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Abstract

Large pipe networks are frequentlg encountered in engi-
neering applications. Numerical optimization of these de-
signs is therefore releuanl. As pipes o,re ustrally only aaail-
able in standard sizes, the optimization musr be done for
discrete pipe sizes. In this paper a discrete coordinate de-
scent and a continuous gradient search technique are corn-
bined to solue this discrete non-linear optimization prob-
lem.

Nomenclature

ai Pressure head coefficient
bi Flow coefficient
C Inequality error function
C. Capital cost ($)
Ca Energy demand rate ($/kW)
C" Energy rate ($/kWF)
Ci Pipe cost factor ($/t e)Cp Pump energy cost ($)
Ct Total cost ($)
D Pipe diameter (-)
Dp Pump rotor diameter (-)
d Design life tirne (y.utr)
f Friction factor
g Gravitational constant (9.81 

^/"2)H (r) Error flow function in r
h Static head (*)
I Interest rate (%/ 100)
I{r Dimensionless flow coefficient

' /(n Dimensionless pressure head coefficient
(calculated from empirical data)

k Damper coefficient
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ep Pump efficiency
em Pump motor efficiency
Poo Pump energy (kW)
Rea Reynolds number for pipes
T Total operating hours in a year
V Ftuid speed (-/r)
r Variable representing pipe diameter (*)
Ah Head loss (-)
AP pressure drop (p.)
€ Interior roughness of pipe (-)
P Fluid density (kg/-t)

Introduction

Pipe networks are common in all engineering fields. For ex-
ample, every town council has to provide water and a sew-
erage system for its residents. The petroleum and power
generation industries use complex pipe networks.[1] In the
field of mechanical engineering, pipe networks are found
inter alia rn the aircraft and car industries. Applications
here vary from fuel distribution networks to hydraulic sys-
tems.[2]

Many of the above networks can be expensive to build
and operate.[3] The most prominent cost for the developer
is usually the capital invested to build the pipe network.
However, it should be the objective of any designer to min-
imize not only the capital cost but also the operating cost
of a pipe network.

Pipe networks are designed to conform to certain
specifications. For instance, the outlet flows are often
specified, a^s well as the bounds for the fluid speed, abso-
lute pressure and diameters.[3; 4] The fluid speed usually
has an upper bound to prevent excessive noise. A lower
bound is only necessary when slurry is pumped, e.g. for
a coal pipeline. This is to prevent settling of the mixture.
The absolute pressure is often limited to a certain value
to prevent cavitation, while an upper bound prevents the
pipe from bursting. The bounds for the diameters are set
accorditrg to space requirements and availability. Along
rvith all these complications, pipes are usually made in
standardized diameters. All these aspects make the de-
sign process difficult and time-consuming.

To obtain a workable design the engineer continually
has to match compromises and decisions. Furthermore,
the efforts of the engineer often do not i5uarantee a cost-
effective design. A practical optimization and design tool
is therefore a necessity.[3] The objective of this paper was
to develop a computer algorithm for the discete optimiza-
tion of pipe networks. With the help of this optimization
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k* Arbitrary constant

Mass of pipe section (kg)
Pump mass flow (ke/r)
Pump speed (tp*)
Pressure (Pu)

L Pipe length (-)
L(t) Penalty function in r
Mt
rn
np
P
Pe Pressure drop over pump (Pu)
PW E.F Present worth escalation factor
A Volume flow rate (*t/r)
Qp Pump volumetric flow rate (m3W/s)
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tool the engineer can produce a practical and cost-effective
solution for the design problem.

Several algorithms can be used to solve the discrete
non-linear optimiz,ation problem.[5] One possibility is to
calculate the network cost and flow conditions for every
possible combination of pipe diameters. This method has
the advantage that it always finds the global minimum and
is relatively easy to implement. It is, however, computer
intensive and can restrict the size of network that can be
optimized

An alternative is to simply round off the solution ob-
tained from a non-discrete optimization technique. This
method does not guarantee an optimum working solu-
tion.[6] For most network design problems, however, the
rounded off solution will in all probability not differ very
much from the optimum solution. A * boundary round-
ittg procedure has been recommended for the discrete op-
timization of air-conditioning duct networks. By this pro-
cedure, the lower nominal size is selected when the initial
size is close to the lower size at * the range between avail-
able sizes. Otherwise, the upper nominal size should be
selected.

The 'Branch and Bound' method, too, wffi examined.
It is described in detail in Wismer & Chattergy.[6] Unfor-
tunately it is difficult to program this method. Another
drawback is that it requires a non-discrete optimization
algorithm to find a discrete solutio".[6] This makes the
method time-consuming. The amount of computer mem-
ory needed is also not desirable. Furthermore it was un-
successful when applied to optimizing a five-pipe network
and also abandoned.

