making correct feature 
connections leads to making procedural connections which 
could either be algebraic or geometric. For algebraic procedural 
connections, this study discovered that after identifying the 
properties of the given figure, learners were able to apply 
algebraic processes, for example simplification, needed to 
solve the problem. This finding is consistent with Suwito et al. 
(2016) who pointed out that solving Euclidean geometry 
problems requires an understanding of algebraic and 
arithmetic concepts. However, some of the learners did not 
manage to find the correct solution to the problem due to a lack 
of algebraic procedural connections. This indicates that these 
learners were unable to summarise the geometric concepts 
algebraically using equations (Pilgrim & Bloemker, 2016). For 
geometric procedural connections, it has been discovered that 
learners were able to make geometric procedural connections 
when applying congruency after identifying the properties of 
the given triangle. This result concurs with Fauzi (2015) who 
indicated that for learners to solve Euclidean geometry riders 
successfully they need to connect different geometric concepts 
such as the congruency of triangles. These results also indicate 
that learners were unable to complete the geometric procedure 
as they didn’t manage to finish the congruency of the triangle. 
This might be due to a lack of identification of the geometric 
properties of the given triangles. 

In addition, this study found that when solving Euclidean 
geometry riders, geometric reversibility connections become 
a form of feature connection. This has been identified when 

some learners gave reasons about a theorem instead of stating 
the corollary of that theorem. This indicates that switching 
between feature and reversibility connections in Euclidean 
geometry does not hinder learners’ solution process when 
solving riders.

Conclusion
The findings of this study indicated that making geometric 
feature connections is the starting point of solving Euclidean 
geometry riders. Therefore, we recommend future studies to 
be conducted focusing on geometric feature connections as a 
base for solving Euclidean geometry riders. Furthermore, the 
findings show that reversibility connections become a form 
of feature connections and do not hinder learners’ solution 
process. Therefore, we conclude that learners need to be 
taught to identify all the geometric features embedded in a 
given rider first before attempting to solve it. Failure to make 
correct feature connections results in learners’ inability to 
solve the given Euclidean geometry riders. Therefore, we 
recommend that learners be equipped with sufficient and 
appropriate mathematical connections during the teaching 
and learning of Euclidean geometry. In addition, learners 
should be taught the skill to identify the feature connections 
embedded in the given rider and this will help them during 
the problem-solving process of Euclidean geometry. The 
feature connections will enable learners to make correct 
algebraic and geometric connections.
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