In this article a combination of a continuous gradient
search technique and discrete coordinate descent technique
was employed to solve the pipe network design problem.

Elernent theory

A pipe network usually consists of a number of pipes and
at least one pump. The behaviour of the elements and
the topology of a network must be evaluated before the
network can be simulated.

The flow of a fluid through a pipe is described by
Bernoulli's equation

'tr .W* henter r # .ry* hexit + ah (1)

For incompressible flow and a constant diameter the equa-
tion can be simplified to:
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The friction factor in equation (3) is given by Colebrook's
equation [7]

(4)

(5)

(6)

(i)

These equations describe the flow through a single pipe.
The'pressure increase over a pump is given by

P -'KnPn'rD\

and the dimensionless pressure head coefficient is calcu-
lated from

/fn - as * atl{r * azK? + ...

The coefficients in equation (6) are obtained by fitting
a polynomial function to empirical data for the specific
pump.[4]

The flow coefficient in equation (6) is defined as

I{r -

The pipe friction losses can be calculated from equation
(3)'

Pentu" - P"xit 
* (h",rter - h"*it) = Ah

ps

pnpDS

Equations (5), (6) and (7) now characterize the pump el-
ement.

Network theory

A relationship between the elenient and network proper-
ties must be found before a pipg network can be simulated.
This is necessary to define the governi.tg equations describ-
ing the behaviour of the elements in a network.

Networks are governed by certain laws. Kirchotr [a]
defined these laws as

o the node law: The sum of the flow through any node
in any network is zero.

o the loop law: The sum of all the pressure changes in
any loop of any network must be zero.

o the element law: The flow through any network ele-
ment in any network must have a relationship with
the pressure difference over that element.

The first two laws describe the topological features
of a network and the last the physical properties of an
element in a network. These laws must be used to compile
the necessary equations to solve the design problem. With
the help of graph theory these laws were effectively linked
together. [8]

Simulation and optimization

To calculate the operating cost of a network it is necessary
to simulate it. An existing computer algorithm for the
simulation of pipe networks t8] is used in this study. This
computer algorithm uses a proven method in an iterative
process for the calculation of the flow in each element of
the network.

(2)

(3)
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When optimizing pipe networks the most prominent
problem is that of constraints. A constraint is a certain
condition to which the solution of a system must com-
ply. For practical rea^sons constraints are necessary. The
following types of boundary conditions are usually used:
specified flow rates at the outlets, minimum pressure in
any element of the network and the murimum allowable
fluid velocity. The optimization method must be able to
optimize within these given constraints.

Some of these constraints are equality constraints and
others inequality constraints. The difference will be, dis-
cussed in the following paragraphs. The optimization
method must be able to discern the difference between
these two types of constraints.

Equality and inequality constraints

When a pipe network is designed, one of the objects might
be to design it so that the cost is as small as possible,
but with the provision that the specified outlet flow rates
(Qro."ified) are certain given values. The flow rate forms
an equality constraint and it can be expressed as

I/flo* (t) = Qspecified - Qsimurared (t) - O

where r is the diameter. An additional objective in the
design process is to minimize the flow rate error f/ (*) in
the equality constraint equation.

Let us now consider inequality constraints. Each pipe
has a minimum and macimum allowable diameter. The
same principle applies for,the absolute pressure in a pipe
and the fluid velocity in a pipe. Usually only an upper or
lower boundary is considered.

These boundaries can be defined as:

x 1d-.*
P S P-"*
V < I/-"*

which are then the inequality constraints.

Cost

The principal objective in the optimization process is to
minimize the cost subject to the equality and inequality
constraints.

The cost of a pipe network consists of the capital in-
vestment and the energy cost to operate the system over
a number of years.

A possible equation for the capital cost (C.(*)) of the
network can be expressed as

+7

The present worth escalation factor (PW E F) t8] can

be calculated from

Cp = (PW Ef ) (Ca * C"T) Poo

(PWEF) = 
(il r)o - tuL /- 
/(1 +I)o

The pump energy is calculated by

( 12)

( 13)

(14)

( 15)

( 16)

(17)

Poo -
PoQ,
€Pe^

where
ep = bo + brl{n * bzl{?, + ...

The objective function (total cost (Cr(*)) is the sum of the
capital cost (C.(*)) and the pump energy cost (Co)

Cr(i) =C.(r)+Co

C. (r)

where
x - ["r, r 2,a,B,...,rn)'

The operating cost of the network consists mainly of the
energy cost (Co) of the pumps. In present worth terms it
can be presented as in Mathews k Kohler.[8]

It is the objective of our optimization to minimize the total
cost function (Cr(*)).

Discrete optimization

The object of the cost optimization process is to find a
discrete solution for the pipe network subject to certain
constraints. In this process there is no guarantee that a

combination of standardtzed pipes can be found having the
same outlet flow rate for the network as specified. The use

of dampers in the outlet pipes to control the outlet flow
rates is therefore a requirement.

This optimization procedure comprises the following:

o Optimize the outlet pipes non-discretely

o Optimize the interior pipes discretely

o Replace each outlet pipe with a standardrzed pipe and
a damper

This procedure will ensure that the outlet flow rates are

accurate and that a local minimum is reached.
When optimizing a network the interior and outlet

pipes are treated differently. The diameters of the interior
pipes can only have discrete values. The outlet pipes can
have any size diameter. The results for the outlet pipes are
then given as a standardized pipe diameter plus a damper.
The computer procedure automatically takes care of this.

To arrive at this optimum solution a penalty function
is used in the discrete optimization procedure. A penalty
function is a combination of the objective function and
the error functions. In this case the objective function is
the total cost. The error function of importance here is
the error flow rate function. A penalty function is used to
optimize a function which is bounded by constraints.

The penalty function is thus given by

(8)

(e)

( 10)

( 11)

= i ciMi('i)
r=1

t P,?H? (,i)
i=L

L(r) - Cr(E) +
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The cost term in the penalty function is given by

Ct(E) where r - [rr, r.2, ...,xnfT

and the penalty term (error functio.) by

rr€ [d*ir, , dr, dz, ...dn, dn+r, d-"*]

and variable x2 is defined as

xz€ {r*t., I xz ( r-.* I ftt }
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e and p refer to the non-discrete and discrete diameters,
respectively.

f"LV2 (22)

Pei is the penalty constant and I/i(ri) is the error flow
through pipe 'i' with diamet€r ci. The penalty term forms
a constraint which has to be minimized along with the
cost.

To understand the optimization procedure it is best
to examine Figure 1. This figure represents a two-
dimensional system. The function to be optimi zed de-
pends on two variables. Variable cr is defined as

D"

Figure 2 shows a flow diagram for the above optimiza-
tion procedure. Note the feedback loops. They ensure
that the variables stay within the specified boundaries.
The technique is a combination of a discrete coordinate
technique for the interior pipes and a continuous gradient
search technique for the outlet pipes.

Atty set of diameters can be used as a starting point
for the optimization proocedure. The only requirement is
that they comply with the specified constraints. This is to
get a realistic first simulation.

Case studies

Two case studies were carried out to verify the discrete
optimization procedure. One of the case studies is a pipe
network with no loops. The other one is a simple network
having one loop.

i

Case study 1

The network for the first case study is given in Figure 3.
It consists of 14 interior pipes and 8 outlet pipes. Spec-
ifications for this case study are given in Table 1. Two
calculations were performed. Firstly, the discrete pipe di-
ameters were calculated that, will satisfy the flow require-
ments but not necessarily minimize the life cycle cost of
the network. Secondly, the pipe diameters were calculated
that satisfy the flow constraints as well as minimize the
life cycle cost. The results of these calculations are given
in Table 2. The savings obtained by minimizing the life
cycle cost for this study wa^s 28% compared to when only
the flow requirements were taken into account.

Pipe sections

Oudets

Pump

i P,?H? (,,)
l=1

( 18)

( 1e)

(20)

(2r)

This system is a typical example of a two-pipe network
where the pipes are connected in series. Variable 11 repre-
sents the interior pipe and varia6le t2 the oirtlet pipe with
its damp er.

x2
(Constraint on x2) Xru,

(Constraint on x2) X,,,

lunctlon contours)

d^in d,u* x7
(Constraint on x1) (Constraint on x1)

Figure 1 Optimization of a two-dimensional system.

Let us first shift variable rr in the direction in which
the penalty function L(r) decreases until a minimum is
reached. After a minimum is reached, variable 12 is ma-
nipulated in a similar way. These two ("r and ,r) are
again manipulated until a local minimum is reached. No-
tice that the optimization process takes place in the shaded
area formed by the constraints.

When a local optimum is reached, all the outlet pipes
are replaced with a standardized pipe and a damper. The
damping coefficient k6 for the outlet pipes can be calcu-
lated from equation (22). This will ensure that the outlet
flow rates are a^s specified for the problem. The subscripts

t{R) (Penalty

\
I

Figu re 3 Pip e network for Case study 1.
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otn d bounds

nondiscreet

Siimulate network
f - L(x1n , x2n, ... ,xrq )

Xfil = XIII +ah

if t1 < f2 is true at f2 < fl is true rtPcll istueif f1 < 12 is true

fl < t or12<l

l-ocal optimum reached

Figu re 2 Flow diagram depicting the optimization procedure.
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Table 1 Design data for Case study 1

Design specifications : Required flow rates in pipe sections
(PrQ,RrSrTrUr\/rW) are 0.15 kg/s

Fluid
(Water)

Economic data

Pipe data

Pump data

Density
Viscosity
Interest rates (/)
Design life time ( d)

Bnergy rate (C.)
Energy demand rate (Da)
Operating hours (")
Pipe material cost factor (Ct)
Pipe material
Surface roughness
Pipe thickness
Pipe material density
Interior pipe lengths
Outlet pipe lengths
Pump speed (rro)
Pump rotor diameter
Flow coefficients

Pressure head coefficients

Pump motor efficiency

998 kg/*t
0.00101 Ns/mz
lSTo

20 years
8.62 c/Kwh
$28/Kw/month
6 750 hours/year
$20lkg
Brass tubing
0.0015 m
5mm
7 000 kg/-t
10m
5m
1 600 r.p.m.
0.2
bo = 0.59336

h = -5956 .74I
bz = 94802776.0
Ds = -430096466310.0
ao = 0.00158
a1 = - 1.09156
a2 : -2001.318
as = -30281303
0.7

Table 2 Results of calculations

Non-optimized network Discretelv optimized network
Diam. (mm) Flow (ke/s) Diam. (mm) Flow (ke/s)PiPe

B
C
D
E
F
G
H
I

*
L
M
N
o
P

a
R
S

T
U
V
w

Economic data
Energy cost (20 year)
Capital cost
Total cost

0.90 60
0.30 30
0.30 20
0.30 20
0.15 40
0.15 40
0.60
0.30
0.30
0.15
0.30
0. 15

0.15
0.15 25

0.15 25

0.15 20
0.15 20
0.15 20

0.149 9.3

0.149 9.3

0.1 50
0.149

22
22
40
60
46
40
46
51

52
59

54

54

53

46
45
51

45

52
46

53

50

50

r.20
1.20

0.30

1 .178
1.178

0.283
0.89s
0.299
0.283
0.299
0.143
0.r51
0.596
0.298
0.299
0.r49
0.299
0.140
0.143
0.148
0.151

&^

none
none
none
none
none
none
none
none
none
none
none
none
none
none
10.5

10.3

10.5

10.3

60
20
25

40
45
20
60
20
25

25

8.3

8.4

$1 330

$1 I 384
$12 7r4

$l 009
$8 082
$9 091

0.15 20
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Case study 2

In this case a simple theoretical network with a single loop
is examined. Although it is not an existing networkLgainst
which we could compare the optimization results, it wa^s

chosen to show that networks with loops can be optimized.
The required outlet flow rates in branches F and G are 0.b
kg/r and 0.25 ks/r, respectively. The other input data are
the same as for the previous ca^se study. Figure 4 shows
a diagram representing the network. The results of Case
study 2 arc presented in Table 3.

(B-G) Branches

--\ 
outlet nodes

(p)pump
\.--'/

Figu re 4 Network diagram for Case stud y 2.

Table 3 Resulgs of Case study 2

of a discrete coordinate descent and continuous gradient
search technique is then used to solve the unconstrained
optimization problem.

Due to the complexity of the optimization problem
the modified objective function will contain a large number
of local minima. The only way to determine when the
global minimum has been reached is to locate all the local
minima and then choose the best one of them. The fact
that multiple minima exist has been confirmed by using
different starting values to the problems. In each case
the solutions did not exactly converge to the same values.
For each of these solutions the costs were, however, within
reasonable limits approximately the same.

Further improvements to the program may include
the optimization of networks with valves and reservoirs.
The ultimate objective of our work is the development of
a user-friendly computer program for application in such
diverse fields as water management, the chemical industry,
air conditioning, etc.
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Pipe
B

C
D
B
F
G
Economic data
cp
c"
Ct
Mass flow rate in
F
G

Optirnized diameters (*rtt)
15

15

15

15

25

15

$1 047

$2 034

$3 081

0.493 ks/t
0.244 kg/t

Conclusions

A procedure for the discrete optimization of pipe networks
was developed. The procedure was implemented in a user-
friendly computer program. The constrained non-linear
optimization problem is modified to an unconstrained opti-
rnization problem using penalty functions. A combination


